首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants growing in the shade receive both low light irradiance and light enriched in far red (FR) (i.e., light with a low red (R) to FR ratio). In an attempt to uncouple the R/FR ratio effects from light irradiance effects, we utilized Stellaria longipes because this species has two distinct natural population ecotypes, alpine (dwarf) and prairie (tall). The alpine population occupies the open, sun habitat. By contrast, the prairie population grows in the shade of other plants. Both 'sun' and 'shade' ecotypes responded with increased stem elongation responses under low irradiance, relative to growth under 'normal' irradiance, and this increased growth was proportionally similar. However, only the shade ecotype had increased shoot elongation in response to a low R/FR ratio. By contrast, the sun ecotype showed increased stem elongation in response to increasing R/FR ratio. Varying the R/FR ratios had no significant effect on ethylene evolution in either sun or shade ecotype. Under low irradiance, only the sun ecotype showed a significantly changed (decreased) ethylene evolution. We conclude that R/FR ratio and irradiance both regulate growth, and that irradiance can also influence ethylene evolution of the sun ecotype. By contrast, R/FR ratio and irradiance, while having profound influences on growth of the shade ecotype, do not appear to regulate these growth changes via effects on ethylene production.  相似文献   

2.
From two distinct ecotypes of Stellaria longipes, one genotype was chosen from each of two very different locations, an alpine (sun) and a prairie (shade) habitat. Plants were clonally propagated and grown in controlled environment chambers under low and moderate red to far-red (R/FR) ratios. The prairie ecotype plants exhibited increased stem elongation, leaf expansion and flowering (6-fold) in response to a low R/FR ratio, relative to plants grown under the moderate R/FR ratio. In contrast, plants of the alpine ecotype showed no increased growth in response to a low R/FR ratio and their flowering was reduced, all relative to the plants grown under the moderate R/FR ratio. These different phenotypic responses to the reduction in R/FR ratio were associated with very different profiles and concentrations of endogenous cytokinins (CKs) assessed in growing tissues of the upper shoots. Specifically, increased total CKs were associated with the rapid growth of plants of the prairie ecotype under a low R/FR ratio. In particular, concentrations of bioactive trans-zeatin and dihydrozeatin, were increased during the period of most rapid shoot growth by 2- to 4- fold for these prairie ecotype plants grown under the low R/FR ratio treatment. In contrast, changes in CK levels for the alpine ecotype plants grown under low R/FR ratios were muted. Of especial interest, plants of the alpine ecotype had a predominance of cis-pathway CKs, whereas the low elevation, prairie ecotype plants accumulated predominantly trans-pathway CKs. Speculatively, the pattern emphasizing trans-pathway CKs may be explained by increased LONELY GUY enzyme activity. This enzyme converts and activates nucleotide CKs to free base CKs (bypassing riboside CKs). It could thus explain, in part, the prairie ecotype's ability to respond to shade light with such a high degree of plasticity if one assumes that high trans-CKs levels are causal for the increased shoot growth seen under a low R/FR ratio.  相似文献   

3.
Changes in cytosine methylation are known to occur in response to various environmental stimuli, therefore, we looked at methylation changes in relation to stem elongation. More specifically, we investigated the response of genomic cytosine methylation to irradiance-mediated plasticity of stem elongation in two ecotypes of Stellaria longipes . Ramets of S. longipes were grown under high and low ratios of red/far-red light (F/FR; 3.7 and 0.7, respectively). Stem elongation and methylated cytosine content were measured over a period of 7 days. Ramets of S. longipes demonstrated the highest level of demethylation after 4 days of long-day warm (LDW) treatment, which coincides with the first day of rapid stem elongation initiation. The extent of demethylation associated with day 4 depended upon the relative ratio of R/FR light. In particular, those plants treated with low R/FR light ratios showed a lower level of methylation, and were taller than the high R/FR light grown counterparts. In addition, prairie ecotype plants demonstrated lower day 4 methylation levels, as well as longer day 7 stem lengths, than the alpine ecotype plants within the same R/FR light treatments. To investigate if the degree of methylation was a crucial factor in controlling the stem elongation response, ramets of both alpine and prairie plants were grown in MS media supplemented with 5-azacytidine (5-AzaC), and grown for 14 days under a R/FR ratio of 3.7 and two different PAR values. 5-AzaC treatments demonstrated that the prairie ecotype plants required greater doses of 5-AzaC, and thus lower methylation levels, than the alpine ecotype plants in order to promote maximal stem elongation. These observations suggest that DNA demethylation is involved in the shade-avoidance response.  相似文献   

