首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
汞污染土壤植物修复技术研究进展   总被引:15,自引:0,他引:15  
汞是一种全球性污染物,汞污染土壤的修复问题,一直倍受各国科学工作者关注,土壤汞污染的植物修复技术是近年来发展起来的新兴技术.其中,汞污染土壤的植物提取技术是最有发展前途的一种汞污染土壤植物修复技术.本文对国内外有关汞污染土壤的植物修复技术进行了系统分析,对有关汞污染土壤的植物修复应用技术,如植物挥发、固化及提取等修复方法进行了评述,探讨了植物修复技术在汞污染土壤修复中的应用前景.加快对汞超积累植物的筛选和植物体对重金属耐性机制的研究,对今后开展汞污染土壤的植物修复工作具有重要的现实意义.  相似文献   

2.
双酚A作为一种重要的生产原料,近几十年,在环境中的含量剧增。双酚A是一种内分泌干扰激素类物质,环境激素类物质能够模拟、强化和抑制激素作用,在某些情况下,引发组织或者器官增生和肿瘤。植物修复技术是近年来发展起来的一种环境污染修复技术,是生物修复领域的一个热点。在阅读大量文献的基础上,对修复双酚A植物的筛选进行了概括,从植物糖基化修饰效应、根系分泌酶催化降解、植物根际与微生物联合代谢作用三个方面阐述植物修复双酚A的主要机理,对国内外近年来植物修复技术在含双酚A废水修复中的应用、研究成果进行了综述,并对今后的该领域的研究进行了展望,旨在为双酚A废水的植物修复技术提供参考和借鉴。  相似文献   

3.
我国土壤重金属污染植物吸取修复研究进展   总被引:16,自引:0,他引:16  
我国从上世纪90年代中后期开始土壤重金属(含类金属砷)污染的植物吸取修复研究及技术探索,先后发现了一批具有较高研究价值和应用前景的铜、砷、镉、锰等重金属的积累或超积累植物,并从重金属耐性和超积累生理机制、植物吸取修复的根际过程与机制、吸取修复强化措施和修复植物处置与资源化利用等方面进行了研究,同时开展了植物吸取修复技术的示范与应用,已有一些较成功的植物修复工程应用案例,使我国重金属污染土壤植物修复技术,尤其是植物吸取修复技术在国际上产生了较强的影响力。本文就近年来我国土壤重金属污染植物吸取修复研究进展进行了综述,并对今后的发展趋势进行了展望。  相似文献   

4.
重金属污染土壤的植物修复技术   总被引:31,自引:0,他引:31  
土壤受重金属污染的状况在国内外都相当严重,传统的重金属污染土壤的修复技术存在许多难以克服的缺陷;近年来,一种运用植物来去除有毒重金属的新兴修复技术(植物修复技术)给这一问题提供了良好的解决途径,该技术被认为是一种低成本有效的“绿色”技术.但其主要缺点是修复周期较长,筛选、培育超积累植物以及提高土壤中重金属的生物有效性是提高植物吸收效果、缩短修复周期的关键.本文就超积累植物的筛选、转基因超积累植物及螯合剂强化植物吸收等热点问题的研究进展作了介绍,并对我国当前植物修复技术研究工作的重点提出了建议.  相似文献   

5.
重金属污染土壤的湿地生物修复技术   总被引:13,自引:1,他引:12  
生物修复技术是近年来发展起来的一种有前途的污染治理技术,重金属的湿地植物稳定技术和植物萃取技术等植物修复技术是一研究热点;同时,针对微生物对重金属的生物积累、生物转化及生物修复作一分析,重金属的生物修复生理机制及其提高富集效率的条件作一综述,以期推动国内这一国际热点领域的研究。  相似文献   

6.
植物促生菌提高植物重金属耐受性研究进展   总被引:2,自引:1,他引:1  
霍伟  蔡庆生 《微生物学通报》2010,37(9):1374-1378
近年来植物修复技术因其独特的优势而被广泛关注。许多植物被认为是有价值的利用资源, 然而, 最有实际使用价值的植物对重金属的耐受性有限, 实际应用中变得越来越困难。植物促生菌资源对环境无污染, 具有独特的多样性和巨大的潜力。随着资源的开发和技术的发展, 微生物调控将会使植物修复技术变得更加可行和更有价值。回顾近年来新兴的微生物调控技术, 主要是植物促生菌的筛选、鉴定和应用价值。  相似文献   

