首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The latitudinal biodiversity gradient (LBG), the increase in biodiversity from the poles to the equator, is one of the most widely recognized global macroecological patterns, yet its deep time evolution and drivers remain uncertain. The Late Triassic (237–201 Ma), a critical interval for the early evolution and radiation of modern tetrapod groups (e.g. crocodylomorphs, dinosaurs, mammaliamorphs), offers a unique opportunity to explore the palaeolatitudinal patterns of tetrapod diversity since it is extensively sampled spatially when compared with other pre‐Cenozoic intervals, particularly at lower palaeolatitudes. Here, we explore palaeolatitudinal patterns of Late Triassic tetrapod diversity by applying sampling standardization to comprehensive occurrence data from the Paleobiology Database (PBDB). We then use palaeoclimatic model simulations to explore the palaeoclimatic ranges occupied by major tetrapod groups, allowing insight into the influence of palaeoclimate on the palaeolatitudinal distribution of these groups. Our results show that Late Triassic tetrapods generally do not conform to a modern‐type LBG; instead, sampling‐standardized species richness is highest at mid‐palaeolatitudes. In contrast, the richness of pseudosuchians (crocodylians and their relatives) is highest at the palaeoequator, a pattern that is retained throughout their subsequent evolutionary history. Pseudosuchians generally occupied a more restricted range of palaeoclimatic conditions than other tetrapod groups, a condition analogous to modern day reptilian ectotherms, while avemetatarsalians (the archosaur group containing dinosaurs and pterosaurs) exhibit comparatively wider ranges, which is more similar to modern endotherms, such as birds and mammals, suggesting important implications for the evolution of thermal physiology in dinosaurs.  相似文献   

2.
Cretaceous ichthyosaurs have typically been considered a small, homogeneous assemblage sharing a common Late Jurassic ancestor. Their low diversity and disparity have been interpreted as indicative of a decline leading to their Cenomanian extinction. We describe the first post-Triassic ichthyosaur from the Middle East, Malawania anachronus gen. et sp. nov. from the Early Cretaceous of Iraq, and re-evaluate the evolutionary history of parvipelvian ichthyosaurs via phylogenetic and cladogenesis rate analyses. Malawania represents a basal grade in thunnosaurian evolution that arose during a major Late Triassic radiation event and was previously thought to have gone extinct during the Early Jurassic. Its pectoral morphology appears surprisingly archaic, retaining a forefin architecture similar to that of its Early Jurassic relatives. After the initial latest Triassic radiation of early thunnosaurians, two subsequent large radiations produced lineages with Cretaceous representatives, but the radiation events themselves are pre-Cretaceous. Cretaceous ichthyosaurs therefore include distantly related lineages, with contrasting evolutionary histories, and appear more diverse and disparate than previously supposed.  相似文献   

3.
Past research on the emergence of digit-bearing tetrapods has led to the widely accepted premise that this important evolutionary event occurred during the Late Devonian. The discovery of convincing digit-bearing tetrapod trackways of early Middle Devonian age in Poland has upset this orthodoxy, indicating that current scenarios which link the timing of the origin of digited tetrapods to specific events in Earth history are likely to be in error. Inspired by this find, we examine the fossil record of early digit-bearing tetrapods and their closest fish-like relatives from a statistical standpoint. We find that the Polish trackways force a substantial reconsideration of the nature of the early tetrapod record when only body fossils are considered. However, the effect is less drastic (and often not statistically significant) when other reliably dated trackways that were previously considered anachronistic are taken into account. Using two approaches, we find that 95 per cent credible and confidence intervals for the origin of digit-bearing tetrapods extend into the Early Devonian and beyond, spanning late Emsian to mid Ludlow. For biologically realistic diversity models, estimated genus-level preservation rates for Devonian digited tetrapods and their relatives range from 0.025 to 0.073 per lineage-million years, an order of magnitude lower than species-level rates for groups typically considered to have dense records. Available fossils of early digited tetrapods and their immediate relatives are adequate for documenting large-scale patterns of character acquisition associated with the origin of terrestriality, but low preservation rates coupled with clear geographical and stratigraphic sampling biases caution against building scenarios for the origin of digits and terrestrialization tied to the provenance of particular specimens or faunas.  相似文献   

