首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
菌落形态的计算机识别法用于菌种的分离筛选*   总被引:4,自引:0,他引:4  
菌落形态是鉴别和分类菌种的重要特征之一。以分形和多重分形理论为基础,以计算机图像识别技术为手段,考察霉菌(绿僵菌)菌落形态的定量描述,分别测定各菌落样本的分形特征(覆盖维)和多重分形特征(多重分形谱)。研究表明,多重分形特征与菌种性能的相关性更大。以多重分形特征a-right、a-width和f-start为依据设计的分类器,可以用于优良菌种的自动识别,速度快,与人工分离筛选的实验数据相吻合。  相似文献   

2.
This paper presents a method for direct identification of fungal species solely by means of digital image analysis of colonies as seen after growth on a standard medium. The method described is completely automated and hence objective once digital images of the reference fungi have been established. Using a digital image it is possible to extract precise information from the surface of the fungal colony. This includes color distribution, colony dimensions and texture measurements. For fungal identification, this is normally done by visual observation that often results in a very subjective data recording. Isolates of nine different species of the genus Penicillium have been selected for the purpose. After incubation for 7 days, the fungal colonies are digitized using a very accurate digital camera. Prior to the image analysis each image is corrected for self-illumination, thereby gaining a set of directly corresponding images with respect to illumination. A Windows application has been developed to locate the position and size of up to three colonies in the digitized image. Using the estimated positions and sizes of the colonies, a number of relevant features can be extracted for further analysis. The method used to determine the position of the colonies will be covered as well as the feature selection. The texture measurements of colonies of the nine species were analyzed and a clustering of the data into the correct species was confirmed. This indicates that it is indeed possible to identify a given colony merely by macromorphological features. A classifier (in the normal distribution) based on measurements of 151 colonies incubated on yeast extract sucrose agar (YES) was used to discriminate between the species. This resulted in a correct classification rate of 100% when used on the training set and 96% using cross-validation. The same methods applied to 194 colonies incubated on Czapek yeast extract agar (CYA) resulted in a correct classification rate of 98% on the training set and 71% using cross-validation.  相似文献   

3.
4.
A new machine learning method referred to as F-score_ELM was proposed to classify the lying and truth-telling using the electroencephalogram (EEG) signals from 28 guilty and innocent subjects. Thirty-one features were extracted from the probe responses from these subjects. Then, a recently-developed classifier called extreme learning machine (ELM) was combined with F-score, a simple but effective feature selection method, to jointly optimize the number of the hidden nodes of ELM and the feature subset by a grid-searching training procedure. The method was compared to two classification models combining principal component analysis with back-propagation network and support vector machine classifiers. We thoroughly assessed the performance of these classification models including the training and testing time, sensitivity and specificity from the training and testing sets, as well as network size. The experimental results showed that the number of the hidden nodes can be effectively optimized by the proposed method. Also, F-score_ELM obtained the best classification accuracy and required the shortest training and testing time.  相似文献   

5.
Currently, remote sensing technologies were widely employed in the dynamic monitoring of the land. This paper presented an algorithm named fuzzy nonlinear proximal support vector machine (FNPSVM) by basing on ETM+ remote sensing image. This algorithm is applied to extract various types of lands of the city Da’an in northern China. Two multi-category strategies, namely “one-against-one” and “one-against-rest” for this algorithm were described in detail and then compared. A fuzzy membership function was presented to reduce the effects of noises or outliers on the data samples. The approaches of feature extraction, feature selection, and several key parameter settings were also given. Numerous experiments were carried out to evaluate its performances including various accuracies (overall accuracies and kappa coefficient), stability, training speed, and classification speed. The FNPSVM classifier was compared to the other three classifiers including the maximum likelihood classifier (MLC), back propagation neural network (BPN), and the proximal support vector machine (PSVM) under different training conditions. The impacts of the selection of training samples, testing samples and features on the four classifiers were also evaluated in these experiments.  相似文献   

