首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction interface between human thrombin and human factor V (FV), necessary for complex formation and cleavage to generate factor Va, was investigated using a site-directed mutagenesis strategy. Fifty-three recombinant thrombins, with a total of 78 solvent-exposed basic and polar residues substituted with alanine, were used in a two-stage clotting assay with human FV. Seventeen mutants with less than 50% of wild-type (WT) thrombin FV activation were identified and mapped to anion-binding exosite I (ABE-I), anion-binding exosite II (ABE-II), the Leu(45)-Asn(57) insertion loop, and the Na(+) binding loop of thrombin. Three ABE-I mutants (R68A, R70A, and Y71A) and the ABE-II mutant R98A had less than 30% of WT activity. The thrombin Na(+) binding loop mutants, E229A and R233A, and the Leu(45)-Asn(57) insertion loop mutant, W50A, had a major effect on FV activation with 5, 15, and 29% of WT activity, respectively. The K52A mutant, which maps to the S' specificity pocket, had 29% of WT activity. SDS-polyacrylamide gel electrophoresis analysis of cleavage reactions using the thrombin ABE mutants R68A, Y71A, and R98A, the Na(+) binding loop mutant E229A, and the Leu(45)-Asn(57) insertion loop mutant W50A showed a requirement for both ABEs and the Na(+)-bound form of thrombin for efficient cleavage at the FV residue Arg(709). Several basic residues in both ABEs have moderate decreases in FV activation (40-60% of WT activity), indicating a role for the positive electrostatic fields generated by both ABEs in enhancing complex formation with complementary negative electrostatic fields generated by FV. The data show that thrombin activation of FV requires an extensive interaction interface with thrombin. Both ABE-I and ABE-II and the S' subsite are required for optimal cleavage, and the Na(+)-bound form of thrombin is important for its procoagulant activity.  相似文献   

2.
Factor XI binds to high affinity sites on the surface of stimulated platelets where it is efficiently activated by thrombin. Here, we provide evidence that the factor XI binding site on platelets is in the glycoprotein (GP) Ibalpha subunit of the GP Ib-IX-V complex as follows. 1) Bernard-Soulier platelets, lacking the complex, are deficient in factor XI binding; 2) two GP Ibalpha ligands, SZ-2 (a monoclonal antibody) and bovine von Willebrand factor, inhibit factor XI binding to platelets; 3) by surface plasmon resonance, factor XI bound specifically to glycocalicin (the extracellular domain of GP Ibalpha) in Zn(2+)-dependent fashion (K(d)( app) approximately 52 nm). We then investigated whether glycocalicin could promote factor XI activation by thrombin, another GP Ibalpha ligand. In the presence of high molecular weight kininogen (45 nm), Zn(2+) and Ca(2+) ions, thrombin activated factor XI in the presence of glycocalicin at rates comparable with those seen in the presence of dextran sulfate (1 microg/ml). With higher high molecular weight kininogen concentrations (360 nm), the rate of thrombin-catalyzed factor XI activation in the presence of glycocalicin was comparable with that on activated platelets. Thus, factor XI binds to the GP Ib-IX-V complex, promoting its activation by thrombin.  相似文献   

3.
The cytokine osteopontin (OPN) can be hydrolyzed by thrombin exposing a cryptic alpha(4)beta(1)/alpha(9)beta(1) integrin-binding motif (SVVYGLR), thereby acting as a potent cytokine for cells bearing these activated integrins. We show that purified milk OPN is a substrate for thrombin with a k(cat)/K(m) value of 1.14 x 10(5) m(-1) s(-1). Thrombin cleavage of OPN was inhibited by unsulfated hirugen (IC(50) = 1.2 +/- 0.2 microm), unfractionated heparin (IC(50) = 56.6 +/- 8.4 microg/ml) and low molecular weight (5 kDa) heparin (IC(50) = 31.0 +/- 7.9 microg/ml), indicating the involvement of both anion-binding exosite I (ABE-I) and anion-binding exosite II (ABE-II). Using a thrombin mutant library, we mapped residues important for recognition and cleavage of OPN within ABE-I and ABE-II. A peptide (OPN-(162-197)) was designed spanning the OPN thrombin cleavage site and a hirudin-like C-terminal tail domain. Thrombin cleaved OPN-(162-197) with a specificity constant of k(cat)/K(m) = 1.64 x 10(4) m(-1) s(-1). Representative ABE-I mutants (K65A, H66A, R68A, Y71A, and R73A) showed greatly impaired cleavage, whereas the ABE-II mutants were unaffected, suggesting that ABE-I interacts principally with the hirudin-like OPN domain C-terminal and contiguous to the thrombin cleavage site. Debye-Hückel slopes for milk OPN (-4.1 +/- 1.0) and OPN-(162-197) (-2.4 +/- 0.2) suggest that electrostatic interactions play an important role in thrombin recognition and cleavage of OPN. Thus, OPN is a bona fide substrate for thrombin, and generation of thrombin-cleaved OPN with enhanced pro-inflammatory properties provides another molecular link between coagulation and inflammation.  相似文献   