4.
Ecology and morphology are different, and yet in comparative studies of fossil vertebrates the two are often conflated. The macroevolution of Mesozoic marine tetrapods has been explored in terms of morphological disparity, but less commonly using ecological‐functional categories. Here we use ecospace modelling to quantify ecological disparity across all Mesozoic marine tetrapods. We document the explosive radiation of marine tetrapod groups in the Triassic and their rapid attainment of high ecological disparity. Late Triassic extinctions led to a marked decline in ecological disparity, and the recovery of ecospace and ecological disparity was sluggish in the Early Jurassic. High levels of ecological disparity were again achieved by the Late Jurassic and maintained during the Cretaceous, when the ecospace became saturated by the Late Cretaceous. Sauropterygians, turtles and ichthyosauromorphs were the largest contributors to ecological disparity. Throughout the Mesozoic, we find that established groups remained ecologically conservative and did not explore occupied or vacant niches. Several parts of the ecospace remained vacant for long spans of time. Newly evolved, radiating taxa almost exclusively explored unoccupied ecospace, suggesting that abiotic releases are needed to empty niches and initiate diversification. In the balance of evolutionary drivers in Mesozoic marine tetrapods, abiotic factors were key to initiating diversification events, but biotic factors dominated the subsequent generation of ecological diversity.  相似文献   

5.
Invasion of the open ocean by tetrapods represents a major evolutionary transition that occurred independently in cetaceans, mosasauroids, chelonioids (sea turtles), ichthyosaurs and plesiosaurs. Plesiosaurian reptiles invaded pelagic ocean environments immediately following the Late Triassic extinctions. This diversification is recorded by three intensively-sampled European fossil faunas, spanning 20 million years (Ma). These provide an unparalleled opportunity to document changes in key macroevolutionary parameters associated with secondary adaptation to pelagic life in tetrapods. A comprehensive assessment focuses on the oldest fauna, from the Blue Lias Formation of Street, and nearby localities, in Somerset, UK (Earliest Jurassic: 200 Ma), identifying three new species representing two small-bodied rhomaleosaurids (Stratesaurus taylori gen et sp. nov.; Avalonnectes arturi gen. et sp. nov) and the most basal plesiosauroid, Eoplesiosaurus antiquior gen. et sp. nov. The initial radiation of plesiosaurs was characterised by high, but short-lived, diversity of an archaic clade, Rhomaleosauridae. Representatives of this initial radiation were replaced by derived, neoplesiosaurian plesiosaurs at small-medium body sizes during a more gradual accumulation of morphological disparity. This gradualistic modality suggests that adaptive radiations within tetrapod subclades are not always characterised by the initially high levels of disparity observed in the Paleozoic origins of major metazoan body plans, or in the origin of tetrapods. High rhomaleosaurid diversity immediately following the Triassic-Jurassic boundary supports the gradual model of Late Triassic extinctions, mostly predating the boundary itself. Increase in both maximum and minimum body length early in plesiosaurian history suggests a driven evolutionary trend. However, Maximum-likelihood models suggest only passive expansion into higher body size categories.  相似文献   

6.
The postcranial skeleton of the Devonian tetrapod Tulerpeton curtum Lebedev   总被引:1,自引:1,他引:0  
Postcranial remains of the Russian Late Devonian tetrapod Tulerpeton include the hexadactylous fore limb, hind limb, anocleithral pectoral girdle, squamation, and associated disarticulated postcranial bones. A cladistic analysis indicates that Tulerpeton is a reptiliomorph stem-group amniote and the earliest known crown-group tetrapod: Acanthostega and Ichthyostega are successively more derived plesion stem-group tetrapods and do not consititute a monophyletic ichthyostegalian radiation. Previous analyses suggesting a profound split in tetrapod phylogeny are thereby corroborated, and likewise the interpretation of Westlothiana as a stem-group amniote. The divergence of reptiliomorphs from batrachomorphs occurred before the Devonian-Carboniferous boundary. Tulerpeton originates from an entirely aquatic environment with a diverse fish fauna. The morphologies of its limbs and those of Devonian stem-tetrapods suggest that dactyly predates the elaboration of the carpus and tarsus, and that Polydactyly persisted after the evolutionary divergence of the principal lineages of living tetrapods. The apparent absence of a branchial lamina and gill skeleton suggests that Tulerpeton was primarily air-breathing, whereas contemporary stem-group tetrapods and more recent batrachomorphs retained greater emphasis on gill-breathing.  相似文献   