7.
污染土壤植物修复效率影响因素研究进展   总被引:8,自引:0,他引:8  
为提高植物修复技术对污染土壤的修复效率,根据当今植物修复技术在污染土壤修复中的应用现状及发展趋势,对近年来国内外植物修复技术的各种影响因素进行分析。首先从污染物的理化性质及其交互作用、土壤与气象因子、植物种类及其根际效应以及栽培措施等方面,系统论述影响土壤中重金属污染物及有机污染物植物修复效率的主要因素,阐述植物添加剂对植物修复效率的影响。最后指出植物修复今后研究的重点:营造促进植物生长发育的环境,针对影响植物修复效率的各个因素对植物修复技术进行改良及强化,并合理应用植物添加剂,提高植物修复效率。  相似文献   

8.
根际促生菌强化植物修复重金属污染土壤的研究进展   总被引:2,自引:0,他引:2  
植物修复虽然是近年来土壤重金属污染修复的重要手段之一,但因修复植物生长缓慢、生物量小、重金属转移率低等因素严重影限制了植物修复技术的广泛应用。根际促生菌(plant growth promoting rhizobacteria,PGPR)作为一类生长在植物根际土壤中的微生物,不仅能够利用自身的抗性系统减缓重金属离子对植物的毒性,还能够改变重金属的形态和迁移率,并通过分泌铁载体、有机酸、生物表面活性剂、植物激素等作用,直接或者间接地促进植物生长和增强植物对重金属的抗性,在强化植物修复土壤重金属污染过程中发挥着重要的作用。现介绍了根际促生菌的种类及其重金属抗性机制,总结了近年来国内外关于根际促生菌促进植物生长、强化植物修复重金属污染土壤的作用原理,同时对该研究领域目前存在的问题以及今后的研究前景进行展望,以期为今后土壤重金属修复研究提供新的思路和理论依据。  相似文献   

9.
植物修复油污土壤是控制环境污染的有效途径,但在实际应用中存在着植物生物量较小、生长缓慢等不足。将具有修复功能的外源基因引入植物中,使转基因植物的生物修复功能大大增强,为解决土壤石油污染问题提供了有效手段。文章系统论述了转基因植物对石油污染土壤中有机污染物,尤其是对持久性有机污染物(POPs)的吸收、转化和降解作用以及近年来所取得的突破性进展,并指出了利用生物基因修复技术进行土壤石油污染研究的发展趋势。  相似文献   

10.
随着气候不断变化和社会经济的高速发展,我国草地生态系统的盐碱化情况日益严重,草地的盐碱化不但会严重威胁当地的生态安全还会制约牧区社会经济的发展,对盐碱化草地进行修复势在必行。生物修复是一种成本低、成效显著、对环境影响小的技术,近年来在盐碱化土壤修复研究领域备受关注。综合介绍了植物修复、微生物修复、植物-微生物联合修复等3种生物修复技术领域主要开展的研究内容及应用情况进展,重点分析和探讨了植物促生菌和AM真菌在提高牧草耐盐碱胁迫和促进盐碱化草地土壤植物修复效率中的作用和潜在应用前景,旨在为盐碱化草地的修复治理奠定理论基础和提供研究思路,对盐碱化草原生态系统的恢复具有十分重要的实际意义。  相似文献   

