首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An experiment was designed to study how gut fullness and encounter with 5-mm Asellus aquaticus influenced acceptance or rejection of less profitable 8-mm Asellus . 45-mm sticklebacks were found to always accept 5-mm prey whereas 8-mm prey were accepted with an initial probability of about 0.9. This probability decreased as the gut filled. Fish of differing sizes and sex had similar daily energy intakes per unit body size, however the acceptance of 8-mm prey was related to fish size. Whenever a fish orientated to a prey it was followed by pursuit and manipulation independently of prey size. The decision to accept or reject prey occurred after one manipulation, a criterion that was more variable for the larger prey. For one feeding session per day the total energy intake was almost constant despite the changing combination of prey sizes eaten. The fish ate prey with long handling times if the energetic contents of the stomach had not reached 450 J. Calculations were made of how many of each millimetre prey size group would satisfy the 450 J demand and how long the estimated number would take to handle. This showed that the best option is to consume 5-mm prey if given the choice.  相似文献   

2.
Prey selection behaviour of three-spined sticklebacks, Gasterosteus aculeatus L., was studied in two experiments. Where possible, the experimental apparatus satisfied the assumptions of the simplest optimal diet model (the basic prey model); prey were presented sequentially, the fish could not search for and handle prey at the same time, and net energy gain, handling time and encounter rate were fixed. Experiment 1 presented fish with a range of Asellus sizes so that pursuit ( p ) and handling ( h ) time could be related to prey size. Published energy values of Asellus together with pursuit and handling times were used to calculate E /( p+h ) for Asellus measuring 3,4,5,6,7 and 9 mm. Pursuit times did not differ with prey size but handling times did. E /( p+h ) was very variable particularly at the larger prey sizes. Experiment 2 presented fish with two sequences of prey differing in the encounter rate with the most profitable prey sizes. Fish did not select the diet predicted by the basic prey model tending to always ignore the largest prey even when net energy gain would have been maximized by including them in the diet. Further analysis showed that the probability of a prey size being taken was a function of prey size, fish stomach fullness and encounter rate. It is concluded that the basic prey model is too simple to capture the behaviour of the fish. One of its main faults is that the changing state of the fish through the feeding bout is ignored.  相似文献   

3.
When a three-spined stickleback Gasterosteus aculeatus encountered prey simultaneously the probability of hanging and the median pursuit time were greater than when prey were encountered sequentially. During simultaneous prey encounter fish did not choose to attack the more profitable prey but instead the nearer prey was handled first except when the difference between the two prey sizes was large. No difference was found in the level of total energetic intake by the fish regardless of prey size pairing. Fish that handled and ate the first prey of a pair in <5 s attacked the second prey with a high probability of success, demonstrating an opportunistic feeding strategy. Importantly however, the fish did not choose to maximize long term energy intake rate by eating both prey, but rather short-term considerations over the course of feeding took precedence. With an empty stomach, the probability of a fish eating ( P eat) the first prey handled was high regardless of prey size. As stomach fullness increased, the P eat the first prey handled decreased if it was the larger prey. Hence, the fish were unselective when the stomach was empty but thereafter there was a shift in preference towards the smaller prey. The decision of which prey to attack and eat appeared to be based on short-term energy considerations and the level of stomach fullness. This study demonstrates that feeding on a short-term scale is a crucial factor to take account of when analysing fish feeding during simultaneous prey encounter.  相似文献   

4.
  1. Predation is a pervasive force that structures food webs and directly influences ecosystem functioning. The relative body sizes of predators and prey may be an important determinant of interaction strengths. However, studies quantifying the combined influence of intra‐ and interspecific variation in predator–prey body size ratios are lacking.
  2. We use a comparative functional response approach to examine interaction strengths between three size classes of invasive bluegill and largemouth bass toward three scaled size classes of their tilapia prey. We then quantify the influence of intra‐ and interspecific predator–prey body mass ratios on the scaling of attack rates and handling times.
  3. Type II functional responses were displayed by both predators across all predator and prey size classes. Largemouth bass consumed more than bluegill at small and intermediate predator size classes, while large predators of both species were more similar. Small prey were most vulnerable overall; however, differential attack rates among prey were emergent across predator sizes. For both bluegill and largemouth bass, small predators exhibited higher attack rates toward small and intermediate prey sizes, while larger predators exhibited greater attack rates toward large prey. Conversely, handling times increased with prey size, with small bluegill exhibiting particularly low feeding rates toward medium–large prey types. Attack rates for both predators peaked unimodally at intermediate predator–prey body mass ratios, while handling times generally shortened across increasing body mass ratios.
  4. We thus demonstrate effects of body size ratios on predator–prey interaction strengths between key fish species, with attack rates and handling times dependent on the relative sizes of predator–prey participants.
  5. Considerations for intra‐ and interspecific body size ratio effects are critical for predicting the strengths of interactions within ecosystems and may drive differential ecological impacts among invasive species as size ratios shift.
  相似文献   

