首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 127 毫秒
1.
《Current biology : CB》2000,10(15):923-S2
Apoptotic execution is characterized by dramatic changes in nuclear structure accompanied by cleavage of nuclear proteins by caspases (reviewed in [1]). Cell-free extracts have proved useful for the identification and functional characterization of activities involved in apoptotic execution 2, 3, 4 and for the identification of proteins cleaved by caspases [5]. More recent studies have suggested that nuclear disassembly is driven largely by factors activated downstream of caspases [6]. One such factor, the caspase-activated DNase, CAD/CPAN/DFF40 4, 7, 8 (CAD) can induce apoptotic chromatin condensation in isolated HeLa cell nuclei in the absence of other cytosolic factors 6, 8. As chromatin condensation occurs even when CAD activity is inhibited, however, CAD cannot be the sole morphogenetic factor triggered by caspases [6]. Here we show that DNA topoisomerase IIα (Topo IIα), which is essential for both condensation and segregation of daughter chromosomes in mitosis [9], also functions during apoptotic execution. Simultaneous inhibition of Topo IIα and caspases completely abolishes apoptotic chromatin condensation. In addition, we show that CAD binds to Topo IIα, and that their association enhances the decatenation activity of Topo IIα in vitro.  相似文献   

2.
Apoptotic nuclear morphological change without DNA fragmentation.   总被引:8,自引:0,他引:8  
Apoptosis is characterized morphologically by condensation and fragmentation of nuclei and cells and biochemically by fragmentation of chromosomal DNA into nucleosomal units [1]. CAD, also known as CPAN or DFF-40, is a DNase that can be activated by caspases [2] [3] [4] [5] [6]. CAD is complexed with its inhibitor, ICAD, in growing, non-apoptotic cells [2] [7]. Caspases that are activated by apoptotic stimuli [8] cleave ICAD. CAD, thus released from ICAD, digests chromosomal DNA into nucleosomal units [2] [3]. Here, we examine whether nuclear morphological changes induced by apoptotic stimuli are caused by the degradation of chromosomal DNA. Human T-cell lymphoma Jurkat cells, as well as their transformants expressing caspase-resistant ICAD, were treated with staurosporine. The chromosomal DNA in Jurkat cells underwent fragmentation into nucleosomal units, which was preceded by large-scale chromatin fragmentation (50-200 kb). The chromosomal DNA in cells expressing caspase-resistant ICAD remained intact after treatment with staurosporine but their chromatin condensed as found in parental Jurkat cells. These results indicate that large-scale chromatin fragmentation and nucleosomal DNA fragmentation are caused by an ICAD-inhibitable DNase, most probably CAD, whereas chromatin condensation during apoptosis is controlled, at least in part, independently from the degradation of chromosomal DNA.  相似文献   

3.
We used cytoplasmic extracts from chicken DU249 cells at various stages along the apoptotic pathway to analyse the events of apoptotic execution. So-called S/M extracts from morphologically normal 'committed-stage' cells induce apoptotic morphology and DNA cleavage in substrate nuclei. These apoptotic changes appear to require the function of multiple caspases (cysteine aspartases, a specialized class of proteases) acting in parallel. Extracts from 'execution-stage' apoptotic cells induce apoptotic events in added nuclei in a caspase-independent manner. Biochemical fractionation of these extracts reveals that a column fraction enriched in endogenous active caspases is unable to induce DNA fragmentation or chromatin condensation in substrate nuclei, whereas a caspase-depleted fraction induces both changes. 'Execution-stage' extracts contain an ICAD/DFF45-inhibitable nuclease resembling CAD, plus another activity that is required for the apoptotic chromatin condensation. 'Committed-stage' S/M extracts lack these downstream activities. These observations reveal that caspases act in an executive fashion, serving to activate downstream factors that disassemble the nucleus rather than disassembling it themselves. They also suggest that activation of the downstream factors (rather than the caspases) is the critical event that occurs at the transition from the latent to the execution phase of apoptosis.  相似文献   