7.
The Los Colorados Formation constitutes a continuous continental succession deposited in Western Argentina during the Late Triassic, a time period that is crucial to the record of the faunistic turnover at the Triassic-Jurassic boundary. Many authors have pointed out that its rich tetrapod fauna represents a unique transitional assemblage with elements typical of both Late Triassic and Early Jurassic. However, the possibility that the fauna represented a mixture of Triassic and Jurassic horizons was also proposed. Recently, stratigraphic control of the fossiliferous levels was developed in order to correlate the different localities of the extense Los Colorados outcrops, and a revision of the taxonomic status of most tetrapods recovered is currently undergoing. Preliminary results confirm previous assumptions about the transitional nature of the assemblage where typical Triassic taxa are associated with dinosaur groups known from Early Jurassic levels in other Gondwanan areas. The fossiliferous levels of the upper third of the sequence included several basal archosaurs (aetosaurs, rauisuchids, sphenosuchians), protosuchian crocodiles, dinosaurs (sauropodomorphs, tetanuran theropods), derived therapsids and primitive chelonians. New evidence about tetrapod ichnites of chirotheroid affinities is added to the fossiliferous association.  相似文献   

8.
Spencer G. Lucas 《Ichnos》2013,20(1-2):5-38
Tetrapod footprints have a fossil record in rocks of Devonian-Neogene age. Three principal factors limit their use in biostratigraphy and biochronology (palichnostratigraphy): invalid ichnotaxa based on extramorphological variants, slow apparent evolutionary turnover rates and facies restrictions. The ichnotaxonomy of tetrapod footprints has generally been oversplit, largely due to a failure to appreciate extramorphological variation. Thus, many tetrapod footprint ichnogenera and most ichnospecies are useless phantom taxa that confound biostratigraphic correlation and biochronological subdivision. Tracks rarely allow identification of a genus or species known from the body fossil record. Indeed, almost all tetrapod footprint ichnogenera are equivalent to a family or a higher taxon (order, superorder, etc.) based on body fossils. This means that ichnogenera necessarily have much longer temporal ranges and therefore slower apparent evolutionary turnover rates than do body fossil genera. Because of this, footprints cannot provide as refined a subdivision of geological time as do body fossils. The tetrapod footprint record is much more facies controlled than the tetrapod body fossil record. The relatively narrow facies window for track preservation, and the fact that tracks are almost never transported, redeposited or reworked, limits the facies that can be correlated with any track-based biostratigraphy.

A Devonian-Neogene global biochronology based on tetrapod footprints generally resolves geologic time about 20 to 50 percent as well as does the tetrapod body fossil record. The following globally recognizable time intervals can be based on the track record: (1) Late Devonian; (2) Mississippian; (3) Early-Middle Pennsylvanian; (4) Late Pennsylvanian; (5) Early Permian; (6) Late Permian; (7) Early-Middle Triassic; (8) late Middle Triassic; (9) Late Triassic; (10) Early Jurassic; (11) Middle-Late Jurassic; (12) Early Cretaceous; (13) Late Cretaceous; (14) Paleogene; (15) Neogene. Tetrapod footprints are most valuable in establishing biostratigraphic datum points, and this is their primary value to understanding the stratigraphic (temporal) dimension of tetrapod evolution.  相似文献   

9.
The locomotion of early tetrapods has long been a subject of great interest in the evolutionary history of vertebrates. However, we still do not have a precise understanding of the evolutionary radiation of their locomotory strategies. We present here the first palaeohistological study based on theoretical biomechanical considerations among a highly diversified group of early tetrapods, the temnospondyls. Based on the quantification of microanatomical and histological parameters in the humerus and femur of nine genera, this multivariate analysis provides new insights concerning the adaptations of temnospondyls to their palaeoenvironments during the Early Permian, and clearly after the Permo‐Triassic crisis. This study therefore presents a methodology that, if based on a bigger sample, could contribute towards a characterization of the behaviour of species during great evolutionary events.  相似文献   

10.
Marine tetrapod clades (e.g. seals, whales) independently adapted to marine life through the Mesozoic and Caenozoic, and provide iconic examples of convergent evolution. Apparent morphological convergence is often explained as the result of adaptation to similar ecological niches. However, quantitative tests of this hypothesis are uncommon. We use dietary data to classify the feeding ecology of extant marine tetrapods and identify patterns in skull and tooth morphology that discriminate trophic groups across clades. Mapping these patterns onto phylogeny reveals coordinated evolutionary shifts in diet and morphology in different marine tetrapod lineages. Similarities in morphology between species with similar diets—even across large phylogenetic distances—are consistent with previous hypotheses that shared functional constraints drive convergent evolution in marine tetrapods.  相似文献   

