首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bacillus cereus ATCC 14579 was cultured in microcolonies on Anopore strips near its minimum growth temperature to directly image and quantify its population heterogeneity at an abusive refrigeration temperature. Eleven percent of the microcolonies failed to grow during low-temperature incubation, and this cold-induced population heterogeneity could be partly attributed to the loss of membrane integrity of individual cells.Bacillus cereus is a food poisoning- and food spoilage-causing organism that can be found in a large variety of foods (4, 23). There are two illnesses associated with B. cereus, namely, emetic and diarrheal intoxication (17, 24). Most of the strains related to cases or outbreaks of B. cereus food-borne poisoning were shown to be unable to grow at 7°C (1, 12). The average temperatures of domestic refrigerators have been investigated in various surveys around the world and often ranged from 5°C to 7°C, but extreme values exceeded 10°C to 12°C (5, 16). Inadequate chilling was indeed reported in various incidents of B. cereus food-borne illness (7, 8, 18, 19), pointing to the importance of appropriate refrigeration of foods contaminated with B. cereus to control its growth and toxin production in foods (9).Several studies have demonstrated that microorganisms can show diversity in their population stress response, even in an apparently homogeneous stress environment (6, 11, 21, 22). However, only very limited data describing the heterogeneity in growth performance of individual cells from food-borne pathogens cultured at low temperatures are available (10). Because inadequate chilling of food is one of the factors that contribute to the number of incidents of B. cereus food-borne illness, there is a need for better understanding of its growth performance at lowered incubation temperatures. In this study, we used the direct-imaging-based Anopore technology (6, 13-15) to quantitatively describe the population heterogeneity of B. cereus ATCC 14579 cells at 12°C. The minimum temperature for the growth of B. cereus ATCC 14579 in brain heart infusion (BHI) broth is 7.5°C (personal communication from F. Carlin), but various food-borne-associated B. cereus isolates were shown to be unable to grow at 10°C (1). Therefore, in this study, a culturing temperature of 12°C was chosen, to mimic temperature abuse of refrigerated foods. In addition, the membrane integrity of individual cells was assessed using both membrane permeant and impermeant nucleic acid dyes in order to get more insight into cellular characteristics that may contribute to heterogeneity in growth response.  相似文献   

2.
3.
Bacillus cereus ATCC 14579 possesses five RNA helicase-encoding genes overexpressed under cold growth conditions. Out of the five corresponding mutants, only the ΔcshA, ΔcshB, and ΔcshC strains were cold sensitive. Growth of the ΔcshA strain was also reduced at 30°C but not at 37°C. The cold phenotype was restored with the cshA gene for the ΔcshA strain and partially for the ΔcshB strain but not for the ΔcshC strain, suggesting different functions at low temperature.Bacillus cereus is a human pathogenic sporulated bacterium which is associated with emetic and diarrheal types of food-borne illnesses (4). B. cereus is widespread in the environment and in a wide range of foods. The growth domains of B. cereus strains range from psychrotrophic to nearly thermophilic and correlate with several phylogenetic clusters (15), which presumably permit B. cereus to colonize many different habitats with different thermal regimes. Many foods are stored refrigerated before consumption, and in such cases, B. cereus has to adapt to low-temperature conditions.B. cereus growth at low temperature takes place with a lag phase which may correspond to an adaptation phase (12). Cold is a stress which dramatically affects membrane fluidity, protein synthesis, and also the topology of nucleic acids (22). When exposed to low temperature, bacteria have to face a transient inhibition of protein synthesis mainly due to the presence of secondary structures in mRNA that are stabilized by cold conditions (16, 19). To overcome the translation interruption, cold-shocked cells synthesize cold-induced RNA helicases, which remove secondary structures from RNA duplexes in the presence of ATP, such as CsdA of Escherichia coli (19) or CshA of Bacillus subtilis (1). csdA and srmB deletion mutants of E. coli showed a cold-sensitive phenotype, and these RNA helicases have been described as involved in the biogenesis of the ribosomal 50S subunit at 20°C (10, 11). RNA helicases could also be involved in the degradation of mRNA by unwinding double-stranded mRNA, thereby allowing the action of RNase (8).We have recently shown that the deregulation of the expression of one RNA helicase gene of B. cereus ATCC 14579 increased the lag phase of B. cereus at a low temperature (7). In this context, our aim was to investigate the role of the five putative RNA helicases present in the genome of B. cereus ATCC 14579 in its adaptation at low temperature, close to the growth limit.  相似文献   

4.