11.
根系分泌物及其在植物修复中的作用   总被引:53,自引:0,他引:53       下载免费PDF全文
 近年来环境污染日益严重,污染物在土壤植物中的行为引起了人们的高度关注。利用植物去除土壤水体等介质中污染物的植物修复是近10年来兴起的一项安全、廉价的技术,已成为污染生态学和环境生态学的研究热点,它通过植物吸收、根滤、稳定、挥发等方式清除环境中的重金属和有机污染物。国内外有关植物修复的研究报道和概述很多, 但对植物根系分泌物在植物修复中所起的作用及其机理少有述评。 本文从根系分泌物对土壤重金属和土壤有机污染物的去除作用出发,对根系分泌物的种类、数量及其在去除环境污染物中的作用机理和功能地位进行了总结,并借助研究事例对影响植物根系分泌的内外因子,如植物种类、营养胁迫、重金属胁迫、根际环境的理化性质、土壤微生物及其它环境因子进行了讨论。概言之,根系分泌物在修复污染土壤中的重金属途径是多种多样的,主要是通过调节根际pH值、与重金属形成螯合物、络合反应、沉淀、提高土壤微生物数量和活性来改变重金属在根际中的存在形态以及提高重金属的生物有效性,从而减轻它对环境的危害。在清除有机污染物时,根系分泌物中的酶可以对有机污染物进行直接降解,根系分泌物影响下的微生物也可以对有机污染物进行间接降解,且被认为是主要的降解途径。根系分泌物在植物修复过程中确实起着某些重要作用,今后应将这方面的研究重点放在某些特异性根系分泌物植物,尤其是某些重金属超富集植物资源的寻找、筛选上,通过室内实验和野外研究确定其根系分泌物对清除重金属和有机污染物的效率,证实超富集植物根系分泌物的特异性与污染物超富集的内在联系,找到污染土壤生态恢复和治理的有效方法并加以推广应用,如针对性地在被污染地大面积种植此类具特异性根分泌物植物,并辅以营林措施如修剪等,加快生物修复进程,提高修复效率。植物根系分泌物在植物修复过程中所具有的重要生态意义和可能应用前景,为污染生态学和化学生态学之间的联合研究开拓了全新的领域,今后将取得新的突破和重要进展。  相似文献   

12.
Soil pollution is a major environmental problem and many contaminated sites are tainted with a mixture of organic and heavy metal contaminants. Compared to other remedial strategies, phytoremediation is a low cost, environmentally-friendly, sustainable means of remediating the contamination. This review first provides an overview of phytoremediation studies where the soil is contaminated with just one type of pollutant (heavy metals or organics) and then critically evaluates the applicability of phytotechnologies for the remediation of contaminated sites where the soil is polluted by a mixture of organic and heavy metal contaminants. In most of the earlier research studies, mixed contamination was held to be detrimental to plant growth, yet there were instances where plant growth was more successful in soil with mixed contamination than in the soil with only individual contaminants. New effective phytoremediation strategies can be designed for remediation of co-contaminated sites using: (a) plants species especially adapted to grow in the contaminated site (hyperacumulators, local plants, transgenic plants); (b) endophytic bacteria to enhance the degradation in the rizhosphere; (c) soil amendments to increase the contaminants bioavailability [chelating agents and (bio)surfactants]; (d) soil fertilization to enhance the plant growth and microbial activity in the soil; and (e) coupling phytoremediation with other remediation technologies such as electrokinetic remediation or enhanced biodegradation in the rhizosphere.  相似文献   

13.
A comprehensive overview of elements in bioremediation   总被引:3,自引:0,他引:3  
Sustainable development requires the development and promotion of environmental management and a constant search for green technologies to treat a wide range of aquatic and terrestrial habitats contaminated by increasing anthropogenic activities. Bioremediation is an increasingly popular alternative to conventional methods for treating waste compounds and media with the possibility to degrade contaminants using natural microbial activity mediated by different consortia of microbial strains. Many studies about bioremediation have been reported and the scientific literature has revealed the progressive emergence of various bioremediation techniques. In this review, we discuss the various in situ and ex situ bioremediation techniques and elaborate on the anaerobic digestion technology, phytoremediation, hyperaccumulation, composting and biosorption for their effectiveness in the biotreatment, stabilization and eventually overall remediation of contaminated strata and environments. The review ends with a note on the recent advances genetic engineering and nanotechnology have had in improving bioremediation. Case studies have also been extensively revisited to support the discussions on biosorption of heavy metals, gene probes used in molecular diagnostics, bioremediation studies of contaminants in vadose soils, bioremediation of oil contaminated soils, bioremediation of contaminants from mining sites, air sparging, slurry phase bioremediation, phytoremediation studies for pollutants and heavy metal hyperaccumulators, and vermicomposting.  相似文献   