4.
Factor XI (FXI) is a homodimeric plasma zymogen that is cleaved at two internal Arg(369)-Ile(370) bonds by thrombin, factor XIIa, or factor XIa. FXI circulates as a complex with the glycoprotein high molecular weight kininogen (HK). FXI binds to specific sites (K(d) = approximately 10 nM, B(max) = approximately 1,500/platelet) on the surface of stimulated platelets, where it is efficiently activated by thrombin. The FXI Apple 3 (A3) domain mediates binding to platelets in the presence of HK and zinc ions (Zn(2+)) or prothrombin and calcium ions. The platelet glycoprotein (GP) Ib-IX-V complex is the receptor for FXI. Using surface plasmon resonance, we determined that FXI binds specifically to glycocalicin, the extracellular domain of GPIbalpha, in a Zn(2+)-dependent fashion (K(d) = approximately 52 nM). We now show that recombinant FXI A3 domain inhibits FXI inbinding to glycocalicin in the presence of Zn(2+), whereas the recombinant FXI A1, A2, or A4 domains have no effect. Experiments with full-length recombinant FXI mutants show that, in the presence of Zn(2+), glycocalicin binds FXI at a heparin-binding site in A3 (Lys(252) and Lys(253)) and not by amino acids previously shown to be required for platelet binding (Ser(248), Arg(250), Lys(255), Phe(260), and Gln(263)). However, binding in the presence of HK and Zn(2+) requires Ser(248), Arg(250), Lys(255), Phe(260), and GLn(263) and not Lys(252) and Lys(253). Thus, binding of FXI to GPIbalpha is mediated by amino acids in the A3 domain in the presence or absence of HK. This interaction is important for the initiation of the consolidation phase of blood coagulation and the generation of thrombin at sites of platelet thrombus formation.  相似文献   

5.
The glycoprotein (GP) Ib-IX complex is a platelet surface receptor that binds thrombin as one of its ligands, although the biological significance of thrombin interaction remains unclear. In this study we have used several approaches to investigate the GPIb alpha-thrombin interaction in more detail and to study its effect on the thrombin-induced elaboration of fibrin. We found that both glycocalicin and the amino-terminal fragment of GPIb alpha reduced the release of fibrinopeptide A from fibrinogen by about 50% by a noncompetitive allosteric mechanism. Similarly, GPIb alpha caused in thrombin an allosteric reduction in the rate of turnover of the small peptide substrate d-Phe-Pro-Arg-pNA. The K(d) for the glycocalicin-thrombin interaction was 1 microm at physiological ionic strength but was highly salt-dependent, decreasing to 0.19 microm at 100 mm NaCl (Gamma(salt) = -4.2). The salt dependence was characteristic of other thrombin ligands that bind to exosite II of this enzyme, and we confirmed this as the GPIb alpha-binding site on thrombin by using thrombin mutants and by competition binding studies. R68E or R70E mutations in exosite I of thrombin had little effect on its interaction with GPIb alpha. Both the allosteric inhibition of fibrinogen turnover caused by GPIb alpha binding to these mutants, and the K(d) values for their interactions with GPIb alpha were similar to those of wild-type thrombin. In contrast, R89E and K248E mutations in exosite II of thrombin markedly increased the K(d) values for the interactions of these thrombin mutants with GPIb alpha by 10- and 25-fold, respectively. Finally, we demonstrated that low molecular weight heparin (which binds to thrombin exosite II) but not hirugen (residues 54-65 of hirudin, which binds to exosite I of thrombin) inhibited thrombin binding to GPIb alpha. These data demonstrate that GPIb alpha binds to thrombin exosite II and in so doing causes a conformational change in the active site of thrombin by an allosteric mechanism that alters the accessibility of both its natural substrate, fibrinogen, and the small peptidyl substrate d-Phe-Pro-Arg-pNA.  相似文献   