Bacillus cereus spores are assembled with a series of concentric layers that protect them from a wide range of environmental stresses. The outermost layer, or exosporium, is a bag-like structure that interacts with the environment and is composed of more than 20 proteins and glycoproteins. Here, we identified a new spore protein, ExsM, from a β-mercaptoethanol extract of B. cereus ATCC 4342 spores. Subcellular localization of an ExsM-green fluorescent protein (GFP) protein revealed a dynamic pattern of fluorescence that follows the site of formation of the exosporium around the forespore. Under scanning electron microscopy, exsM null mutant spores were smaller and rounder than wild-type spores, which had an extended exosporium (spore length for the wt, 2.40 ± 0.56 μm, versus that for the exsM mutant, 1.66 ± 0.38 μm [P < 0.001]). Thin-section electron microscopy revealed that exsM mutant spores were encased by a double-layer exosporium, both layers of which were composed of a basal layer and a hair-like nap. Mutant exsM spores were more resistant to lysozyme treatment and germinated with higher efficiency than wild-type spores, and they had a delay in outgrowth. Insertional mutagenesis of exsM in Bacillus anthracis ΔSterne resulted in a partial second exosporium and in smaller spores. In all, these findings suggest that ExsM plays a critical role in the formation of the exosporium.Bacillus cereus and Bacillus anthracis are closely related members of the Bacillus cereus group (47). Although B. cereus is mainly an apathogenic organism, certain isolates can cause two different types of food poisoning, emetic syndrome and diarrheal disease (18). The emetic syndrome is caused by ingestion of cereulide, a heat-resistant toxin produced by vegetative cells contaminating the food (30), while the diarrheal disease occurs when spores germinate in the intestinal tract. Spores are also the infective agent in anthrax, a disease caused by B. anthracis (64).B. cereus and B. anthracis differentiate into spores when faced with nutrient deprivation. The spore is a dormant cell type that can remain viable for decades until favorable conditions induce germination and the resumption of vegetative growth. The remarkable resistance properties of the spore result from its unique architecture, consisting of a series of concentric protective layers (51). The spore core contains the genetic material and is surrounded by the cortex, a thick layer of modified peptidoglycan that promotes a highly dehydrated state. Encasing the core and the cortex, the coat is a multilayer protein shell that provides mechanical and chemical resistance. In addition, both the cortex and coat contribute to spore germination (17). Separated from the coat by an interspace, the exosporium encloses the rest of the spore, and it is composed of an inner basal layer and an outer hair-like nap (25).Being the most external layer of the spore, the exosporium interacts directly with the environment and as such provides a semipermeable barrier that may exclude large molecules, like antibodies and hydrolytic enzymes (3, 23, 24, 54). However, the exosporium does not appear to contribute to the typical resistance properties of the spore (6, 35, 60). Also, the exosporium is not necessary in anthrax pathogenesis when tested under laboratory conditions (7, 27, 59), although it is able to down-modulate the innate immune response to spores and mediate adhesion to host tissues (4, 8, 43, 44). The exosporium may also help the spore avoid premature germination in unsustainable environments, since it contains two enzymes, alanine racemase (Alr) and inosine hydrolase (Iunh), that can inactivate low quantities of the germinants l-alanine and inosine, respectively (6, 48, 55, 61). However, regulation of germination by the exosporium is poorly understood. Mutation of exosporial proteins has resulted in only negligible and inconsistent germination phenotypes (2, 5, 27, 28, 52, 54).The exosporium is composed of at least 20 proteins and glycoproteins in tight or loose association (48, 53, 57, 61, 65). These proteins are synthesized in the mother cell and always start self-assembly at the forespore pole near the middle of the mother cell, concurrently with the cortex and coat formation (42). Exosporium assembly is discontinuous and starts with a synthesis of a substructure known as the cap, which likely contains only a subset of the proteins present in the exosporium (55). After cap formation, construction of the rest of the exosporium requires the expression of ExsY (6). BclA is the main component of the hair-like nap on the external side of the exosporium, and it is linked to the basal layer through interaction with ExsFA/BxpB (54, 58). In addition, CotE participates in the correct attachment of the exosporium to the spore (27).Despite these findings, exosporium assembly continues to be a poorly understood process, and many questions remain regarding its composition and the regulation of its synthesis. In this study, we characterized a new spore protein, ExsM, which plays a key role in assembly of the exosporium. In B. cereus, inactivation of exsM resulted in spores with an unusual double-layer exosporium, and a similar phenotype was also observed in B. anthracis exsM null mutant spores. Finally, double-layer exosporium spores allowed us to study the role of the exosporium in germination and outgrowth.  相似文献   

5.