11.
Mass extinctions among tetrapods and the quality of the fossil record   总被引:2,自引:0,他引:2  
The fossil record of tetrapods is very patchy because of the problems of preservation, in terrestrial sediments in particular, and because vertebrates are rarely very abundant. However, the fossil record of tetrapods has the advantages that it is easier to establish a phylogenetic taxonomy than for many invertebrate groups, and there is the potential for more detailed ecological analyses. The relative incompleteness of a fossil record may be assessed readily, and this can be used to test whether drops in overall diversity are related to mass extinctions or to gaps in our knowledge. Absolute incompleteness cannot be assessed directly, but a historical approach may offer clues to future improvements in our knowledge. One of the key problems facing palaeobiologists is paraphyly, the fact that many higher taxa in common use do not contain all of the descendants of the common ancestor. This may be overcome by cladistic analysis and the identification of monophyletic groups. The diversity of tetrapods increased from the Devonian to the Permian, remained roughly constant during the Mesozoic, and then began to increase in the late Cretaceous, and continued to do so during the Tertiary. The rapid radiation of 'modern' tetrapod groups--frogs, salamanders, lizards, snakes, turtles, crocodilians, birds and mammals--was hardly affected by the celebrated end-Cretaceous extinction event. Major mass extinctions among tetrapods took place in the early Permian, late Permian, early Triassic, late Triassic, late Cretaceous, early Oligocene and late Miocene. Many of these events appear to coincide with the major mass extinctions among marine invertebrates, but the tetrapod record is largely equivocal with regard to the theory of periodicity of mass extinctions.  相似文献   

12.
Sauropod dinosaurs were quadrupedal herbivores with a highly specialized body plan that attained the largest masses of any terrestrial vertebrates. Recent discoveries have shown that key traits associated with sauropod gigantism appeared stepwise during the Late Triassic and Early Jurassic in evolutionary ‘cascades’ of associated changes, in which a ‘head and neck’ cascade has been suggested as an important module. Here, we investigate the evolutionary transformation of the sauropodomorph braincase, using discrete anatomical characters, prompted by the reanalysis of a Middle Jurassic (Bathonian) sauropodiform braincase from England. Our analysis shows that sauropod braincases are highly distinct, and occupy a different region of morphospace than their evolutionary relatives. This resulted from anatomical transformations including a set of changes in the surface attachments of craniocervical musculature, which may indicate integrated evolution between neck elongation and transformation in braincase anatomy. Neck elongation in Late Triassic and Early or Middle Jurassic taxa is potentially associated with episodes of skull reduction, indicating that the ‘head and neck’ cascade was activated more than once in the evolutionary history of Sauropodomorpha. The re‐activation of this cascade in the Jurassic may have impacted on the differential survival of sauropodomorph lineages through the Early and Middle Jurassic.  相似文献   

13.
Research this century has greatly improved our knowledge of the origin and early radiation of dinosaurs. The unearthing of several new dinosaurs and close outgroups from Triassic rocks from various parts of the world, coupled with improved phylogenetic analyses, has set a basic framework in terms of timing of events and macroevolutionary patterns. However, important parts of the early dinosauromorph evolutionary history are still poorly understood, rendering uncertain the phylogenetic position of silesaurids as either non‐dinosaur Dinosauriformes or ornithischians, as well as that of various early saurischians, such as Eoraptor lunensis and herrerasaurs, as either noneusaurischians or members of the sauropodomorph or theropod lineages. This lack of agreement in part derives from a patchy distribution of traits among early members of the main dinosauromorph lineages and requires a more meticulous assessment of characters and homologies than those recently conducted. Presently, the oldest uncontroversial dinosaur records come from Late Triassic (Carnian) rocks of South America, southern Africa and India, hinting at a south‐western Pangaea origin of the group. Besides, macroevolutionary approaches suggest that the rise of dinosaurs was a more gradual process than previously understood. Obviously, these tentative scenarios need to be tested by new fossil finds, which should also help close the major gaps recognized in the fossil record of Triassic dinosauromorphs.  相似文献   