6.
Factor XI binds to activated platelets where it is efficiently activated by thrombin. The factor XI receptor is the platelet membrane glycoprotein (GP) Ib-IX-V complex (Baglia, F. A., Badellino, K. O., Li, C. Q., Lopez, J. A., and Walsh, P. N. (2002) J. Biol. Chem. 277, 1662-1668), a significant fraction of which exists within lipid rafts on stimulated platelets (Shrimpton, C. N., Borthakur, G., Larrucea, S., Cruz, M. A., Dong, J. F., and Lopez, J. A. (2002) J. Exp. Med. 196, 1057-1066). Lipid rafts are membrane microdomains enriched in cholesterol and sphingolipids implicated in localizing membrane ligands and in cellular signaling. We now show that factor XI was localized to lipid rafts in activated platelets ( approximately 8% of total bound) but not in resting platelets. Optimal binding of factor XI to membrane rafts required prothrombin (and Ca2+) or high molecular weight kininogen (and Zn2+), which are required for factor XI binding to platelets. An antibody to GPIb (SZ-2) that disrupts factor XI binding to the GPIb-IX-V complex also disrupted factor XI-raft association. The isolated recombinant Apple 3 domain of factor XI, which mediates factor XI binding to platelets, also completely displaces factor XI from membrane rafts. To investigate the physiological relevance of the factor XI-raft association, the structural integrity of lipid rafts was disrupted by cholesterol depletion utilizing methyl-beta-cyclodextrin. Cholesterol depletion completely prevented FXI binding to lipid rafts, and initial rates of factor XI activation by thrombin on activated platelets were inhibited >85%. We conclude that factor XI is localized to GPIb in membrane rafts and that this association is important for promoting the activation of factor XI by thrombin on the platelet surface.  相似文献   

7.
Factor XI (FXI) binds specifically and reversibly to high affinity sites on the surface of stimulated platelets (Kd app of approximately 10 nm; Bmax of approximately 1,500 sites/platelet) utilizing residues exposed on the Apple 3 domain in the presence of high molecular weight kininogen and Zn2+ or prothrombin and Ca2+. Because the FXI receptor in the platelet membrane is contained within the glycoprotein Ibalpha subunit of the glycoprotein Ib-IX-V complex (Baglia, F. A., Badellino, K. O., Li, C. Q., Lopez, J. A., and Walsh, P. N. (2002) J. Biol. Chem. 277, 1662-1668), we utilized mocarhagin, a cobra venom metalloproteinase, to generate a fragment (His1-Glu282) of glycoprotein Ibalpha that contains the leucine-rich repeats of the NH2-terminal globular domain and excludes the macroglycopeptide portion of glycocalicin, the soluble extracytoplasmic portion of glycoprotein Ibalpha. This fragment was able to compete with FXI for binding to activated platelets (Ki of 3.125 +/- 0.25 nm) with a potency similar to that of intact glycocalicin (Ki of 3.72 +/- 0.30 nm). However, a synthetic glycoprotein Ibalpha peptide, Asp269-Asp287, containing a thrombin binding site had no effect on the binding of FXI to activated platelets. Moreover, the binding of 125I-labeled thrombin to glycocalicin was unaffected by the presence of FXI at concentrations up to 10(-5) m. The von Willebrand factor A1 domain, which binds the leucine-rich repeats, inhibited the binding of FXI to activated platelets. Thus, we examined the effect of synthetic peptides of each of the seven leucine-rich repeats on the binding of 125I-FXI to activated platelets. All leucine-rich repeat (LRR) peptides derived from glycoprotein Ibalpha were able to inhibit FXI binding to activated platelets in the following order of decreasing potency: LRR7, LRR1, LRR4, LRR5, LRR6, LRR3, and LRR2. However, the leucine-rich repeat synthetic peptides derived from glycoprotein Ibbeta and Toll protein had no effect. We conclude that FXI binds to glycoprotein Ibalpha at sites comprising the leucine-rich repeat sequences within the NH2-terminal globular domain that are separate and distinct from the thrombin-binding site.  相似文献   