6.
7.
8.
9.
10.
The dlt operon encodes proteins that alanylate teichoic acids, the major components of cell walls of gram-positive bacteria. This generates a net positive charge on bacterial cell walls, repulsing positively charged molecules and conferring resistance to animal and human cationic antimicrobial peptides (AMPs) in gram-positive pathogenic bacteria. AMPs damage the bacterial membrane and are the most effective components of the humoral immune response against bacteria. We investigated the role of the dlt operon in insect virulence by inactivating this operon in Bacillus cereus, which is both an opportunistic human pathogen and an insect pathogen. The ΔdltBc mutant displayed several morphological alterations but grew at a rate similar to that for the wild-type strain. This mutant was less resistant to protamine and several bacterial cationic AMPs, such as nisin, polymyxin B, and colistin, in vitro. It was also less resistant to molecules from the insect humoral immune system, lysozyme, and cationic AMP cecropin B from Spodoptera frugiperda. ΔdltBc was as pathogenic as the wild-type strain in oral infections of Galleria mellonella but much less virulent when injected into the hemocoels of G. mellonella and Spodoptera littoralis. We detected the dlt operon in three gram-negative genera: Erwinia (Erwinia carotovora), Bordetella (Bordetella pertussis, Bordetella parapertussis, and Bordetella bronchiseptica), and Photorhabdus (the entomopathogenic bacterium Photorhabdus luminescens TT01, the dlt operon of which did not restore cationic AMP resistance in ΔdltBc). We suggest that the dlt operon protects B. cereus against insect humoral immune mediators, including hemolymph cationic AMPs, and may be critical for the establishment of lethal septicemia in insects and in nosocomial infections in humans.Gram-positive bacteria are generally enclosed by cell walls consisting of macromolecular assemblies of cross-linked peptidoglycan (murein), polyanionic teichoic acids (TAs), and surface proteins (69). TAs are polymers of repeating glycerophosphate residues. They may be covalently anchored to either peptidoglycan (wall-associated TAs) or the cytoplasmic membrane via glycolipids (lipoteichoic acids [LTAs]). TAs may be involved in controlling cell shape, autolytic enzyme activity, and cation homeostasis (69). They make a significant contribution to the overall negative charge of the bacterial cell wall, attracting negatively charged compounds, including the cationic antimicrobial peptides (AMPs) of the innate humoral immune systems of higher organisms (69).Many of the gram-positive bacterial species pathogenic to humans display resistance to cationic AMPs because of a decrease in the net negative charge of bacterial cell envelopes (75). Modifications to the TAs at the bacterial surface involving the incorporation of positively charged residues, such as d-alanine, prevent cationic AMPs from reaching their target, thereby protecting the organism against these compounds. This process involves the Dlt proteins encoded by the dltABCD operon present in most of the genome sequences established to date for gram-positive bacteria (44, 58, 74). d-Alanine is incorporated into LTAs through a two-step reaction involving a d-alanine-d-alanyl carrier protein ligase (Dcl) and a d-alanyl carrier protein (Dcp), encoded by the dltA and dltC genes, respectively (18, 44, 45, 70). The dltB and dltD genes encode other proteins required for the d-alanylation of LTAs. DltD is involved in selection of the Dcp carrier protein for ligation with d-alanine (19), whereas DltB is thought to be involved in d-alanyl-Dcp secretion (69). d-Alanine may be transferred from d-alanylated LTAs to wall-associated