4.
5.
Plants modify growth in response to the proximity of neighbors. Among these growth adjustments are shade avoidance responses, such as enhanced elongation of stems and petioles, that help plants to reach the light and outgrow their competitors. Neighbor detection occurs through photoreceptor-mediated detection of light spectral changes (i.e. reduced red:far-red ratio [R:FR] and reduced blue light intensity). We recently showed that physiological regulation of these responses occurs through light-mediated degradation of nuclear, growth-inhibiting DELLA proteins, but this appeared to be only part of the full mechanism. Here, we present how two hormones, auxin and ethylene, coregulate DELLAs but regulate shade avoidance responses through DELLA-independent mechanisms in Arabidopsis (Arabidopsis thaliana). Auxin appears to be required for both seedling and mature plant shoot elongation responses to low blue light and low R:FR, respectively. Auxin action is increased upon exposure to low R:FR and low blue light, and auxin inhibition abolishes the elongation responses to these light cues. Ethylene action is increased during the mature plant response to low R:FR, and this growth response is abolished by ethylene insensitivity. However, ethylene is also a direct volatile neighbor detection signal that induces strong elongation in seedlings, possibly in an auxin-dependent manner. We propose that this novel ethylene and auxin control of shade avoidance interacts with DELLA abundance but also controls independent targets to regulate adaptive growth responses to surrounding vegetation.  相似文献   

6.
Using two ecotypes of Stellaria longipes with contrasting responses to shade, we found that plants can differ in their responses to similar light cues, reflecting adaptations to their natural habitat. It was also observed that the plants could distinguish between distinct shade signals. Furthermore, the activity of wall modifying proteins, expansins and xyloglucan endotransglucosylase/hydrolase(s) (XTHs) was regulated during these responses. However, only expansin activity and gene expression profiles correlated with observed growth trends. The differential expression of expansins was light signal specific and ecotype specific and could account for both the trends in growth and their magnitude. We have thus established a potential molecular basis for the observed plasticity in responses to shade.Key words: shade avoidance, cell wall modification, expansins, XTHs, Stellaria longipes, phenotypic plasticity, light quality  相似文献   

7.
Plants growing at high densities express shade avoidance traits as a response to the presence of neighbours. Enhanced shoot elongation is one of the best researched shade avoidance components and increases light capture in dense stands. We show here that also leaf movements, leading to a more vertical leaf orientation (hyponasty), may be crucial in the early phase of competition. The initiation of shade avoidance responses is classically attributed to the action of phytochrome photoreceptors that sense red:far-red (R:FR) ratios in light reflected by neighbours, but also other signals may be involved. It was recently shown that ethylene-insensitive, transgenic (Tetr) tobacco plants, which are insensitive to the gaseous plant hormone ethylene, have reduced shade avoidance responses to neighbours. Here, we report that this is not related to a reduced response to low R:FR ratio, but that Tetr tobacco plants are unresponsive to a reduced photon fluence rate of blue light, which normally suppresses growth inhibition in wild-type (WT) plants. In addition to these light signals, ethylene levels in the canopy atmosphere increased to concentrations that could induce shade avoidance responses in WT plants. Together, these data show that neighbour detection signals other than the R:FR ratio are more important than previously anticipated and argue for a particularly important role for ethylene in determining plant responses to neighbours.  相似文献   

8.
Most plants grow in dense vegetation with the risk of being out-competed by neighboring plants. These neighbors can be detected not only through the depletion in light quantity that they cause, but also through the change in light quality, which plants perceive using specific photoreceptors. Both the reduction of the red:far-red ratio and the depletion of blue light are signals that induce a set of phenotypic traits, such as shoot elongation and leaf hyponasty, which increase the likelihood of light capture in dense plant stands. This set of phenotypic responses are part of the so called shade avoidance syndrome (SAS). This addendum discusses recent findings on the regulation of the SAS of Arabidopsis thaliana upon blue light depletion. Keller et al. and Keuskamp et al. show that the low blue light attenuation induced shade avoidance response of seedling and rosette-stage A. thaliana plants differ in their hormonal regulation. These studies also show there is a regulatory overlap with the R:FR-regulated SAS.  相似文献   