8.
A soluble radioreceptor assay has been developed to characterize thrombin receptor activities of the human platelet membrane. 125I-Thrombin was added to platelet membranes solubilized in 1% Triton X-100, and thrombin bound to platelet receptors was separated from free thrombin by precipitation with wheat germ agglutinin (WGA) in the presence of alpha 1-acid glycoprotein as carrier. Both high affinity binding (Ki, 0.09 nM; R1, 0.30 pmol/mg protein) and moderate affinity binding (K2, 38 nM; R2, 72 pmol/mg protein) were detected in the detergent-solubilized membrane preparations and these binding parameters were in excellent agreement with values previously determined using intact platelets (Harmon, J. T., and Jamieson, G. A. (1985) Biochemistry 24, 58-64). Using the soluble radioreceptor assay, both high and moderate affinity binding was detected in highly purified preparations of glycoprotein Ib (GPIb) and glycocalicin, and the binding isotherms were identical with those of the crude detergent-solubilized membrane preparation. Treatment of detergent-solubilized membranes with increasing concentrations of a monospecific polyclonal antibody to glycocalicin resulted in the stepwise depletion of GPIb and concomitant reductions of thrombin binding activity. These results demonstrate that both high and moderate affinity binding of thrombin to platelets is completely expressed in the glycocalicin portion of GPIb.  相似文献   

9.
Coagulation factor XI (FXI) is a covalent homodimer consisting of two identical subunits of 80 kDa linked by a disulfide bond formed by Cys-321 within the Apple 4 domain of each subunit. Because FXI(C321S) is a noncovalent dimer, residues within the interface between the two subunits must mediate its homodimeric structure. The crystal structure of FXI demonstrates formation of salt bridges between Lys-331 of one subunit and Glu-287 of the other subunit and hydrophobic interactions at the interface of the Apple 4 domains involving Ile-290, Leu-284, and Tyr-329. FXI(C321S), FXI(C321S,K331A), FXI(C321S,E287A), FXI(C321S,I290A), FXI(C321S,Y329A), FXI(C321S,L284A), FXI(C321S,K331R), and FXI(C321S,H343A) were expressed in HEK293 cells and characterized using size exclusion chromatography, analytical ultracentrifugation, electron microscopy, and functional assays. Whereas FXI(C321S) and FXI(C321S,H343A) existed in monomer/dimer equilibrium (K(d) approximately 40 nm), all other mutants were predominantly monomers with impaired dimer formation by analytical ultracentrifugation (K(d)=3-38 microm). When converted to the active enzyme, FXIa, all the monomeric mutants activated FIX similarly to wild-type dimeric FXIa. In contrast, these monomeric mutants could not be activated efficiently by FXIIa, thrombin, or autoactivation in the presence of dextran sulfate. We conclude that salt bridges formed between Lys-331 of one subunit and Glu-287 of the other together with hydrophobic interactions at the interface, involving residues Ile-290, Leu-284, and Tyr-329, are essential for homodimer formation. The dimeric structure of FXI is essential for normal proteolytic activation of FXI by FXIIa, thrombin, or FXIa either in solution or on an anionic surface but not for FIX activation by FXIa in solution.  相似文献   

10.
Sabo TM  Farrell DH  Maurer MC 《Biochemistry》2006,45(24):7434-7445
Thrombin utilizes two anion binding exosites to supplement binding of fibrinogen to this serine protease. Approximately 7-15% of the fibrinogen gamma chain exists as the highly anionic gamma' variant (408VRPEHPAETEY(S)DSLY(S)PEDDL427). This segment has been demonstrated to target thrombin ABE-II and can accommodate sites of phosphorylation in place of sulfonation without sacrificing binding affinity. The present work employed 1D and 2D solution NMR to characterize the structural features of the bound gamma' peptide (410-427) and to evaluate the requirement of sulfonation for effective thrombin interaction. The results indicate the gamma' residues 414-427 make significant contact with the enzyme, a beta-turn exists between residues 422-425 in the presence of thrombin, and there is a large cluster of through-space interactions involving residues 418-422. Effective contact with ABE-II requires the presence of at least one phosphotyrosine residue with Y(P)422 being the more important player. Hydrogen-deuterium exchange (HDX) coupled with MALDI-TOF MS was implemented to examine the location of the gamma' peptide-thrombin interface and to screen for changes in solvent exposure at distant sites. The HDX results demonstrate that the gamma' peptide interacts with or is in close proximity to thrombin residues R93, R97, R173, and R175. The binding of the gamma' peptide also protects other regions of thrombin from deuterium exchange. Affected regions include segments of ABE-I, the autolysis loop, the edge of the active site region, and the A-chain. Finally, thrombin forms a ternary complex with the gamma' peptide and PPACK, generating an enzyme whose solvent-exposed regions are even further stabilized from HDX.  相似文献   