5.
The characteristics of the reaction field and the reactive distance of the Stone moroko (Pseudorasbora parva) were studied under three environmental conditions (structural complexity, light intensity and turbidity) and three prey sizes. In optimal experimental conditions, under no structural complexity, light intensity of 200 lux and turbidity less than 1 NTU (Nephelometric Turbidity Units), the cross-section of the reaction field was found to be elliptic with a bearing angle larger than the elevation angle, but both angles changed slightly depending on environmental conditions. The reactive distance was large, and the fish frequently attacked prey that was located within 15–60 degrees to each side from the frontal direction of a fish (i.e., ± 15 degrees from the axis of the fish body) horizontally. In the light intensity below 50 lux or turbidity above 10 NTU, however, the attack frequency and the reactive distance in the frontal direction of a fish did not differ from other horizontal directions in the reaction field. The average reactive distance increased proportionally with increasing strand distance, but it gradually reached a constant value for strand distances greater than about 3.6 times the fish body length. The average reactive distance increased in the light intensity range of 10–200 lux and decreased negatively with turbidity increasing. The average reactive distance increased with larger prey size, but the rate of increase of the reactive distance gradually decreased.  相似文献   

6.
Channa striata fry (100 ± 20 mg) and fingerlings (2 ± 0.2 g) were offered mosquito larvae as prey and the adults (75 ± 5 g) small fishes. The size of the fish was directly related to satiation time and inversely related to satiation amount. The influence of satiation levels on handling time, showed an increase to almost eight-fold in fry and fingerlings and about two-fold in adults. The study also revealed the role played by the young of C. striata in mosquito control. With the increase in size of the fish the preference for mosquito larvae was seen to decrease. The air breathing habit and hence its ability to survive in polluted and oxygen-depleted waters makes it a suitable candidate as a fish for mosquito control.  相似文献   

7.
Predator–prey size (PPS) relationships are determined by predator behaviour, with the likelihood of prey being eaten dependent on their size relative to that of the consumer. Published PPS relationships for 30 pelagic or benthic marine fish species were analysed using quantile regression to determine how median, lower and upper prey sizes varied with predator size and habitat. Habitat effects on predator foraging activity/mode, morphology, growth and natural mortality are quantified and the effects on PPS relationships explored. Pelagic species are more active, more likely to move by caudal fin propulsion and grow more rapidly but have higher mortality rates than benthic species, where the need for greater manoeuvrability when foraging in more physically complex habitats favours ambush predators using pectoral fin propulsion. Prey size increased with predator size in most species, but pelagic species ate relatively smaller prey than benthic predators. As pelagic predators grew, lower prey size limits changed little, and prey size range increased but median relative prey size declined, whereas the lower limit increased and median relative prey size was constant or increased in benthic species.  相似文献   

8.
Intake rate maximization alone is not always sufficient in explainingprey size selection in predators. For example, bivalve-feedingoystercatchers regularly select smaller prey than expected ifthey aimed to maximize their intake rate. It has been proposedthat to these birds large prey are "risky," in the sense thatbirds may damage their bills when feeding on large bivalves.Large bivalves yield more energy, but according to this hypothesisthis is achieved at the expense of energy yield in the longterm when (1) the risk of bill damage increases with prey sizeand (2) foraging with a damaged bill is less effective. In accordancewith this hypothesis, we show that captive oystercatchers feedingon large cockles experienced a high probability of bill tipdamage, while bill damage was absent when cockles were small.Moreover, among free-living oystercatchers the prevalence ofbill damage was correlated with mean cockle size near the capturesite, and the data on captive birds fit in this pattern. Foodintake of captive oystercatchers feeding exclusively on cockleswas reduced by 23% after bill damage, and free-living birdswith damaged bills had 14 g lower mass. Because lower body masswas associated with higher mortality probability, these resultsindicate long-term costs associated with feeding on large cockles.We conclude that the risk of bill damage can potentially explainwhy oystercatchers avoid large bivalves and that oystercatchersmay maximize long-term intake rate by selecting prey sizes thatare "suboptimal" from a short-term rate-maximizing point ofview.  相似文献   