9.
Sessile plants must continuously adjust their growth and development to optimize photosynthetic activity under ever-fluctuating light conditions. Among such light responses in plants, one of the best-characterized events is the so-called shade avoidance, for which a low ratio of the red (R):far-red (FR) light intensities is the most prominent stimulus. Such shade avoidance responses enable plants to overtop their neighbors, thereby enhancing fitness and competitiveness in their natural habitat. Considerable progress has been achieved during the last decade in understanding the molecular mechanisms underlying the shade avoidance responses in the model rosette plant, Arabidopsis thaliana. We characterize here the fundamental aspects of the shade avoidance responses in the model legume, Lotus japonicus, based on the fact that its phyllotaxis (or morphological architecture) is quite different from that of A. thaliana. It was found that L. japonicus displays the characteristic shade avoidance syndrome (SAS) under defined laboratory conditions (a low R:FR ratio, low light intensity, and low blue light intensity) that mimic the natural canopy. In particular, the outgrowth of axillary buds (i.e., both aerial and cotyledonary shoot branching) was severely inhibited in L. japonicus grown in the shade. These results are discussed with special emphasis on the unique aspects of SAS observed with this legume.  相似文献   

10.
11.
Plants detect the presence of neighbouring vegetation by monitoring changes in the ratio of red (R) to far‐red (FR) wavelengths (R:FR) in ambient light. Reductions in R:FR are perceived by the phytochrome family of plant photoreceptors and initiate a suite of developmental responses termed the shade avoidance syndrome. These include increased elongation growth of stems and petioles, enabling plants to overtop competing vegetation. The majority of shade avoidance experiments are performed at standard laboratory growing temperatures (>20°C). In these conditions, elongation responses to low R:FR are often accompanied by reductions in leaf development and accumulation of plant biomass. Here we investigated shade avoidance responses at a cooler temperature (16°C). In these conditions, Arabidopsis thaliana displays considerable low R:FR‐mediated increases in leaf area, with reduced low R:FR‐mediated petiole elongation and leaf hyponasty responses. In Landsberg erecta, these strikingly different shade avoidance phenotypes are accompanied by increased leaf thickness, increased biomass and an altered metabolite profile. At 16°C, low R:FR treatment results in the accumulation of soluble sugars and metabolites associated with cold acclimation. Analyses of natural genetic variation in shade avoidance responses at 16°C have revealed a regulatory role for the receptor‐like kinase ERECTA.  相似文献   

12.
Plants respond to proximate neighbors with a suite of responses that comprise the shade avoidance syndrome. These phytochrome-mediated responses include hyponasty (i.e. a more vertical orientation of leaves) and enhanced stem and petiole elongation. We showed recently that ethylene-insensitive tobacco (Nicotiana tabacum) plants (Tetr) have reduced responses to neighbors, showing an important role for this gaseous plant hormone in shade avoidance. Here, we investigate interactions between phytochrome signaling and ethylene action in shade avoidance responses. Furthermore, we investigate if ethylene acts in these responses through an interaction with the GA class of hormones. Low red to far-red light ratios (R:FR) enhanced ethylene production in wild-type tobacco, resulting in shade avoidance responses, whereas ethylene-insensitive plants showed reduced shade avoidance responses. Plants with inhibited GA production showed hardly any shade avoidance responses at all to either a low R:FR or increased ethylene concentrations. Furthermore, low R:FR enhanced the responsiveness of hyponasty and stem elongation in both wild-type and Tetr plants to applied GA(3), with the stem elongation process being more responsive to GA(3) in the wild type than in Tetr. We conclude that phytochrome-mediated shade avoidance responses involve ethylene action, at least partly by modulating GA action.  相似文献   