6.
刘玉杰  刘毅慧 《生物信息学》2011,9(3):255-258,262
特征提取和分类是模式识别中的关键问题。结合小波分析理论和支持向量机理论,构造分类器模型,将前列腺癌基因芯片数据分成癌症和正常两种。提取小波低频系数表征原始数据并送入支持向量机分类器分类,实验证明:提取db1小波4层分解下的低频系数,送入分类器分类后正确分类率达到93.53%。Haar小波的正确率是92.94%。可见提取不同小波低频系数,得到的分类效果相差不大。  相似文献   

7.
竺乐庆  张大兴  张真 《昆虫学报》2015,58(12):1331-1337
【目的】本研究旨在探索使用先进的计算机视觉技术实现对昆虫图像的自动分类方法。【方法】通过预处理对采集的昆虫标本图像去除背景,获得昆虫图像的前景蒙板,并由蒙板确定的轮廓计算出前景图像的最小包围盒,剪切出由最小包围盒确定的前景有效区域,然后对剪切得到的图像进行特征提取。首先提取颜色名特征,把原来的RGB(Red-Green-Blue)图像的像素值映射到11种颜色名空间,其值表示RGB值属于该颜色名的概率,每个颜色名平面划分成3×3像素大小的网格,用每格的概率均值作为网格中心点的描述子,最后用空阈金字塔直方图统计的方式形成颜色名视觉词袋特征;其次提取OpponentSIFT(Opponent Scale Invariant Feature Transform)特征,首先把RGB图像变换到对立色空间,对该空间每通道提取SIFT特征,最后用空域池化和直方图统计方法形成OpponentSIFT视觉词袋。将两种词袋特征串接后得到该昆虫图像的特征向量。使用昆虫图像样本训练集提取到的特征向量训练SVM(Support Vector Machine)分类器,使用这些训练得到的分类器即可实现对鳞翅目昆虫的分类识别。【结果】该方法在包含10种576个样本的昆虫图像数据库中进行了测试,取得了100%的识别正确率。【结论】试验结果证明基于颜色名和OpponentSIFT特征可以有效实现对鳞翅目昆虫图像的识别。  相似文献   

8.
使用图像特征构建快速有效的蛋白质折叠识别方法   总被引:2,自引:0,他引:2  
蛋白质结构自动分类是探索蛋白质结构- 功能关系的一种重要研究手段。首先将蛋白质折叠子三维空间结构映射成为二维距离矩阵,并将距离矩阵视作灰度图像。然后基于灰度直方图和灰度共生矩阵提出了一种计算简单的折叠子结构特征提取方法,得到了低维且能够反映折叠结构特点的特征,并进一步阐明了直方图中零灰度孤峰形成原因,深入分析了共生矩阵特征中灰度分布、不同角度和像素距离对应的结构意义。最后应用于27类折叠子分类,对独立集测试的精度达到了71.95 %,对所有数据进行10 交叉验证的精度为78.94 %。与多个基于序列和结构的折叠识别方法的对比结果表明,此方法不仅具有低维和简洁的特征,而且无需复杂的分类系统,能够有效和高效地实现多类折叠子识别。  相似文献   

9.
The scarcity of training annotation is one of the major challenges for the application of deep learning technology in medical image analysis. Recently, self-supervised learning provides a powerful solution to alleviate this challenge by extracting useful features from a large number of unlabeled training data. In this article, we propose a simple and effective self-supervised learning method for leukocyte classification by identifying the different transformations of leukocyte images, without requiring a large batch of negative sampling or specialized architectures. Specifically, a convolutional neural network backbone takes different transformations of leukocyte image as input for feature extraction. Then, a pretext task of self-supervised transformation recognition on the extracted feature is conducted by a classifier, which helps the backbone learn useful representations that generalize well across different leukocyte types and datasets. In the experiment, we systematically study the effect of different transformation compositions on useful leukocyte feature extraction. Compared with five typical baselines of self-supervised image classification, experimental results demonstrate that our method performs better in different evaluation protocols including linear evaluation, domain transfer, and finetuning, which proves the effectiveness of the proposed method.  相似文献   