4.
We have compared cytoplasmic extracts from chicken DU249 cells at various stages along the apoptotic pathway. Extracts from morphologically normal “committed stage” cells induce apoptotic morphology and DNA cleavage in substrate nuclei but require ongoing caspase activity to do so. In contrast, extracts from frankly apoptotic cells induce apoptotic events in added nuclei in a caspase-independent manner. Biochemical fractionation of these extracts reveals that a column fraction enriched in endogenous active caspases is unable to induce DNA fragmentation or chromatin condensation in substrate nuclei, whereas a caspase-depleted fraction induces both changes. Further characterization of the “execution phase” extracts revealed the presence of an ICAD/DFF45 (inhibitor of caspase-activated DNase/DNA fragmentation factor)- inhibitable nuclease resembling CAD, plus another activity that was required for the apoptotic chromatin condensation. Despite the presence of active caspases, committed stage extracts lacked these downstream activities, suggesting that the caspases and downstream factors are segregated from one another in vivo during the latent phase. These observations not only indicate that caspases act in an executive fashion, serving to activate downstream factors that disassemble the nucleus rather than disassembling it themselves, but they also suggest that activation of the downstream factors (rather than the caspases) is the critical event that occurs at the transition from the latent to active phase of apoptosis.  相似文献   

5.
DNA degradation during apoptotic execution generally occurs at two levels: early as high molecular weight (HMW) fragments and later on as oligonucleosomal fragments. Two nucleases, CAD/CPAN/DFF40 and endonuclease G, can digest nuclear chromatin to produce the oligonucleosomal fragments, and it has been suggested that CAD might be responsible for HMW DNA cleavage. To more clearly define the role of CAD in nuclear disassembly, we have generated CAD(-/-) sublines of chicken DT40 cells in which the entire CAD open reading frame has been deleted. These cells grow normally and undergo apoptosis with kinetics essentially identical to wild type cells. However, they fail to undergo detectable oligonucleosomal fragmentation, proving that CAD is essential for this stage of DNA cleavage, at least in DT40 cells. Other aspects of nuclear disassembly, including HMW DNA cleavage and early stage apoptotic chromatin condensation against the nuclear periphery proceed normally in the absence of CAD. However, the final stages of chromatin condensation and nuclear fragmentation do not occur. Our results demonstrate that CAD is required for complete disassembly of the nucleus during apoptosis and reveal the existence of one or more as yet unidentified second factors responsible for HMW DNA cleavage and the early stages of apoptotic chromatin condensation.  相似文献   

6.
During apoptotic execution, chromatin undergoes a phase change from a heterogeneous, genetically active network to an inert highly condensed form that is fragmented and packaged into apoptotic bodies. We have previously used a cell-free system to examine the roles of caspases or other proteases in apoptotic chromatin condensation and nuclear disassembly. But so far, the role of DNase activity or ATP hydrolysis in this system has not yet been elucidated. Here, in order to better define the stages of nuclear disassembly in apoptosis, we have characterized the apoptotic condensation using a cell-free system and time-lapse imaging. We demonstrated that the population of nuclei undergoing apoptosis in vitro appears to follow a reproducible program of nuclear condensation, suggesting the existence of an ordered biochemical pathway. This enabled us to define three stages of apoptotic chromatin condensation: stage 1 ring condensation; stage 2 necklace condensation; and stage 3 nuclear collapse/disassembly. Electron microscopy revealed that neither chromatin nor detectable subnuclear structures were present inside the stage 1 ring-condensed structures. DNase activity was not essential for stage 1 ring condensation, which could occur in apoptotic extracts depleted of all detectable DNase activity. However, DNase(s) were required for stage 2 necklace condensation. Finally, we demonstrated that hydrolyzable ATP is required for stage 3 nuclear collapse/disassembly. This requirement for ATP hydrolysis further distinguished stage 2 from stage 3. Together, these experiments provide the first steps towards a systematic biochemical characterization of chromatin condensation during apoptosis.  相似文献   