9.
A paucity of information exists on the diet of Arctic grayling, Thymallus arcticus, particularly for young-of-the-year (YOY). We examined the diet of YOY Arctic grayling in relation to food availability, in the Barrenlands region of the Northwest Territories, Canada, where lake-outlet streams serve as nursery habitat for these fish. Given the small size of YOY grayling and the abundance of lake-derived microcrustacea in the drift of these lake-outlet streams, we anticipated that these prey would make up a major component of the YOY's diet. Food selectivity by YOY grayling, however, was strongly sized-biased; although microcrustacea dominated the drift, YOY primarily consumed larger taxa, especially Chironomidae and Simuliidae. Even among these taxa, grayling tended to select the larger individuals. As they grew, YOY grayling took larger numbers of both large and small prey, particularly the larger invertebrates, although prey size range did not change after mid-July. Selection of pupae and avoidance of Ephemeroptera suggest that prey characteristics other than size also contribute to selectivity by YOY grayling. The relatively limited consumption of terrestrial invertebrates and other large prey may reflect the small sizes of fish in this arctic study, as well as differences in prey availability. Despite the abundance of lake-derived prey, instream production of invertebrates should largely determine the productive capacity of Barrenlands streams as fish habitat.  相似文献   

10.
Synopsis In dense, single-species assemblages of crucian carp, competition is intense and results in populations of stunted fish. To explore mechanisms underlying this competition, we measured handling times, return rates, and prey choice for five sizes of crucian carp feeding on six sizes of a standardized food. Handling times increased with prey size and decreased with fish size. Return rates (dry mass ingested per unit handling time) increased dramatically with fish size, and generally decreased with increasing prey size, especially for small fish. Patterns of return rates among size-classes suggested that one or more size-related shifts in feeding efficiency exist for crucian carp; combined with physiological stresses related to winter anoxia, the inability of fish to make these shifts may contribute to size structures observed in high-density populations. Comparisons of relations among fish size, prey size, and return rates for crucian carp and bluegill, Lepomis macrochirus, suggest that similar intraspecific competitive relations exist between generalist species with size-structured populations. Despite differences in return rates among prey sizes, the extent of food selectivity based on prey size exhibited by crucian carp in two types of choice trials was less than predicted. Crucian carp commonly take in several items before mechanically processing food with their pharyngeal apparatus; this multiple prey processing may contribute to disparities between observed choice patterns and those predicted based on return rates for single prey.  相似文献   

11.
Prey choice by fish is subject to many constraints, some of which may interact to determine the relative preference of fish for prey with different profitabilities. The constraining effects of parasitism and perceived competition on foraging behaviour were examined in the upland bully, Gobiomorphus breviceps . In the laboratory, bullies faced with a choice of prey items of two different sizes chose the larger prey significantly more often than the smaller ones. The presence of a conspecific fish near the source of large prey significantly reduced the bullies'preference for larger prey. Neither the size of the test fish, nor the number of digenean metacercarial cysts they harboured, had any influence on their relative preference for larger prey, or on how that preference was dampened by the presence of a competitor. The threat of competition appears to be a more important constraint on prey choice in upland bullies than parasitism.  相似文献   

12.
We tested the relative and combined effects of prey density and patch size on the functional response (number of attacks per unit time and duration of attacks) of a predatory reef fish (Cheilodactylus nigripes (Richardson)) to their invertebrate prey. Fish attacked prey at a greater rate and for longer time in large than small patches of prey, but large patches had naturally greater densities of prey. We isolated the effects of patch size and prey density by reducing the density of prey in larger patches to equal that of small patches; thereby controlling for prey density. We found that the intensity at which fish attacked prey (combination of attack rate and duration) was primarily a response to prey density rather than the size of patch they occupied. However, there was evidence that fish spent more time foraging in larger than smaller patches independent of prey density; presumably because of the greater total number of prey available. These experimental observations suggest that fish can distinguish between different notions of prey abundance in ways that enhance their rate of consumption. Although fish may feed in a density dependent manner, a critical issue is whether their rate of consumption outstrips the rate of increase in prey abundance to cause density dependent mortality of prey.  相似文献   