TAs by transacylation. For many human gram-positive bacterial pathogens, dlt operon inactivation has been shown to affect bacterial resistance to cationic AMPs and virulence. Indeed, Listeria monocytogenes, Bacillus anthracis, Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes, Lactobacillus reuteri, and group B streptococci harboring mutations in dlt genes all have a higher negative charge on the cell surface and are more susceptible to cationic AMPs of various origins (1, 34, 56, 58, 59, 77, 78, 89). The inactivation of dlt genes in these pathogenic bacterial species also decreases interactions with phagocytic and nonphagocytic cells (1, 13, 34, 78).The impact of Dlt proteins on cationic AMP resistance and virulence in insect bacterial pathogens has never before been studied, despite the major role of cationic AMPs in insect humoral immunity (9, 61). Insect bacterial pathogens also termed entomopathogenic bacteria are able to multiply in the insect hemocoel from small inocula (<10,000 viable cells) and produce fatal septicemia (8, 57). Entomopathogenic bacteria entering the hemolymph are targeted by an array of immune system mediators of both cellular and humoral reactions. The cellular response results in bacterial phagocytosis or encapsulation by circulating hemocytes, whereas the humoral response generates cationic AMPs (61). These peptides are small, inducible molecules produced in large amounts in hemolymph by the fat body (9, 26). They participate to the insect antimicrobial defense in a systemic response. Many AMP have been reported to cause damage in microbial membranes, which may ultimately lead to bacterial cell lysis (94).We investigated the role of the dlt operon in cationic AMP resistance and virulence in Bacillus cereus, a human opportunistic and insect facultative bacterial pathogen. B. cereus sensu stricto is a spore-forming gram-positive bacterium. The B. cereus sensu lato group of bacteria also includes the closely related insect pathogen Bacillus thuringiensis and the human pathogen B. anthracis. Genomic data have shown that B. thuringiensis and B. cereus have almost identical chromosomal genetic backgrounds (54, 55) but that B. thuringiensis carries a plasmid encoding entomopathogenic cytoplasmic crystalline δ-endotoxins (Cry proteins) specifically active against insect larvae upon ingestion (22, 23, 83). B. cereus can cause opportunistic food-borne gastroenteritis and local/systemic infections in immunocompromised humans (85). Both B. thuringiensis (with and without Cry toxins) and B. cereus strains are highly pathogenic when injected directly into the hemocoels of insect larvae, in which they cause lethal septicemia (46, 82, 86, 96). The occurrence, structure, and glycosylation of LTAs were studied for different Bacillus species, including B. cereus strains containing LTAs (built up of polyglycerol phosphate chains and hydrophobic anchors) and d-alanine (11, 50, 51, 62). Therefore, the presence of a dlt operon in the B. cereus 14579 genome suggests that the LTAs may be alanylated.We report here that the dlt operon of B. cereus is required for resistance to cationic AMPs of bacterial or insect origin. The dlt operon is required for full B. cereus virulence following bacterial injection into two lepidopteran insects, the caterpillar Spodoptera littoralis and the wax moth Galleria mellonella. We also detected the dlt operon in three gram-negative bacterial genera: Erwinia (Erwinia carotovora), Bordetella (Bordetella pertussis, Bordetella parapertussis, and Bordetella bronchiseptica), and Photorhabdus (the entomopathogenic bacterium Photorhabdus luminescens TT01).  相似文献   

11.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

12.