10.
Local fractal dimension based ECG arrhythmia classification   总被引:1,自引:0,他引:1  
We propose a local fractal dimension based nearest neighbor classifier for ECG based classification of arrhythmia. Local fractal dimension (LFD) at each sample point of the ECG waveform is taken as the feature. A nearest neighbor algorithm in the feature space is used to find the class of the test ECG beat. The nearest neighbor is found based on the RR-interval-information-biased Euclidean distance, proposed in the current work. Based on the two algorithms used for estimating the LFD, two classification algorithms are validated in the current work, viz. variance based fractal dimension estimation based nearest neighbor classifier and power spectral density based fractal dimension estimation based nearest neighbor classifier. Their performances are evaluated based on various figures of merit. MIT-BIH (Massachusetts Institute of Technology - Boston’s Beth Israel Hospital) Arrhythmia dataset has been used to validate the algorithms. Along with showing good performance against all the figures of merit, the proposed algorithms also proved to be patient independent in the sense that the performance is good even when the test ECG signal is from a patient whose ECG is not present in the training ECG dataset.  相似文献   

11.
The translation of laboratory processes into scaled production systems suitable for manufacture is a significant challenge for cell based therapies; in particular there is a lack of analytical methods that are informative and efficient for process control. Here the potential of image analysis as one part of the solution to this issue is explored, using pluripotent stem cell colonies as a valuable and challenging exemplar. The Cell‐IQ live cell imaging platform was used to build image libraries of morphological culture attributes such as colony “edge,” “core periphery” or “core” cells. Conventional biomarkers, such as Oct3/4, Nanog, and Sox‐2, were shown to correspond to specific morphologies using immunostaining and flow cytometry techniques. Quantitative monitoring of these morphological attributes in‐process using the reference image libraries showed rapid sensitivity to changes induced by different media exchange regimes or the addition of mesoderm lineage inducing cytokine BMP4. The imaging sample size to precision relationship was defined for each morphological attribute to show that this sensitivity could be achieved with a relatively low imaging sample. Further, the morphological state of single colonies could be correlated to individual colony outcomes; smaller colonies were identified as optimum for homogenous early mesoderm differentiation, while larger colonies maintained a morphologically pluripotent core. Finally, we show the potential of the same image libraries to assess cell number in culture with accuracy comparable to sacrificial digestion and counting. The data supports a potentially powerful role for quantitative image analysis in the setting of in‐process specifications, and also for screening the effects of process actions during development, which is highly complementary to current analysis in optimization and manufacture. © 2015 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers, 32:215–223, 2016  相似文献   

12.
BACKGROUND: Comparative genomic hybridization (CGH) is a relatively new molecular cytogenetic method for detecting chromosomal imbalance. Karyotyping of human metaphases is an important step to assign each chromosome to one of 23 or 24 classes (22 autosomes and two sex chromosomes). Automatic karyotyping in CGH analysis is needed. However, conventional karyotyping approaches based on DAPI images require complex image enhancement procedures. METHODS: This paper proposes a simple feature extraction method, one that generates density profiles from original true color CGH images and uses normalized profiles as feature vectors without quantization. A classifier is developed by using support vector machine (SVM). It has good generalization ability and needs only limited training samples. RESULTS: Experiment results show that the feature extraction method of using color information in CGH images can improve greatly the classification success rate. The SVM classifier is able to acquire knowledge about human chromosomes from relatively few samples and has good generalization ability. A success rate of moe than 90% has been achieved and the time for training and testing is very short. CONCLUSIONS: The feature extraction method proposed here and the SVM-based classifier offer a promising computerized intelligent system for automatic karyotyping of CGH human chromosomes.  相似文献   

13.
针对实蝇图象识别,提出了基于局部模板匹配和分层约束的虫身局部特征检测的算法,该算法将虫身局部特征搜索分为三个层次:首先是图像中的实蝇虫身检测,找到实蝇图像上虫身的大概位置;其次是用虫身明显特征模板作虫身检测;最后根据不同实蝇的典型特征区别出这些实蝇所属的不同类别.在图像预处理时采用主成分分析(PCA)方法进行主轴定位并旋转归一化处理.在对虫身翅膀上的明显特征进行检测时,提出了翅膀斑纹模板匹配算法.  相似文献   