11.
Alpha-thrombin has two separate electropositive binding exosites (anion binding exosite I, ABE-I and anion binding exosite II, ABE-II) that are involved in substrate tethering necessary for efficient catalysis. Alpha-thrombin catalyzes the activation of factor V and factor VIII following discrete proteolytic cleavages. Requirement for both anion binding exosites of the enzyme has been suggested for the activation of both procofactors by alpha-thrombin. We have used plasma-derived alpha-thrombin, beta-thrombin (a thrombin molecule that has only ABE-II available), and a recombinant prothrombin molecule rMZ-II (R155A/R284A/R271A) that can only be cleaved at Arg(320) (resulting in an enzymatically active molecule that has only ABE-I exposed, rMZ-IIa) to ascertain the role of each exosite for procofactor activation. We have also employed a synthetic sulfated pentapeptide (DY(SO(3)(-))DY(SO(3)(-))Q, designated D5Q1,2) as an exosite-directed inhibitor of thrombin. The clotting time obtained with beta-thrombin was increased by approximately 8-fold, whereas rMZ-IIa was 4-fold less efficient in promoting clotting than alpha-thrombin under similar experimental conditions. Alpha-thrombin readily activated factor V following cleavages at Arg(709), Arg(1018), and Arg(1545) and factor VIII following proteolysis at Arg(372), Arg(740), and Arg(1689). Cleavage of both procofactors by alpha-thrombin was significantly inhibited by D5Q1,2. In contrast, beta-thrombin was unable to cleave factor V at Arg(1545) and factor VIII at both Arg(372) and Arg(1689). The former is required for light chain formation and expression of optimum factor Va cofactor activity, whereas the latter two cleavages are a prerequisite for expression of factor VIIIa cofactor activity. Beta-thrombin was found to cleave factor V at Arg(709) and factor VIII at Arg(740), albeit less efficiently than alpha-thrombin. The sulfated pentapeptide inhibited moderately both cleavages by beta-thrombin. Under similar experimental conditions, membrane-bound rMZ-IIa cleaved and activated both procofactor molecules. Activation of the two procofactors by membrane-bound rMZ-IIa was severely impaired by D5Q1,2. Overall the data demonstrate that ABE-I alone of alpha-thrombin can account for the interaction of both procofactors with alpha-thrombin resulting in their timely and efficient activation. Because formation of meizothrombin precedes that of alpha-thrombin, our findings also imply that meizothrombin may be the physiological activator of both procofactors in vivo in the presence of a procoagulant membrane surface during the early stages of coagulation.  相似文献   

12.
To study the pathways for initiation of intrinsic blood coagulation, activated human platelets were compared with dextran sulfate as surfaces for factor XI activation by factor XIIa, factor XIa, or thrombin. Activated gel-filtered platelets promoted the activation of factor XI (60 nm) by thrombin (0.02-10 nm, EC(50) approximately 100 pm, threshold concentration approximately 10 pm) at initial rates 2- to 3-fold greater than those obtained with dextran sulfate in the presence of either high molecular weight kininogen (45 nm) and ZnCl(2) (25 micrometer) or prothrombin (1.2 micrometer) and CaCl(2) (2 mm). The maximum rates of factor XI activation achieved in the presence of activated gel-filtered platelets were 30 nm.min(-1) with thrombin, 6 nm.min(-1) with factor XIIa and 2 nm.min(-1) with factor XIa. Values of turnover number calculated at various enzyme concentrations (0.05-1 nm) were 24-167 (mean = 86) min(-1) for thrombin, 4.6-50 (mean = 21) min(-1) for factor XIIa, and 1.3-14 (mean = 8) min(-1) for factor XIa. A physiological concentration of fibrinogen (9.0 micrometer) inhibited factor XI activation by thrombin (but not by factor XIIa) in the presence of dextran sulfate but not in the presence of gel-filtered platelets. Compared with factors XIIa and XIa, thrombin is the preferred factor XI activator, and activated platelets are a relevant physiological surface for thrombin-mediated initiation of intrinsic coagulation in vivo.  相似文献   