14.
The conquest of land was arguably one of the most fundamental ecological transitions in vertebrates and entailed significant changes in skin structure and appendages to cope with the new environment. In extant tetrapods, the rigidity of the integument is largely created by type I and type II keratins, which are structural proteins essential in forming a strong cytoplasmic network. It is expected that such proteins have undergone fundamental changes in both stem and crown tetrapods. Here, we integrate genomic, phylogenetic, and expression data in a comprehensive study on the early evolution and functional diversification of tetrapod keratins. Our analyses reveal that all type I and type II tetrapod keratins evolved from only two genes that were present in the ancestor of extant vertebrates. Subsequently, the water-to-land transition in the stem lineage of tetrapods was associated with a major radiation and functional diversification of keratin genes. These duplications acquired functions that serve rigidity in integumental hard structures and were the prime for subsequent independent keratin diversification in tetrapod lineages.  相似文献   

15.
Abstract:  The end-Permian mass extinction, 252 million years (myr) ago, marks a major shift in the posture of tetrapods. Before the mass extinction, terrestrial tetrapods were sprawlers, walking with their limbs extended to the sides; after the event, most large tetrapods had adopted an erect posture with their limbs tucked under the body. This shift had been suspected from the study of skeletal fossils, but had been documented as a long process that occupied some 15–20 myr of the Triassic. This study reads posture directly from fossil tracks, using a clear criterion for sprawling vs erect posture. The track record is richer than the skeletal record, especially for the Early and Middle Triassic intervals, the critical 20 myr during which period the postural shift occurred. The shift to erect posture was completed within the 6 myr of the Early Triassic and affected both lineages of medium to large tetrapods of the time, the diapsids and synapsids.  相似文献   

16.
Recent phylogenetic analyses of Paleozoic tetrapods have yielded startling new insights into the origin and early evolutionary history of amniotes. The origin of this successful group involves evolutionary innovations that are associated with the development of the cleidoic egg and related reproductive strategies, and are therefore not represented directly in the fossil record. Despite this obvious difficulty, recent studies have been able to distinguish Paleozoic amniotes from their anamniotic tetrapod relatives to determine major patterns of interrelationships.  相似文献   

17.
Simplification as a trend in synapsid cranial evolution   总被引:1,自引:0,他引:1  
The prevalence and meaning of morphological trends in the fossil record have undergone renewed scrutiny in recent years. Studies have typically focused on trends in body size evolution, which have yielded conflicting results, and have only rarely addressed the question as to whether other morphological characteristics show persistent directionality over long time scales. I investigated reduction in number of skull and lower jaw bones (through loss or fusion) over approximately 150 million years of premammalian synapsid history. The results of a new skull simplification metric (SSM), which is defined as a function of the number of distinct elements, show that pronounced simplification is evident on both temporal (i.e., stratigraphic) and phylogenetic scales. Postcranial evolution exhibits a similar pattern. Skull size, in contrast, bears little relationship with the number of distinct skull bones present. Synapsid skulls carried close to their observed maximum number of elements for most of the Late Carboniferous and Early Permian. The SSM decreased in the Late Permian but, coincident with the radiation of early therapsids, the range of observed SSM values widened during this interval. From derived nonmammalian cynodonts in the Early Triassic through the earliest mammals in the Early Jurassic, both the minimum and maximum SSM decreased. Data from three representative modern mammals (platypus, opossum, and human) suggest that this trend continues through the Cenozoic. In a phylogenetic context, the number of skull elements present in a taxon shows a significant negative relationship with the number of branching events passed from the root of the tree; more deeply embedded taxa have smaller SSM scores. This relationship holds for various synapsid subgroups as well. Although commonly ascribed to the effects of long-term selection, evolutionary trends can alternatively reflect an underlying intrinsic bias in morphological change. In the case of synapsid skull bones (and those of some other tetrapods lineages), the rare production of novel, or neomorphic, elements may have contributed to the observed trend toward skeletal simplification.  相似文献   

18.
The tooth is a major component of the vertebrate feeding apparatus and plays a crucial role in species survival, thus subjecting tooth developmental programs to strong selective constraints. However, irrespective of their functional importance, teeth have been lost in multiple lineages of tetrapod vertebrates independently. To understand both the generality and the diversity of developmental mechanisms that cause tooth agenesis in tetrapods, we investigated expression patterns of a series of tooth developmental genes in the lower jaw of toothless turtles and compared them to that of toothed crocodiles and the chicken as a representative of toothless modern birds. In turtle embryos, we found impairment of Shh signaling in the oral epithelium and early‐stage arrest of odontoblast development caused by termination of Msx2 expression in the dental mesenchyme. Our data indicate that such changes underlie tooth agenesis in turtles and suggest that the mechanism that leads to early‐stage odontogenic arrest differs between birds and turtles. Our results demonstrate that the cellular and molecular mechanisms that regulate early‐stage arrest of tooth development are diverse in tetrapod lineages, and odontogenic developmental programs may respond to changes in upstream molecules similarly thereby evolving convergently with feeding morphology.  相似文献   