7.
Apoptotic cell death is characterized by several morphological nuclear changes, such as chromatin condensation and extensive fragmentation of chromosomal DNA. These alterations are primarily triggered through the activation of caspases, which subsequently cleave nuclear substrates. Caspase-3 induces processing of Acinus, which leads to chromatin condensation. DNA fragmentation is dependent on the DNase CAD, which is released from its inhibitor, ICAD, upon cleavage by caspase-3. DNA degradation is also induced by AIF and endonuclease G, which are both released from mitochondria upon death stimuli but do not require prior processing by caspases for their DNase activity. Here we report the identification of a widely expressed helicase designated Helicard, which contains two N-terminal CARD domains and a C-terminal helicase domain. Upon apoptotic stimuli, Helicard is cleaved by caspases, thereby separating the CARD domains from the helicase domain. While Helicard localizes in the cytoplasm, the helicase-containing fragment is found in the nucleus. Helicard accelerates Fas ligand-mediated DNA degradation, whereas a noncleavable or a helicase-dead Helicard mutant does not, implicating Helicard in the nuclear remodeling occurring during apoptosis.  相似文献   

8.
9.
10.
Surviving apoptosis   总被引:4,自引:0,他引:4  
The concept that cells subjected to chromatin cleavage during apoptosis are destined to die is being challenged. The execution phase of apoptosis is characterized by the activation of effector caspases, such as caspase-3, that cleave key regulatory or structural proteins and in particular activate apoptotic nucleases such as the caspase activated deoxyribonuclease (CAD). It is apparent that caspases of this type may become active both through non-apoptotic processing and potentially within cells that exhibit apoptotic morphology but are subsequently able to survive. In such systems caspase suppressor molecules, the inhibitors of apoptotic proteins or IAP's, may rescue cells from apoptotic nuclease(s) attack initiated by transient caspase activation. The MLL gene is involved in leukemogenic translocations in ALL and AML and is a target of nuclease cleavage during apoptosis. Translocations initiated at the site of apoptotic nuclease attack within MLL have been identified and may offer a model, with clinical relevance, for DNA damage mediated by the apoptosis system in cells destined to survive. The specificity of apoptotic cleavage combined with the potential for recovery from the execution phase of apoptosis suggests a novel and pathogenic role for apoptosis in creating translocations with leukemogenic potential.  相似文献   

11.
Topoisomerase II (topo II) is a dyadic enzyme found in all eukaryotic cells. Topo II is involved in a number of cellular processes related to DNA metabolism, including DNA replication, recombination and the maintenance of genomic stability. We discovered a correlation between the development of postnatal testis and increased binding of topo IIalpha to the chromatin fraction. We used this observation to characterize DNA-binding specificity and catalytic properties of purified testis topo IIalpha. The results indicate that topo IIalpha binds a substrate containing the preferred site with greater affinity and, consequently, catalyzes the conversion of form I to form IV DNA more efficiently in contrast to substrates lacking such a site. Interestingly, topo IIalpha displayed high-affinity and cooperativity in binding to the scaffold associated region. In contrast to the preferred site, however, high-affinity binding of topo IIalpha to the scaffold-associated region failed to result in enhanced catalytic activity. Intriguingly, competition assays involving scaffold-associated region revealed an additional DNA-binding site within the dyadic topo IIalpha. These results implicate a dual role for topo IIalpha in vivo consistent with the notion that its sequestration to the chromatin might play a role in chromosome condensation and decondensation during spermatogenesis.  相似文献   

12.
Apoptotic nuclear morphology and oligonucleosomal double-strand DNA fragments (also known as DNA ladder) are considered the hallmarks of apoptotic cell death. From a classic point of view, these two processes occur concomitantly. Once activated, DNA fragmentation factor, 40-kDa subunit (DFF40)/caspase-activated DNase (CAD) endonuclease hydrolyzes the DNA into oligonucleosomal-size pieces, facilitating the chromatin package. However, the dogma that the apoptotic nuclear morphology depends on DNA fragmentation has been questioned. Here, we use different cellular models, including MEF CAD−/− cells, to unravel the mechanism by which DFF40/CAD influences chromatin condensation and nuclear collapse during apoptosis. Upon apoptotic insult, SK-N-AS cells display caspase-dependent apoptotic nuclear alterations in the absence of internucleosomal DNA degradation. The overexpression of a wild-type form of DFF40/CAD endonuclease, but not of different catalytic-null mutants, restores the cellular ability to degrade the chromatin into oligonucleosomal-length fragments. We show that apoptotic nuclear collapse requires a 3′-OH endonucleolytic activity even though the internucleosomal DNA degradation is impaired. Moreover, alkaline unwinding electrophoresis and In Situ End-Labeling (ISEL)/In Situ Nick Translation (ISNT) assays reveal that the apoptotic DNA damage observed in the DNA ladder-deficient SK-N-AS cells is characterized by the presence of single-strand nicks/breaks. Apoptotic single-strand breaks can be impaired by DFF40/CAD knockdown, abrogating nuclear collapse and disassembly. In conclusion, the highest order of chromatin compaction observed in the later steps of caspase-dependent apoptosis relies on DFF40/CAD-mediated DNA damage by generating 3′-OH ends in single-strand rather than double-strand DNA nicks/breaks.  相似文献   