13.
Previously we defined binding sites for high molecular weight kininogen (HK) and thrombin in the Apple 1 (A1) domain of factor XI (FXI). Since prothrombin (and Ca(2+)) can bind FXI and can substitute for HK (and Zn(2+)) as a cofactor for FXI binding to platelets, we have attempted to identify a prothrombin-binding site in FXI. The recombinant A1 domain (rA1, Glu(1)-Ser(90)) inhibited the saturable, specific and reversible binding of prothrombin to FXI, whereas neither the rA2 domain (Ser(90)-Ala(181)), rA3 domain (Ala(181)-Val(271)), nor rA4 domain (Phe(272)-Glu(361)) inhibited prothrombin binding to FXI. Kinetic binding studies using surface plasmon resonance showed binding of FXI (K(d) approximately 71 nm) and the rA1 domain (K(d) approximately 239 nm) but not rA2, rA3, or rA4 to immobilized prothrombin. Reciprocal binding studies revealed that synthetic peptides (encompassing residues Ala(45)-Ser(86)) containing both HK- and thrombin-binding sites, inhibit (125)I-rA1 (Glu(1)-Ser(90)) binding to prothrombin, (125)I-prothrombin binding to FXI, and (125)I-prothrombin fragment 2 (Ser(156)-Arg(271)) binding to FXI. However, homologous prekallikrein-derived peptides (encompassing Pro(45)-Gly(86)) did not inhibit FXI rA1 binding to prothrombin. The peptides Ala(45)-Arg(54), Phe(56)-Val(71), and Asp(72)-Ser(86), derived from sequences of the A1 domain of FXI, acted synergistically to inhibit (125)I-rA1 binding to prothrombin. Mutant rA1 peptides (V64A and I77A), which did not inhibit FXI binding to HK, retained full capacity to inhibit rA1 domain binding to prothrombin, and mutant rA1 peptides Ala(45)-Ala(54) (D51A) and Val(59)-Arg(70) (E66A), which did not inhibit FXI binding to thrombin, retained full capacity to inhibit rA1 domain binding to prothrombin. Thus, these experiments demonstrate that a prothrombin binding site exists in the A1 domain of FXI spanning residues Ala(45)-Ser(86) that is contiguous with but separate and distinct from the HK- and thrombin-binding sites and that this interaction occurs through the kringle II domain of prothrombin.  相似文献   

14.
Factor XI (FXI), the zymogen of the blood coagulation protease FXIa, and the structurally homologous protein plasma prekallikrein circulate in plasma in noncovalent complexes with H-kininogen (HK). HK binds to the heavy chains of FXI and of prekallikrein. Each chain contains four apple domains (F1-F4 for FXI and P1-P4 for prekallikrein). Previous studies indicated that the HK-binding site on FXI is located in F1, whereas the major HK-binding site on prekallikrein is in P2. To determine the contribution of each FXI apple domain to HK-FXI complex formation, we examined binding of recombinant single apple domain-tissue plasminogen activator fusion proteins to HK. The order of affinity from highest to lowest is F2 F4 > F1 F3. Monoclonal antibodies against F2 are superior to F4 or F1 antibodies as inhibitors of HK binding to FXI. Antibody alphaP2, raised against prekallikrein, cross-reacts with FXI F2 and inhibits FXI-HK binding with an IC(50) of 8 nm. HK binding to a platelet-specific FXI variant lacking the N-terminal half of F2 is reduced > 5-fold compared with full-length FXI. A chimeric FXI molecule in which F2 is replaced by P2 is cleaved within P2 during activation by factor XIIa, resulting in greatly reduced HK binding capacity. In contrast, wild-type FXI is not cleaved within F2, and its binding capacity for HK is unaffected by factor XIIa. Our data show that HK binding to FXI involves multiple apple domains, with F2 being most important. The findings demonstrate a similarity in mechanism for FXI and prekallikrein binding to HK.  相似文献   