14.
Deep learning is a powerful approach for distinguishing classes of images, and there is a growing interest in applying these methods to delimit species, particularly in the identification of mosquito vectors. Visual identification of mosquito species is the foundation of mosquito-borne disease surveillance and management, but can be hindered by cryptic morphological variation in mosquito vector species complexes such as the malaria-transmitting Anopheles gambiae complex. We sought to apply Convolutional Neural Networks (CNNs) to images of mosquitoes as a proof-of-concept to determine the feasibility of automatic classification of mosquito sex, genus, species, and strains using whole-body, 2D images of mosquitoes. We introduce a library of 1, 709 images of adult mosquitoes collected from 16 colonies of mosquito vector species and strains originating from five geographic regions, with 4 cryptic species not readily distinguishable morphologically even by trained medical entomologists. We present a methodology for image processing, data augmentation, and training and validation of a CNN. Our best CNN configuration achieved high prediction accuracies of 96.96% for species identification and 98.48% for sex. Our results demonstrate that CNNs can delimit species with cryptic morphological variation, 2 strains of a single species, and specimens from a single colony stored using two different methods. We present visualizations of the CNN feature space and predictions for interpretation of our results, and we further discuss applications of our findings for future applications in malaria mosquito surveillance.  相似文献   

15.
As important members of the ecosystem, birds are good monitors of the ecological environment. Bird recognition, especially birdsong recognition, has attracted more and more attention in the field of artificial intelligence. At present, traditional machine learning and deep learning are widely used in birdsong recognition. Deep learning can not only classify and recognize the spectrums of birdsong, but also be used as a feature extractor. Machine learning is often used to classify and recognize the extracted birdsong handcrafted feature parameters. As the data samples of the classifier, the feature of birdsong directly determines the performance of the classifier. Multi-view features from different methods of feature extraction can obtain more perfect information of birdsong. Therefore, aiming at enriching the representational capacity of single feature and getting a better way to combine features, this paper proposes a birdsong classification model based multi-view features, which combines the deep features extracted by convolutional neural network (CNN) and handcrafted features. Firstly, four kinds of handcrafted features are extracted. Those are wavelet transform (WT) spectrum, Hilbert-Huang transform (HHT) spectrum, short-time Fourier transform (STFT) spectrum and Mel-frequency cepstral coefficients (MFCC). Then CNN is used to extract the deep features from WT, HHT and STFT spectrum, and the minimal-redundancy-maximal-relevance (mRMR) to select optimal features. Finally, three classification models (random forest, support vector machine and multi-layer perceptron) are built with the deep features and handcrafted features, and the probability of classification results of the two types of features are fused as the new features to recognize birdsong. Taking sixteen species of birds as research objects, the experimental results show that the three classifiers obtain the accuracy of 95.49%, 96.25% and 96.16% respectively for the features of the proposed method, which are better than the seven single features and three fused features involved in the experiment. This proposed method effectively combines the deep features and handcrafted features from the perspectives of signal. The fused features can more comprehensively express the information of the bird audio itself, and have higher classification accuracy and lower dimension, which can effectively improve the performance of bird audio classification.  相似文献   

16.
Full‐field optical coherence tomography (FF‐OCT) has been reported with its label‐free subcellular imaging performance. To realize quantitive cancer detection, the support vector machine model of classifying normal and cancerous human liver tissue is proposed with en face tomographic images. Twenty samples (10 normal and 10 cancerous) were operated from humans and composed of 285 en face tomographic images. Six histogram features and one proposed fractal dimension parameter that reveal the refractive index inhomogeneities of tissue were extracted and made up the training set. The other different 16 samples (8 normal and 8 cancerous) were imaged (190 images) and employed as the test set with the same features. First, a subcellular‐resolution tomographic image library for four histopathological areas in liver tissue was established. Second, the area under the receiver operating characteristics of 0.9378, 0.9858, 0.9391, 0.9517 for prediction of the cancerous hepatic cell, central vein, fibrosis, and portal vein were measured with the test set. The results indicate that the proposed classifier from FF‐OCT images shows promise as a label‐free assessment of quantified tumor detection, suggesting the fractal dimension‐based classifier could aid clinicians in detecting tumor boundaries for resection in surgery in the future.  相似文献   