13.
Size-dependent interactions between piscivorous perch Perca fluviatilis (age ≥1 year) and their fish prey age 0 year perch, pikeperch Sander lucioperca and roach Rutilus rutilus in the biomanipulated Bautzen Reservoir indicated that the highest ratio of prey total length ( L T) to predator L T was 59%. Perch L T and prey fish L T were positively and linearly related. Perch L T was strongly related with both gape width and gape height. Within the range 80–110 mm L T, the gape height of perch exceeded gape width, while beginning at 120 mm L T the gape width exceeded gape height. The minimum, maximum and mean prey L T and prey body depths of all three prey species increased with increasing predator size, but the increases in mean sizes of perch and pikeperch as prey were less than that of roach. The low limit of the 'predation window' observed in this study coupled with results of previous studies on perch in the Bautzen Reservoir indicated that perch had a major impact on the population dynamics of both perch and pikeperch.  相似文献   

14.
Diet breadth (measured as the S.D. of the log of prey size per larvae; SLH) of blue whiting micromesistius poutassou larvae followed a quadratic equation with larval size. In small larvae, diet breadth in terms of size (SLH), the mean and the maximum of the log of prey size per larvae (MLH and XLH, respectively) increased with larval size as prey size selection shifted to larger prey. In contrast, large larvae tended to reduce diet breadth of prey sizes ingested, focusing on the larger prey that were abundant, instead of raising the upper limit of prey sizes because of the low abundance of larger prey. Except for larvae at the onset of first feeding, number of prey stayed constant or decreased in relation to larval size. Both patterns (in small and large larvae) maintained a constant rate of increase of gut carbon content with increase in larval size. Large larvae appear to maintain the increase in gut carbon content during ontogenetic development by reducing diet breadth (SLH) and increasing selection towards the larger prey that are abundant.  相似文献   

15.
Plants can reduce the fitness costs of granivory by satiating seed predators. The most common satiation mechanism is the production of large crops, which ensures that a proportion of the seeds survive predation. Nevertheless, satiation of small granivores at the seed level may also exist. Larger seeds would satiate more efficiently, enhancing the probability of seed survival after having been attacked. However, a larger seed size could compromise the efficiency of satiation by means of large crops if there were a negative relationship between seed size and the number of seeds produced by an individual plant. We analyze both types of satiation in the interaction between the holm oak Quercus ilex and the chestnut weevil Curculio elephas. Both crop size and acorn size differed strongly in a sample of 32 trees. Larger crop sizes satiated weevils, and higher proportions of the seeds were not attacked as crop size increased. Larger seeds also satiated weevil larvae, as a larger acorn size increased the likelihood of embryo survival. Seedling size was strongly related to acorn size and was reduced by weevil attack, but seedlings coming from large weeviled acorns were still larger. The number and the size of the acorns produced by individual trees were negatively related. Larger proportions of the crop were infested in oaks producing less numerous crops of larger acorns. However, contrary to expectations, these trees did not satiate more effectively at the seed level either. Effective satiation by larger acorns was precluded by larger multi-infestation rates associated to smaller seed crops, in such a way that the proportion of attacked seeds that survived did not vary among trees with different acorn sizes. These results highlight the need of considering satiation by means of large crops and large seeds in studies of predispersal seed predation. Long-term monitoring on individual oaks will help to assess whether there is a trade-off between the number and the size of the acorns and, if it existed, how it could condition the fitness consequences of both types of satiation.  相似文献   

16.
PearreJr  & Maass 《Mammal Review》1998,28(3):125-139
House Cats Felis catus L., whether attached to human households or not, appear to be versatile opportunistic predators. Their principal prey in most areas are mammals (rodents and rabbits), with bird prey secondary. Trophic niche breadth, as measured by the standard deviation of the spectrum of logarithmically transformed prey sizes ('SLH'), shows a latitudinal trend, being greater in low latitudes: it is also greater in periods of high prey availability. This appears to be influenced by inclusion of very small prey, especially insects, in areas and seasons when they are available. Both the niche breadth and the mean prey size (niche position) appear to be constant as population mean cat size increases. The most common prey size for cats is about 1% of their own body weights, which is much less than most previously reported values for carnivores.  相似文献   