15.
Skeletal muscle myosin (SkM) has been shown to possess procoagulant activity; however, the mechanisms of this coagulation-enhancing activity involving plasma coagulation pathways and factors are incompletely understood. Here, we discovered direct interactions between immobilized SkM and coagulation factor XI (FXI) using biolayer interferometry (Kd = 0.2 nM). In contrast, we show that prekallikrein, a FXI homolog, did not bind to SkM, reflecting the specificity of SkM for FXI binding. We also found that the anti-FXI monoclonal antibody, mAb 1A6, which recognizes the Apple (A) 3 domain of FXI, potently inhibited binding of FXI to immobilized SkM, implying that SkM binds FXI A3 domain. In addition, we show that SkM enhanced FXI activation by thrombin in a concentration-dependent manner. We further used recombinant FXI chimeric proteins in which each of the four A domains of the heavy chain (designated A1 through A4) was individually replaced with the corresponding A domain from prekallikrein to investigate SkM-mediated enhancement of thrombin-induced FXI activation. These results indicated that activation of two FXI chimeras with substitutions of either the A3 domains or A4 domains was not enhanced by SkM, whereas substitution of the A2 domain did not reduce the thrombin-induced activation compared with wildtype FXI. These data strongly suggest that functional interaction sites on FXI for SkM involve the A3 and A4 domains. Thus, this study is the first to reveal and support the novel intrinsic blood coagulation pathway concept that the procoagulant mechanisms of SkM include FXI binding and enhancement of FXI activation by thrombin.  相似文献   

16.
Domains 3 and 5 of high-molecular-weight kininogen (HK) have been shown to bind to platelets in a zinc-dependent reaction. However, the platelet-binding proteins responsible for this interaction have not been identified. We have focused on the platelet-binding site for the heavy chain (domain 3), which we approached using a domain 3-derived peptide ligand and isolated binding proteins by affinity chromatography. The domain 3-derived peptide, thrombin, HK, factor XII, as well as antibody to glycocalicin (the N-terminal portion of the alpha chain of GPIb) recognized a protein at 74 kD. We also isolated the thrombin receptor (PAR 1) at 45 kD, however, none of the above-mentioned ligands bound to this protein. Isolation of platelet membrane proteins using a monoclonal anti-glycocalicin antibody column revealed the same HK binding protein at 74 kD, which was reactive with anti-GPIb and represents a GPIb fragment. By photoaffinity labeling, HK interacted with membrane GPIb, which was then isolated in native form (135 kD) along with gC1qR, a ligand for the HK light chain. Finally, (125)I-HK binding to platelets was significantly inhibited by the anti-GPIb antibody. These results suggest that the GPIb alpha chain, a known thrombin binding protein, is also one of the zinc-dependent platelet membrane binding sites for HK domain 3.  相似文献   

17.
The fifth domain (DV) of beta2-glycoprotein I (beta2GPI) is important for binding a number of ligands including phospholipids and factor XI (FXI). Beta2GPI is proteolytically cleaved in DV by plasmin but not by thrombin, VIIa, tissue plasminogen activator, or uPA. Following proteolytic cleavage of DV by plasmin, beta2GPI retains binding to FXI but not to phospholipids. Native beta2GPI, but not cleaved beta2GPI, inhibits activation of FXI by thrombin and factor XIIa, attenuating a positive feedback mechanism for additional thrombin generation. In this report, we have defined the FXI/FXIa binding site on beta2GPI using site-directed mutagenesis. We show that the positively charged residues Lys284, Lys286, and Lys287 in DV are essential for the interaction of beta2GPI with FXI/FXIa. We also demonstrate that FXIa proteolytically cleaves beta2GPI at Lys317-Thr318 in DV. Thus, FXIa cleavage of beta2GPI in vivo during thrombus formation may accelerate FXI activation by decreasing the inhibitory effect of beta2GPI.  相似文献   