19.
Large-scale adaptive radiations might explain the runaway success of a minority of extant vertebrate clades. This hypothesis predicts, among other things, rapid rates of morphological evolution during the early history of major groups, as lineages invade disparate ecological niches. However, few studies of adaptive radiation have included deep time data, so the links between extant diversity and major extinct radiations are unclear. The intensively studied Mesozoic dinosaur record provides a model system for such investigation, representing an ecologically diverse group that dominated terrestrial ecosystems for 170 million years. Furthermore, with 10,000 species, extant dinosaurs (birds) are the most speciose living tetrapod clade. We assembled composite trees of 614–622 Mesozoic dinosaurs/birds, and a comprehensive body mass dataset using the scaling relationship of limb bone robustness. Maximum-likelihood modelling and the node height test reveal rapid evolutionary rates and a predominance of rapid shifts among size classes in early (Triassic) dinosaurs. This indicates an early burst niche-filling pattern and contrasts with previous studies that favoured gradualistic rates. Subsequently, rates declined in most lineages, which rarely exploited new ecological niches. However, feathered maniraptoran dinosaurs (including Mesozoic birds) sustained rapid evolution from at least the Middle Jurassic, suggesting that these taxa evaded the effects of niche saturation. This indicates that a long evolutionary history of continuing ecological innovation paved the way for a second great radiation of dinosaurs, in birds. We therefore demonstrate links between the predominantly extinct deep time adaptive radiation of non-avian dinosaurs and the phenomenal diversification of birds, via continuing rapid rates of evolution along the phylogenetic stem lineage. This raises the possibility that the uneven distribution of biodiversity results not just from large-scale extrapolation of the process of adaptive radiation in a few extant clades, but also from the maintenance of evolvability on vast time scales across the history of life, in key lineages.  相似文献   

20.
The Permian and Triassic were key time intervals in the history of life on Earth. Both periods are marked by a series of biotic crises including the most catastrophic of such events, the end‐Permian mass extinction, which eventually led to a major turnover from typical Palaeozoic faunas and floras to those that are emblematic for the Mesozoic and Cenozoic. Here we review patterns in Permian–Triassic bony fishes, a group whose evolutionary dynamics are understudied. Based on data from primary literature, we analyse changes in their taxonomic diversity and body size (as a proxy for trophic position) and explore their response to Permian–Triassic events. Diversity and body size are investigated separately for different groups of Osteichthyes (Dipnoi, Actinistia, ‘Palaeopterygii’, ‘Subholostei’, Holostei, Teleosteomorpha), within the marine and freshwater realms and on a global scale (total diversity) as well as across palaeolatitudinal belts. Diversity is also measured for different palaeogeographical provinces. Our results suggest a general trend from low osteichthyan diversity in the Permian to higher levels in the Triassic. Diversity dynamics in the Permian are marked by a decline in freshwater taxa during the Cisuralian. An extinction event during the end‐Guadalupian crisis is not evident from our data, but ‘palaeopterygians’ experienced a significant body size increase across the Guadalupian–Lopingian boundary and these fishes upheld their position as large, top predators from the Late Permian to the Late Triassic. Elevated turnover rates are documented at the Permian–Triassic boundary, and two distinct diversification events are noted in the wake of this biotic crisis, a first one during the Early Triassic (dipnoans, actinistians, ‘palaeopterygians’, ‘subholosteans’) and a second one during the Middle Triassic (‘subholosteans’, neopterygians). The origination of new, small taxa predominantly among these groups during the Middle Triassic event caused a significant reduction in osteichthyan body size. Neopterygii, the clade that encompasses the vast majority of extant fishes, underwent another diversification phase in the Late Triassic. The Triassic radiation of Osteichthyes, predominantly of Actinopterygii, which only occurred after severe extinctions among Chondrichthyes during the Middle–Late Permian, resulted in a profound change within global fish communities, from chondrichthyan‐rich faunas of the Permo‐Carboniferous to typical Mesozoic and Cenozoic associations dominated by actinopterygians. This turnover was not sudden but followed a stepwise pattern, with leaps during extinction events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号