13.
14.
Sessile plants must continuously adjust their growth and development to optimize photosynthetic activity under ever-fluctuating light conditions. Among such light responses in plants, one of the best-characterized events is the so-called shade avoidance, for which a low ratio of the red (R):far-red (FR) light intensities is the most prominent stimulus. Such shade avoidance responses enable plants to overtop their neighbors, thereby enhancing fitness and competitiveness in their natural habitat. Considerable progress has been achieved during the last decade in understanding the molecular mechanisms underlying the shade avoidance responses in the model rosette plant, Arabidopsis thaliana. We characterize here the fundamental aspects of the shade avoidance responses in the model legume, Lotus japonicus, based on the fact that its phyllotaxis (or morphological architecture) is quite different from that of A. thaliana. It was found that L. japonicus displays the characteristic shade avoidance syndrome (SAS) under defined laboratory conditions (a low R:FR ratio, low light intensity, and low blue light intensity) that mimic the natural canopy. In particular, the outgrowth of axillary buds (i.e., both aerial and cotyledonary shoot branching) was severely inhibited in L. japonicus grown in the shade. These results are discussed with special emphasis on the unique aspects of SAS observed with this legume.  相似文献   

15.
Plant growth in dense vegetation can be strongly affected by competition for light between neighbours. These neighbours can not only be detected through phytochrome-mediated perception of a reduced red:far-red ratio, but also through altered blue light fluence rates. A reduction in blue light (low blue) induces a set of phenotypic traits, such as shoot elongation, to consolidate light capture; these are called shade avoidance responses. Here we show that both auxin and brassinosteroids (BR) play an important role in the regulation of enhanced hypocotyl elongation of Arabidopsis seedlings in response to blue light depletion. Only when both hormones are experimentally blocked simultaneously, using mutants and chemical inhibitors, will the response be fully inhibited. Upon exposure to low blue several members of the cell wall modifying XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE (XTH) protein family are regulated as well. Interestingly, auxin and BR each regulate a subset of these XTHs, by which they could regulate cell elongation. We hypothesize that auxin and BR regulate specific XTH genes in a non-redundant and non-synergistic manner during low-blue-induced shade avoidance responses of Arabidopsis seedlings, which explains why both hormones are required for an intact low-blue response.  相似文献   

16.
Monaco  T.A.  Briske  D.D. 《Plant Ecology》2001,156(2):173-182
We designed an experiment with potted plants grown outdoors to investigate the expression of shade avoidance in simulated sparse and dense canopies by two perennial grasses known to express contrasting responses to low red:far-red ratios (R:FR). Plants were grown in canopy microenvironments designed to lower the R:FR by reflection of horizontally propagated FR from neighbors and by direct attenuation of R by filters located above plants. Two specific hypotheses were tested: (1) Paspalum dilatatum will express greater shade avoidance than Schizachyrium scoparium to low R:FR in both sparse and dense canopies, and (2) low R:FR will produce greater expressions of shade avoidance in sparse than in dense canopies in both species. P. dilatatum was more responsive to low R:FR than S. scoparium in both the sparse and dense canopies and lower ramet number plant–1 was the only common shade avoidance response between species in sparse canopies. P. dilatatum also showed significant reductions in juvenile ramet initiation, juvenile ramet mass, total shoot mass, and shoot:root ratios in sparse canopies, but only juvenile ramet initiation was reduced in dense canopies. The suppression of juvenile ramet initiation in the dense canopy was at least partially modulated by the vertically propagated R:FR because a similar reduction in PFD and horizontally propagated R:FR showed 42% greater juvenile ramet initiation in the respective control. S. scoparium only showed a significant reduction in ramet number plant–1 and a significant increase in blade length in sparse canopies, but no significant responses occurred in dense canopies. Consequently, neither hypothesis was rejected. Variable shade avoidance responses between species and canopy densities indicate that both interspecific variation and various proportions of vertically and horizontally propagated low R:FR can influence the expression of shade avoidance responses of perennial grasses in field settings.  相似文献   