14.
Phytoremediation--a novel and promising approach for environmental clean-up   总被引:13,自引:0,他引:13  
Phytoremediation is an eco friendly approach for remediation of contaminated soil and water using plants. Phytoremediation is comprised of two components, one by the root colonizing microbes and the other by plants themselves, which degrade the toxic compounds to further non-toxic metabolites. Various compounds, viz. organic compounds, xenobiotics, pesticides and heavy metals, are among the contaminants that can be effectively remediated by plants. Plant cell cultures, hairy roots and algae have been studied for their ability to degrade a number of contaminants. They exhibit various enzymatic activities for degradation of xenobiotics, viz. dehalogenation, denitrification leading to breakdown of complex compounds to simple and non-toxic products. Plants and algae also have the ability to hyper accumulate various heavy metals by the action of phytochelatins and metallothioneins forming complexes with heavy metals and translocate them into vacuoles. Molecular cloning and expression of heavy metal accumulator genes and xenobiotic degrading enzyme coding genes resulted in enhanced remediation rates, which will be helpful in making the process for large-scale application to remediate vast areas of contaminated soils. A few companies worldwide are also working on this aspect of bioremediation, mainly by transgenic plants to replace expensive physical or chemical remediation techniques. Selection and testing multiple hyperaccumulator plants, protein engineering ofphytochelatin and membrane transporter genes and their expression would enhance the rate of phytoremediation, making this process a successful one for bioremediation of environmental contamination. Recent years have seen major investments in the R&D, which have also resulted in competition of filing patents by several companies for economic gains. The details of science & technology related to phytoremediation have been discussed with a focus on future trends and prospects of global relevance.  相似文献   

15.
ABSTRACT

Phytoremediation is an eco friendly approach for remediation of contaminated soil and water using plants. Phytoremediation is comprised of two components, one by the root colonizing microbes and the other by plants themselves, which degrade the toxic compounds to further non-toxic metabolites. Various compounds, viz. organic compounds, xenobiotics, pesticides and heavy metals, are among the contaminants that can be effectively remediated by plants. Plant cell cultures, hairy roots and algae have been studied for their ability to degrade a number of contaminants. They exhibit various enzymatic activities for degradation of xenobiotics, viz. dehalogenation, denitrification leading to breakdown of complex compounds to simple and non-toxic products. Plants and algae also have the ability to hyper accumulate various heavy metals by the action of phytochelatins and metallothioneins forming complexes with heavy metals and translocate them into vacuoles. Molecular cloning and expression of heavy metal accumulator genes and xenobiotic degrading enzyme coding genes resulted in enhanced remediation rates, which will be helpful in making the process for large-scale application to remediate vast areas of contaminated soils. A few companies worldwide are also working on this aspect of bioremediation, mainly by transgenic plants to replace expensive physical or chemical remediation techniques. Selection and testing multiple hyperaccumulator plants, protein engineering of phytochelatin and membrane transporter genes and their expression would enhance the rate of phytoremediation, making this process a successful one for bioremediation of environmental contamination. Recent years have seen major investments in the R&D, which have also resulted in competition of filing patents by several companies for economic gains. The details of science & technology related to phytoremediation have been discussed with a focus on future trends and prospects of global relevance.  相似文献   

16.
Perspectives of bacterial ACC deaminase in phytoremediation   总被引:3,自引:0,他引:3  
Phytoremediation of contaminated soil and water environments is regulated and coordinated by the plant root system, yet root growth is often inhibited by pollutant-induced stress. Prolific root growth could maximize rates of hyperaccumulation of inorganic contaminants or rhizodegradation of organic pollutants, and thus accelerate phytoremediation. Accelerated ethylene production in response to stress induced by contaminants is known to inhibit root growth and is considered as a major limitation in improving phytoremediation efficiency. Recent work shows that bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase regulates ethylene levels in plants by metabolizing its precursor ACC into alpha-ketobutyric acid and ammonia. Plants inoculated with ACC deaminase bacteria or transgenic plants that express bacterial ACC deaminase genes can regulate their ethylene levels and consequently contribute to a more extensive root system. Such proliferation of roots in contaminated soil can lead to enhanced uptake of heavy metals or rhizodegradation of xenobiotics.  相似文献   