17.
Larvae feeding selectivity of Iheringichthys labrosus , Hypophthalmus edentatus and Plagioscion squamosissimus was assessed, examining the role of mouth gape in prey selection. Fish larvae were sampled in the Itaipu Reservoir (Brazil–Paraguay). Iheringichthys labrosus and H. edentatus larvae, with small and similar gape sizes, exhibited slightly different diets; I. labrosus preferred cladocerans ( Bosmina hagmanni , Bosmina huauriensis and Bosminopsis deitersi ) and the rotifer Brachionus calyciflorus . Hypophthalmus edentatus , however, primarily ingested the cladocerans B. hagmanni , Ceriodaphnia cornuta , Daphnia gessneri and Diaphanosoma spinulosum . Plagioscion squamosissimus , with a greater gape size, preferred Calanoida. The mechanistic processes that determine food selectivity of fish larvae in temperate aquatic systems were similar in the Neotropical system. The trophic spectrum of these species is characterized by small- to intermediate-sized prey. Plagioscion squamosissimus larvae, which have larger mouths, exploit primarily larger prey differing from the most abundant species or size classes; consequently, their diet is quite different from I. labrosus larvae and modestly similar to H. edentatus larvae, opportunistic feeders that they eat more abundant prey.  相似文献   

18.
Foraging behaviors of the piscivorous cornetfish Fistularia commersonii were observed at shallow reefs in Kuchierabu-jima Island, southern Japan. This fish foraged on two types of prey fishes: one was reef fish that typically dwell on or near substrata (e.g., Tripterygiidae and Labridae), and the other was pelagic fish that shoal in the water column (e.g., Clupeidae and Carangidae). The prey sizes, prey types and foraging behaviors changed as the predator size increased. Prey sizes were largely limited by gape size of the cornetfish, and small predators consumed small prey. The small cornetfish (10–30 cm in total length) fed only on reef fish captured after stalking (where the fish slowly approaches the prey and then suddenly attacks). The stalking was done either solitarily or in foraging association with conspecifics. Large fish (30–120 cm) fed on both types of fishes by stalking and/or chasing (where the fish chases the prey using its high mobility and attacks), either solitarily or in foraging association with con- or heterospecifics. Thus, chasing was only performed by the large cornetfish against pelagic prey fish in associative foraging with other con- and heterospecific predators. As their body sizes increased, F. commersonii began to show a diversification of foraging behaviors, which was strongly related not only to the habitat types and anti-predatory behaviors of the prey fishes but also to associative foraging with con- or heterospecifics, which improves their foraging success.  相似文献   

19.
F. Galis  P. W. de Jong 《Oecologia》1988,75(2):175-184
Summary We examined the influence of satiation level, prey density and light intensity on food uptake rate through the ontogeny of Haplochromis piceatus. Prey handling in the buccal cavity was found to be the main factor limiting prey uptake rate under light circumstances and at a sufficiently high prey density. Food uptake rate per unit body weight of different sizes of H. piceatus was equal when feeding on Chaoborus but decreased with increasing fish size when feeding on Daphnia magna. In choice experiments with Chaoborus and D. magna, prey selection by H. piceatus of all sizes was according to the predictions based on Charnov's 1976 model.  相似文献   

20.
Prey size spectra and prey availability of larval and small juvenile cod   总被引:4,自引:0,他引:4  
The aim of the present study is to describe the prey preference characteristics of cod larvae and assess preference variability in relation to species and size composition of copepod prey. A further aim is to examine the hypothesis that dietary prey size spectra remain the same during the larval stage when viewed on a relative predator/prey size scale. The study is based on stomach analysis of larval/juvenile cod in the size range 10–35 mm from nursery grounds in the North Sea. Stomach contents (species, size) were compared to environmental composition and preference indices were calculated. Prey size spectra had the expected relationship to larval cod size, and preference for given copepod species could be ascribed to their relative size. Additional species-specific preferences were evident, for example the larger Pseudocalanus and the larger Calanus spp. were highly preferred. Available prey biomass was highest in the areas of a hydrographic front, where larvae have been shown to concentrate. Changes in prey availability with larval growth depend strongly on specific prey biomass spectra at a given location. Both increasing and decreasing prey availability at increasing larval size were indicated, dependent on location. The findings illustrate the usefulness of coupling dietary prey size spectra and biomass spectra of available prey sizes during studies of ichthyoplankton feeding ecology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号