18.
A number of thrombin mutants have been constructed to investigate the role of Trp96 and the β-insertion loop for the specificity of thrombin. Thrombin(60D) consists of the replacement of the β-insertion loop (14 amino acid residues from 59 to 63, including a 9-residue insertion at position 60) with the corresponding four residues in trypsin, Tyr-Lys-Ser-Gly; thrombin(GGG) is a smaller loop mutation in which the residues Tyr60APro60BPro60CTrp60D Asp60ELys60F of the β-insertion loop were replaced by Gly-Gly-Gly; thrombin(96S) consists of a point mutation Trp96→Ser; and thrombin(GGG/96S) is the double mutant incorporating both changes. Thrombin(96S) clots fibrinogen ~3 times more slowly than thrombin, with the two β-insertion loop mutants, thrombin(GGG) and thrombin(GGG/96S), reacting ~3000- and 1300-fold more slowly, respectively. The specificity constant k cat/K m for the cleavage of fibrinopeptide A and fibrinopeptide B by thrombin(96S) was 2.6 and 0.35 μM?1 s?1 respectively, compared to 10 and 2.5 μM?1 s?1 for wild-type recombinant thrombin, respectively. Kinetic constants were determined for the hydrolysis of H-D-phenylalanyl-L-pipecolyl-L-arginine-p-nitroaniline. The Michaelis constant K m increased ~6-fold for thrombin(96S) and >200-fold for thrombin(GGG) and thrombin(GGG/96S) when compared to wild-type recombinant thrombin, while the catalytic constant k cat remained approximately the same. All mutants were more susceptible to inhibition by BPTI than wild-type recombinant thrombin. Clearly, the β-insertion loop is important for thrombin activity. But the mutation of Trp96→Ser can compensate somewhat for the loss of binding at the β-insertion loop. The deletion of the hydrophobic interaction between Trp96 and Pro60BPro60C appears to decrease the stability of the β-insertion loop, thereby causing a decrease in binding efficiency.  相似文献   

19.
A process of thrombin interaction with synthetic and natural substrates in the presence of Na+ ions has been analyzed in the survey. Molecular bases of this interaction have been presented, interrelation between the structure and function of thrombin has been noted; the nature of the unique site of its active centre which determines high thrombin affinity for the substrates and increase of its catalytic activity defined by the term of "specificity to univalent cations" have been considered in detail. Na+ ions play the role of allosteric effector in realization of two informational states of thrombin which penform, respectively, two fundamental and competing functions in the process of hemostasis. The molecular basis of the process of Na+ binding with thrombin is rather simple and depends only on the single site which importance for the enzyme function is marked by numerous investigations of a number of authors, and it is shown that Na(+)-binding site is distributed in the other zone of thrombin molecule as compared to exosites I and II, which do not take part in Na(+)-binding and allosteric transduction. Considerable attention was given to conformational conversions of a thrombin molecule caused by Na+ ions binding. It was shown that the transition slow <--> fast of the enzyme forms leads to formation of the ion pair Arg-187: Asp-222, optimal orientation of Asp-189 and Ser-195 for binding of substrates and considerable shift of the lateral chain Glu-192 determined by the disturbance of the lattice of water molecules which connects Na(+)-binding site with aminoacid Ser-195 of the active centre of the enzyme. New data have been presented which indicate that the changes in the lattice of water molecules and allosteric nucleus of Na(+)-binding site of the enzyme are the basic link of raising the affinity between the thrombin and substrate and mechanism of the enzyme activation by Na(+)-ions. The survey touches some problems of creation of allosteric inhibitors of thrombin which can take essential effect on Na(+)-binding site and favor stabilization of the anticoagulant slow-form of thrombin, and of enzyme rational mutants with selective specificity in respect of protein C which display effective and safe anticoagulant and antithrombotic effects in vivo.  相似文献   

20.
Rezaie AR 《Biochemistry》2004,43(12):3368-3375
Recombinant tick anticoagulant peptide (rTAP) is a competitive slow- and tight-binding inhibitor of factor Xa (FXa) with a reported equilibrium dissociation constant (K(I)) of approximately 0.2 nM. The inhibitory characteristics and the high selectivity of rTAP for FXa are believed to arise from the ability of the inhibitor to specifically interact with the residues of both the active site as well as those remote from the active site pocket of the protease. To localize the rTAP-interactive sites on FXa, the kinetics of inhibition of wild-type and 18 different mutants of recombinant FXa by the inhibitor were studied by either a discontinuous assay method employing the tight-binding quadratic equation or a continuous assay method employing the slow-binding kinetic approach. It was discovered that K(I) values for the interaction of rTAP with four FXa mutants (Tyr(99) --> Thr, Phe(174) --> Asn, Arg(143) --> Ala, and a Na(+)-binding loop mutant in which residues 220-225 of FXa were replaced with the corresponding residues of thrombin) were elevated by 2-3 orders of magnitude for each mutant. Further studies revealed that the characteristic slow type of inhibition by rTAP was also eliminated for the mutants. These findings suggest that the interaction of rTAP with the P2-binding pocket, the autolysis loop, and the Na(+)-binding loop is primarily responsible for its high specificity of FXa inhibition by a slow- and tight-binding mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号