13.
14.
Hu Y  Yao J  Liu Z  Liu X  Fu H  Ye K 《The EMBO journal》2005,24(20):3543-3554
Akt promotes cell survival by phosphorylating and inhibiting components of the intrinsic cell death machinery. Akt translocates into the nucleus upon exposure of cells to survival factors, but little is known about its functions in the nucleus. Here, we show that acinus, a nuclear factor required for apoptotic chromatin condensation, is a direct target of Akt. We demonstrate that Akt phosphorylation of acinus on serine 422 and 573 results in its resistance to caspase cleavage in the nucleus and the inhibition of acinus-dependent chromatin condensation. Abolishing acinus phosphorylation by Akt through mutagenesis accelerates its proteolytic degradation and chromatin condensation. Acinus S422, 573D, a mutant mimicking phosphorylation, resists against apoptotic cleavage and prevents chromatin condensation. Knocking down of acinus substantially decreases chromatin condensation, and depletion of Akt provokes the apoptotic cleavage of acinus. Thus, Akt inhibits chromatin condensation during apoptosis by phosphorylating acinus in the nucleus, revealing a specific mechanism by which nuclear Akt promotes cell survival.  相似文献   

15.
SRPK2 belongs to a family of serine/arginine (SR) protein-specific kinases (SRPKs), which phosphorylate SR domain-containing proteins in the nuclear speckles and mediate the pre-mRNA splicing. Previous studies have shown that SRPK2 plays a pivotal role in cell proliferation and apoptosis. However, how SRPK2 is regulated during the apoptosis is unclear. Here, we show that SRPK2 is cleaved by caspases at Asp-139 and -403 residues. Its N terminus cleaved product translocates into the nucleus and promotes VP16-induced apoptosis. Akt phosphorylation of SRPK2 prevents its apoptotic cleavage by caspases. 14-3-3β, the binding partner of Akt-phosphorylated SRPK2, further protects it from degradation. Hence, our results suggest that the N-terminal domain of SRPK2 cleaved by caspases translocates into the nucleus, where it promotes chromatin condensation and apoptotic cell death.  相似文献   

16.
凋亡诱导因子与细胞凋亡   总被引:6,自引:1,他引:5  
凋亡诱导因子 (apoptosisinducefactor,AIF)是定位于线粒体膜间隙中的一种氧化还原酶 ,含有线粒体定位信号和核定位信号序列 ,具有很强的促凋亡活性 ,在类胚体成腔和胚胎早期分化过程中具有重要作用。在死亡信号或细胞胁迫的刺激下 ,线粒体通透性转变孔开放 ,释放AIF及细胞色素c至细胞质溶质中 ,具有核定位信号序列的AIF便进入细胞核内 ,引起染色质的初步凝集和DNA大规模断片化 (约 5 0kb) ,进而引发不依赖于胱冬肽酶的细胞凋亡途径 ;线粒体膜间隙释放出来的细胞色素c则可引起染色质的进一步凝集和DNA的寡核小体断片化 ,从而引发依赖于胱冬肽酶的细胞凋亡途径 ;与此同时 ,从线粒体膜间隙释放出来的AIF又可反馈放大线粒体通透性转变孔的渗透性 ,引起AIF与细胞色素c的进一步释放从而加快细胞死亡的进程。此外 ,细胞胁迫还可激活由多聚 (ADP 核糖 )聚合酶 1(PARP 1)所引发的细胞凋亡途径 ,通过AIF和细胞色素c引发细胞凋亡。最新研究结果表明 ,AIF同源线粒体关联死亡诱导者 (AIF homologousmitochondria associatedinducerofdeath ,AMID)与p5 3应答基因的编码产物 (p5 3 responsivegene 3,PRG3)均为AIF的同源蛋白质 ,可直接诱导人类细胞的凋亡。线虫的凋亡诱导因子WAH 1所诱导的细胞凋亡途径依赖于胱冬肽酶  相似文献   