The slr1192 (adhA) gene from Synechocystis sp. strain PCC 6803 encodes a member of the medium-chain alcohol dehydrogenase/reductase family. The gene product AdhA exhibits NADP-dependent alcohol dehydrogenase activity, acting on a broad variety of aromatic and aliphatic primary alcohols and aldehydes but not on secondary alcohols or ketones. It exhibits superior catalytic efficiency for aldehyde reduction compared to that for alcohol oxidation. The enzyme is a cytosolic protein present in photoautotrophically grown Synechocystis cells. The expression of AdhA is enhanced upon the exposure of cells to different environmental stresses, although it is not essential for survival even under such stress conditions. The induction of the expression of the adhA gene is dependent on the Hik34-Rre1 two-component system, as it is severely impaired in mutant strains lacking either the histidine kinase Hik34 or the response regulator Rre1. In vitro DNA-protein interaction analysis reveals that the response regulator Rre1 binds specifically to the promoter region of the adhA gene.Medium-chain dehydrogenases/reductases (MDR) constitute a superfamily of alcohol dehydrogenases that catalyze the reversible NAD(P)-dependent oxidation of alcohols to aldehydes or ketones. It includes a large number of structurally related proteins, which catalyze several types of enzymatic activity (23, 41, 44). Screening of complete genome sequences has revealed that this family is widespread, complex, and of ancient origin (22, 44). MDR alcohol dehydrogenases are found in mammals, plants, fungi, and bacteria (52). The alcohol dehydrogenases fulfill an astonishing variety of functions in cell metabolism (21), also being a key enzyme in ethanol generation by Saccharomyces cerevisiae (6) and bacteria (10). Furthermore, the generation of biofuels by photoautotrophic microorganisms is of great biotechnological interest (43). Complementation of a cyanobacterium''s enzyme machinery with a specific exogenous gene(s) can result in the ability to generate bioethanol from photosynthetically fixed CO2 (11). Notwithstanding, current knowledge of cyanobacterial alcohol dehydrogenases is rather limited. In the cyanobacterium Synechocystis sp. strain PCC 6803 (referred here as Synechocystis), the slr1192 gene encodes a putative MDR alcohol dehydrogenase. According to in silico analyses (38, 44), the slr1192 protein has similarity with two subfamilies of MDRs: the yeast ADH family (Y-ADH) and the cinnamyl ADH family (CADH). Y-ADH-related enzymes have catabolic functions and are involved mainly in the metabolism of ethanol or short-chain alcohols for which they exhibit broad substrate specificity. CADH and related enzymes, on the other hand, perform anabolic functions and participate in biosynthetic pathways in plants and bacteria (5, 25, 44).In Synechocystis, the expression of slr1192 is induced by osmotic (35) or salt (48) stress. In higher plants, alcohol dehydrogenase activity appears to be involved in aerobic metabolism under certain stress conditions (26, 56) such as low temperature, water deficit, or ozone exposure, but its function remains unknown. A temperature decrease seems to induce the accumulation of alcohol dehydrogenase mRNA in Arabidopsis thaliana (20), corn, and rice (9).In general, cyanobacteria perceive and respond to environmental changes by means of two-component regulatory systems, a ubiquitous signal transduction pathway that represents a prevalent signaling mechanism in bacteria (8, 61). Two-component systems consist of a histidine kinase (Hik) and a response regulator (Rre) and generally induce or repress the expression of specific genes in response to environmental stimuli. The histidine kinase autophosphorylates a conserved histidine residue in response to the environmental signal and then transfers the phosphate group to a conserved aspartate residue of the response regulator, which mediates the transfer of the signal. In Synechocystis, different Hik-Rre systems have been identified as being regulators of the response to different environmental stresses (37). A membrane-bound histidine kinase, Hik33, is involved in the perception of cold, salt, and osmotic stress (33, 35, 39, 48, 54). A cytosolic histidine kinase, Hik34, has been shown to be involved in the perception of salt and hyperosmotic stress (33, 39, 48) as well as heat shock (53). Specifically, the couples Hik33-Rre31, Hik10-Rre13, Hik16 Hik41-Rre17, Hik34-Rre1, and a putative Hik2-Rre1 have been identified as being elements involved in the perception and transduction of signals promoted by hyperosmotic and salt stress (39, 48).In the present work, a biochemical characterization of the slr1192 protein (designated AdhA here) from Synechocystis has been performed, revealing that the tetrameric 140-kDa enzyme is active toward linear and aromatic primary alcohols and that it preferentially reduces aldehydes rather than oxidizing alcohols. In addition, an extensive analysis of the expression of the adhA gene has verified its induction in response to heat shock, hyperosmotic stress, salt stress, and the addition of benzyl alcohol (BA). The Hik34-Rre1 two-component system has been shown to play a relevant role in the regulation of the expression of the adhA gene under these stress conditions. A specific interaction of Rre1 with the promoter region of the adhA gene has also been demonstrated. In light of this finding and additional information presented here, the physiological role of AdhA in Synechocystis is discussed.  相似文献   

13.