17.
Exposure of peach plants to the blue plus far-red (B/FR) portions of the sunlight spectrum caused a rapid rise in ethylene evolution from their apices. Two days were enough to produce a significant rise in ethylene evolution relative to blue without far-red or to neutral shade. Maximal level of ethylene evolution in the B/FR light, more than eight times that of the blue or the neutral shade, was reached after four days of exposure. A higher endogenous ethylene content was also found under B/FR relative to blue or to neutral shade conditions. The level of ethylene evolution from peach apices was correlated with their arrested growth as observed a few days later. Exposure of peach plants to dense leaf shade, under the canopy of a big avocado tree, enhanced ethylene evolution from their apices, relative to unfiltered sunlight and to neutral shade. It was suggested that the rise in ethylene evolution in both B/FR and leaf shade conditions resulted from a high far-red: red ratio. Ethylene was further suggested to act as a mediator of photomorphogenetic regulation of vegetative development in far-red-rich tree shade.  相似文献   

18.
Sunflower (Helianthus annuus L.) stems showed increased elongation under two types of vegetative shade: canopy shade (low red to far red [R/FR] ratio) and neighbouring proximity shade (FR enrichment). Hypocotyls also elongated more under narrow-band FR light than under narrow-band R light. Ethylene levels were determined in actively elongating 7-day-old hypocotyls and 17-day-old internodes under three R/FR ratios. Ethylene levels were lower in both sunflower hypocotyls and internodes when the R/FR ratio was reduced. Both FR enrichment of normal R/FR ratio and narrow-band FR light with very low light irradiance resulted in reduction in ethylene levels in 7-day-old hypocotyls. Further, in application experiments, sunflower stems grown under low R/FR ratio were more sensitive to ethephon and less sensitive to aminoethoxyvinylglycine (AVG) than stems grown under high R/FR ratio. Low R/FR ratio appears to initiate reduction in ethylene levels in sunflower seedlings, allowing maximum stem elongation. These results, and findings of other authors, suggest that various plant species may have developed different ways of regulating stem elongation and ethylene levels in response to low R/FR ratio.  相似文献   

19.
Light limitation caused by dense vegetation is one of the greatest threats to plant survival in natural environments. Plants detect such neighboring vegetation as a reduction in the red to far-red ratio (R:FR) of the incoming light. The low R:FR signal, perceived by phytochromes, initiates a set of responses collectively known as the shade avoidance syndrome, intended to reduce the degree of current or future shade from neighbors by overtopping such competitors or inducing flowering to ensure seed production. At the seedling stage these responses include increased hypocotyl elongation. We have systematically analyzed the Arabidopsis seedling response and the contribution of phyA and phyB to perception of decreased R:FR, at three different levels of photosynthetically active radiation. Our results show that the shade avoidance syndrome, induced by phyB deactivation, is gradually antagonized by phyA, operating through the so-called FR-High Irradiance Response, in response to high FR levels in a range that simulates plant canopy shade. The data indicate that the R:FR signal distinguishes between the presence of proximal, but non-shading, neighbors and direct foliar shade, via a intrafamily photosensory attenuation mechanism that acts to suppress excessive reversion toward skotomorphogenic development under prolonged direct vegetation shade.  相似文献   

20.
Plants growing in dense vegetations compete with their neighbors for resources such as water, nutrients and light. The competition for light has been particularly well studied, both for its fitness consequences as well as the adaptive behaviors that plants display to win the battle for light interception. Aboveground, plants detect their competitors through photosensory cues, notably the red:far-red light ratio (R:FR). The R:FR is a very reliable indicator of future competition as it decreases in a plant-specific manner through red light absorption for photosynthesis and is sensed with the phytochrome photoreceptors. In addition, also blue light depletion is perceived for neighbor detection. As a response to these light signals plants display a suite of phenotypic traits defined as the shade avoidance syndrome (SAS). The SAS helps to position the photosynthesizing leaves in the higher zones of a canopy where light conditions are more favorable. In this review we will discuss the physiological control mechanisms through which the photosensory signals are transduced into the adaptive phenotypic responses that make up the SAS. Using this mechanistic knowledge as a starting point, we will discuss how the SAS functions in the context of the complex multi-facetted environments, which plants usually grow in.Key words: competition, shade avoidance, hormones, cell wall, adaptive plasticity, photoreceptor, light  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号