17.
The capacity of plants to uptake heavy metals from contaminated soils has shown great phytoremediation potential. The development, resistibility and Cd extraction of Eucalyptus globulus individuals from metalliferous and clean sites in different years were analyzed under a specific environment. Eucalyptus globulus planted in Guiyu for phytoremediation or cultivated in an uncontaminated, natural environment for economic purposes were transplanted to Yuecheng town, which, in recent years, has been involved in the e-waste dismantling and recycling business, to compare the phytoremediation efficiency of Eucalyptus globulus trees grown in different environments. Trees cultivated in polluted areas can remove far more Cd and Hg from the contaminated soil than the individuals from clean soils because metalliferous Eucalyptus globulus can produce more biomass and uptake more heavy metals than nonmetalliferous plants per year. As polluted environments negatively affect the growth of plants, we speculated that the phytoremediation efficiency of metalliferous Eucalyptus globulus should decrease over time and that nonmetalliferous trees should adapt to the local environment.  相似文献   

18.
There is a duality in plant tolerance to pollutants and its response to the pollutants’ stress.On the one hand some plants, (hyper)tolerant to heavy metals, are able to hyperaccumulate these metals in shoots, which could be beneficial for phytoremediation purposes to clean-up soil and water. On the other hand tolerant food crops, exposed to heavy metals in their growth medium, may be dangerous as carriers of toxic metals in the food chain leading to food toxicity. There is an additional duality in plant tolerance to heavy metals and that is in food crops that are tolerant and/or hyperaccumulators, which could be used on one hand for phytoremediation, under controlled conditions and on the other hand for food fortification with essential metals.Similarly, plants are also exposed to a large number of xenobiotic organic pollutants. Because they generally cannot avoid these compounds, plants take up, translocate, metabolize and detoxify many of them. There is a large variability in tolerance (defence) mechanisms against organic pollutants among plant species. This includes production of reductants but also scavenger molecules like ascorbate and glutathione and expression of the P-450 defence system, and superfamilies of the enzymes glutathione- and glucosyl-transferases. Again, with view to organic pollutants, plant detoxification mechanisms might well protect the plant itself, but produce compounds with some deleterious potential for other organisms.In this review we discuss these dualities on the basis of examples of agricultural and ‘wild’ species exposed to metal contaminants (mainly Cd) and organic pollutants. Differences in uptake and translocation of various pollutants and their consequences will be considered. We will separately outline the effects of the organic and non-organic pollutants on the internal metabolism and the detoxification mechanisms and try to indicate the differences between both types of pollutants. Finally the consequences and solutions of these dualities in plant tolerance to pollutants will be discussed.  相似文献   

19.
In coastal environments, plants are used for phytoremediation of contamination. Organic and inorganic contaminants may be due to natural and/or anthropogenic sources. The aim of this study is to compare inorganic (trace metal) and organic (PAH) contamination in Posidonia oceanica and to analyse the relationship between these types of pollutants indeed very few studies have been interested in their correlations and common sources. P. oceanica leaves were collected in two sites exhibiting different levels of human-induced pressure. Higher values were recorded in the more polluted site (Toulon) for trace metals (Ag, Hg, Pb) as well as for PAHs (Medium Molecular Weight and High Molecular Weight) due to the presence of the city and/or harbour in proximity. For the first time in a coastal environment, correlations were observed between metals and PAHs.  相似文献   

20.
The presence of toxic heavy metals in natural environments entails a potential health hazard for humans. Metal contaminants in these environments are usually tightly bound to colloidal particles and organic matter. On the other hand, the potential of these metals towards chelation by different chelating agents presents a good characteristic for their removal from the environment. On this basis, two chitosan/anionic surfactant complexes were prepared and evaluated for their ability to remove heavy metals from aqueous solutions. The experimental results of the uptake of metal ions including Cu2+, Sn2+, Co2+ and Ni2+ are reported in this study. The results show that modified chitosan with short‐spacer group cross‐linkers has a higher potential for heavy metal uptake than long‐chain cross‐linker‐modified chitosan. Also, increasing the electronegativity of the heavy metals increases their uptake from the medium. Increasing the time of exposure of the heavy metals to the modified polymer increases the efficiency of the metal uptake process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号