14.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

15.
16.
17.
18.
19.
Sulfate-reducing bacteria (SRB) play a major role in the coupled biogeochemical cycling of sulfur and chalcophilic metal(loid)s. By implication, they can exert a strong influence on the speciation and mobility of multiple metal(loid) contaminants. In this study, we combined DsrAB gene sequencing and sulfur isotopic profiling to identify the phylogeny and distribution of SRB and to assess their metabolic activity in salt marsh sediments exposed to acid mine drainage (AMD) for over 100 years. Recovered dsrAB sequences from three sites sampled along an AMD flow path indicated the dominance of a single Desulfovibrio species. Other major sequence clades were related most closely to Desulfosarcina, Desulfococcus, Desulfobulbus, and Desulfosporosinus species. The presence of metal sulfides with low δ34S values relative to δ34S values of pore water sulfate showed that sediment SRB populations were actively reducing sulfate under ambient conditions (pH of ∼2), although possibly within less acidic microenvironments. Interestingly, δ34S values for pore water sulfate were lower than those for sulfate delivered during tidal inundation of marsh sediments. 16S rRNA gene sequence data from sediments and sulfur isotope data confirmed that sulfur-oxidizing bacteria drove the reoxidation of biogenic sulfide coupled to oxygen or nitrate reduction over a timescale of hours. Collectively, these findings imply a highly dynamic microbially mediated cycling of sulfate and sulfide, and thus the speciation and mobility of chalcophilic contaminant metal(loid)s, in AMD-impacted marsh sediments.Salt marshes exhibit high primary production rates (1, 101) and form biogeochemical “transition zones” for nutrient production, transport, and cycling between terrestrial and coastal marine environments (41, 66, 100). These zones also serve to reduce the flux of potentially toxic metals in contaminated groundwater to estuaries (12, 99, 106). Both functions depend strongly on microbial activity, especially that of sulfate-reducing bacteria (SRB) (42, 62, 67). SRB recycle much of the sedimentary organic carbon pool in marsh sediments (42-44) and indirectly inhibit production of the greenhouse gas methane (37, 71). They can restrict the mobility of dissolved contaminant metals by inducing precipitation of poorly soluble metal sulfides, and studies have examined their use in constructed wetlands to bioremediate acid mine drainage (AMD) and other metalliferous waste streams (11, 35, 40, 46, 50, 76, 90, 94, 104). However, the high acidity and metal concentrations inherent to AMD can inhibit SRB growth (15, 88, 98), and preferential growth of iron- and sulfur-oxidizing bacteria over SRB has been observed in some treatment wetlands (39).For natural salt marshes, 16S ribosomal nucleic acid- and phospholipid fatty acid (PLFA)-based analyses have shown that SRB commonly comprise a significant fraction of the microbial community (13, 24, 31, 34, 51, 58). Studies of salt marsh dissimilatory sulfite reductase genes (dsrAB), a highly conserved functional phylogenetic marker of prokaryotic sulfate reducers (49, 57, 102, 103, 107), have revealed both novel and deeply branching clades (3). Studies of mining-impacted sites at pH 2.0 to 7.8 (5, 7, 39, 70, 72, 77, 84), of soils and geothermal settings at a pH of ∼4 (55, 68), of metal-contaminated estuaries at pH 6.8 to 7.2 (65), and of hypersaline lakes at pH 7.5 (56) further outline the distribution and tolerance of specific groups and species of SRB under geochemically stringent conditions. Other findings point toward the existence of deltaproteobacteria in environments at a pH of ∼1 (10), although it is unknown if these include SRB. SRB diversity in salt marshes under long-term contamination by AMD has not been well investigated. Such studies may provide useful information for bioremediation projects in estuarine environments, as well as general insights into relationships between SRB physiology and the geochemistry of AMD.We studied the diversity of SRB, based on phylogenetic analysis of recovered DsrAB gene sequences (∼1.9 kb), in natural salt marsh sediments of the San Francisco Bay impacted by AMD for over 100 years. Sulfur isotope ratio and concentration measurements of pore water sulfate and metal sulfide minerals provided information about the spatial and temporal extent of active bacterial sulfate reduction (BSR) in sediment cores taken from specific sites along an AMD flow path. Collectively, the results revealed a tidal marsh system characterized by rapidly cycling bacterial sulfate reduction and sulfide reoxidation associated with oscillating tidal inundation and groundwater infiltration.  相似文献   

20.