17.
Counis MF  Torriglia A 《Biochimie》2006,88(12):1851-1858
Apoptosis is characterized by cell shrinkage, nuclear condensation and internucleosomal DNA cleavage. Besides the central role of caspases and other proteases, cell death triggers DNA degradation so that DNases have an active role in apoptotic cell death. The best-characterized apoptotic DNase is CAD, a neutral Mg-dependent endonuclease. Its activity is regulated by its inhibitor, ICAD, which is cleaved by caspases. Other neutral DNases have been shown to cleave nuclear DNA in apoptotic conditions: endonuclease G, GADD. In cells, the cytosolic pH is maintained to 7.2, mostly due to the activity of the Na(+)/H(+) exchanger. In many apoptotic conditions, a decrease of the intracellular pH has been shown. This decrease may activate different acid DNases, mostly when pH decreases below 6.5. Three acidic DNases II are so far known: DNase II alpha, DNase II beta and L-DNase II, a DNase II, derived from the serpin LEI (Leukocyte Elastase Inhibitor). Their activation during cell death is discussed in this review.  相似文献   

18.
Zyxin, a focal adhesion molecule, contains LIM domains and shuttles between the cytoplasm and the nucleus. Nuclear zyxin promotes cardiomyocyte survival, which is mediated by nuclear-activated Akt. However, the molecular mechanism of how zyxin antagonizes apoptosis remains elusive. Here, we report that zyxin binds to acinus-S, a nuclear speckle protein inducing apoptotic chromatin condensation after cleavage by caspases, and prevents its apoptotic action, which is regulated by Akt. Akt binds and phosphorylates zyxin on serine 142, leading to its association with acinus. Interestingly, 14-3-3gamma, but not zeta isoform selectively, triggers zyxin nuclear translocation, which is Akt phosphorylation dependent. Zyxin is also a substrate of caspases, but Akt phosphorylation is unable to prevent its apoptotic cleavage. Expression of zyxin S142D, a phosphorylation mimetic mutant, diminishes acinus proteolytic cleavage and chromatin condensation; by contrast, wild-type zyxin or unphosphorylated S142A mutant fails. Thus, Akt regulates zyxin/acinus complex formation in the nucleus, contributing to suppression of apoptosis.  相似文献   

19.
Programmed cell death in animals is usually associated with apoptotic morphology and requires caspase activation. Necrosis and caspase-independent cell death have been reported, but mostly in experimental conditions that lead some to question their existence it in vivo. Loss of interdigital cells in the mouse embryo, a paradigm of cell death during development [1], is known to include an apoptotic [2] and caspase-dependent [3] [4] mechanism. Here, we report that, when caspase activity was inhibited using drugs or when apoptosis was prevented genetically (using Hammertoe mutant mice, or mice homozygous for a mutation in the gene encoding APAF-1, a caspase-activating adaptor protein), interdigital cell death still occurred. This cell death was negative for the terminal-deoxynucleotidyl-mediated dUTP nick end-labelling (TUNEL) assay and there was no overall cell condensation. At the electron microscopy level, peculiar 'mottled' chromatin alterations and marked mitochondrial and membrane lesions, suggestive of classical necrotic cell death, were observed with no detectable phagocytosis and no local inflammatory response. Thus, in this developmental context, although caspase activity confers cell death with an apoptotic morphotype, in the absence of caspase activity an underlying mechanism independent of known caspases can also confer cell death, but with a necrotic morphotype. This cell death can go undetected when using apoptosis-specific methodology, and cannot be blocked by agents that act on caspases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号