17.
Most computational models for gender classification use global information (the full face image) giving equal weight to the whole face area irrespective of the importance of the internal features. Here, we use a global and feature based representation of face images that includes both global and featural information. We use dimensionality reduction techniques and a support vector machine classifier and show that this method performs better than either global or feature based representations alone. We also present results of human subjects performance on gender classification task and evaluate how the different dimensionality reduction techniques compare with human subjects performance. The results support the psychological plausibility of the global and feature based representation.  相似文献   

18.
OBJECTIVE: To investigate and develop an automated technique for astrocytoma malignancy grading compatible with the clinical routine. STUDY DESIGN: One hundred forty biopsies of astrocytomas were collected from 2 hospitals. The degree of tumor malignancy was defined as low or high according to the World Health Organization grading system. From each biopsy, images were digitized and segmented to isolate nuclei from background tissue. Morphologic and textural nuclear features were quantified to encode tumor malignancy. Each case was represented by a 40-dimensional feature vector. An exhaustive search procedure in feature space was utilized to determine the best feature combination that resulted in the smallest classification error. Low and high grade tumors were discriminated using support vector machines (SVMs). To evaluate the system performance, all available data were split randomly into training and test sets. RESULTS: The best vector combination consisted of 3 textural and 2 morphologic features. Low and high grade cases were discriminated with an accuracy of 90.7% and 88.9%, respectively, using an SVM classifier with polynomial kernel of degree 2. CONCLUSION: The proposed methodology was based on standards that are common in daily clinical practice and might be used in parallel with conventional grading as a second-opinion tool to reduce subjectivity in the classification of astrocytomas.  相似文献   

19.
毛学刚  魏晶昱 《生态学杂志》2017,28(11):3711-3719
林分类型的识别是森林资源监测的核心问题之一.为研究多源遥感数据协同的面向对象林分类型分类识别,采用Radarsat-2数据和QuickBird遥感影像协同进行面向对象分类.在面向对象分类过程中,采用3种分割方案:单独使用QuickBird遥感影像分割;单独使用Radarsat-2数据分割;Radarsat-2&QuickBird协同分割.3种分割方案均采用10种分割尺度(25~250,步长25),应用修正的欧式距离3指标评价不同分割方案的分割结果,确定最优分割方案及最优分割尺度.在最优分割结果的基础上,基于地形、高度、光谱及共同特征的不同特征组合,应用带有径向基(RBF)核函数的支持向量机(SVM)分类器进行杉木林、马尾松林、阔叶林3种林分类型识别.结果表明:与单独使用一种数据相比,Radarsat-2数据和QuickBird遥感影像协同方案在面向对象林分类型分类方面具有优势.Radarsat-2&QuickBird协同分割方案,以最优尺度参数100进行分割时,分割结果最好.在最优分割结果的基础上,应用两种数据源提取的全部特征进行面向对象林分类型识别的精度最高(总精度为86%,Kappa值为0.86).本研究结果不仅可为多源遥感数据结合进行林分类型识别提供参考和借鉴,而且对于森林资源调查和监测有现实意义.  相似文献   

20.
In this paper, a robust algorithm for disease type determination in brain magnetic resonance image (MRI) is presented. The proposed method classifies MRI into normal or one of the seven different diseases. At first two-level two-dimensional discrete wavelet transform (2D DWT) of input image is calculated. Our analysis show that the wavelet coefficients of detail sub-bands can be modeled by generalized autoregressive conditional heteroscedasticity (GARCH) statistical model. The parameters of GARCH model are considered as the primary feature vector. After feature vector normalization, principal component analysis (PCA) and linear discriminant analysis (LDA) are used to extract the proper features and remove the redundancy from the primary feature vector. Finally, the extracted features are applied to the K-nearest neighbor (KNN) and support vector machine (SVM) classifiers separately to determine the normal image or disease type. Experimental results indicate that the proposed algorithm achieves high classification rate and outperforms recently introduced methods while it needs less number of features for classification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号