Factors potentially contributing to the lower incidence of Lyme borreliosis (LB) in the far-western than in the northeastern United States include tick host-seeking behavior resulting in fewer human tick encounters, lower densities of Borrelia burgdorferi-infected vector ticks in peridomestic environments, and genetic variation among B. burgdorferi spirochetes to which humans are exposed. We determined the population structure of B. burgdorferi in over 200 infected nymphs of the primary bridging vector to humans, Ixodes pacificus, collected in Mendocino County, CA. This was accomplished by sequence typing the spirochete lipoprotein ospC and the 16S-23S rRNA intergenic spacer (IGS). Thirteen ospC alleles belonging to 12 genotypes were found in California, and the two most abundant, ospC genotypes H3 and E3, have not been detected in ticks in the Northeast. The most prevalent ospC and IGS biallelic profile in the population, found in about 22% of ticks, was a new B. burgdorferi strain defined by ospC genotype H3. Eight of the most common ospC genotypes in the northeastern United States, including genotypes I and K that are associated with disseminated human infections, were absent in Mendocino County nymphs. ospC H3 was associated with hardwood-dominated habitats where western gray squirrels, the reservoir host, are commonly infected with LB spirochetes. The differences in B. burgdorferi population structure in California ticks compared to the Northeast emphasize the need for a greater understanding of the genetic diversity of spirochetes infecting California LB patients.In the United States, Lyme borreliosis (LB) is the most commonly reported vector-borne illness and is caused by infection with the spirochete Borrelia burgdorferi (3, 9, 52). The signs and symptoms of LB can include a rash, erythema migrans, fever, fatigue, arthritis, carditis, and neurological manifestations (50, 51). The black-legged tick, Ixodes scapularis, and the western black-legged tick, Ixodes pacificus, are the primary vectors of B. burgdorferi to humans in the United States, with the former in the northeastern and north-central parts of the country and the latter in the Far West (9, 10). These ticks perpetuate enzootic transmission cycles together with a vertebrate reservoir host such as the white-footed mouse, Peromyscus leucopus, in the Northeast and Midwest (24, 35), or the western gray squirrel, Sciurus griseus, in California (31, 46).B. burgdorferi is a spirochete species with a largely clonal population structure (14, 16) comprising several different strains or lineages (8). The polymorphic ospC gene of B. burgdorferi encodes a surface lipoprotein that increases expression within the tick during blood feeding (47) and is required for initial infection of mammalian hosts (25, 55). To date, approximately 20 North American ospC genotypes have been described (40, 45, 49, 56). At least four, and possibly up to nine, of these genotypes are associated with B. burgdorferi invasiveness in humans (1, 15, 17, 49, 57). Restriction fragment length polymorphism (RFLP) and, subsequently, sequence analysis of the 16S-23S rRNA intergenic spacer (IGS) are used as molecular typing tools to investigate genotypic variation in B. burgdorferi (2, 36, 38, 44, 44, 57). The locus maintains a high level of variation between related species, and this variation reflects the heterogeneity found at the genomic level of the organism (37). The IGS and ospC loci appear to be linked (2, 8, 26, 45, 57), but the studies to date have not been representative of the full range of diversity of B. burgdorferi in North America.Previous studies in the northeastern and midwestern United States have utilized IGS and ospC genotyping to elucidate B. burgdorferi evolution, host strain specificity, vector-reservoir associations, and disease risk to humans. In California, only six ospC and five IGS genotypes have been described heretofore in samples from LB patients or I. pacificus ticks (40, 49, 56) compared to approximately 20 ospC and IGS genotypes identified in ticks, vertebrate hosts, or humans from the Northeast and Midwest (8, 40, 45, 49, 56). Here, we employ sequence analysis of both the ospC gene and IGS region to describe the population structure of B. burgdorferi in more than 200 infected I. pacificus nymphs from Mendocino County, CA, where the incidence of LB is among the highest in the state (11). Further, we compare the Mendocino County spirochete population to populations found in the Northeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号