首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The diving behaviour of Adélie penguins (Pygoscelis adeliae) was studied with time-depth recorders at Dumont D'Urville, Antarctica, during the breeding seasons in 1995/1996 and 1996/1997. We studied penguins foraging at all breeding stages, in various sea-ice conditions. For the first time in this species we observed nocturnal patterns of diving as the penguins dived more frequently and spent more time underwater around midnight than around noon. This behaviour may be related to the abundance of neritic krill, Euphausia crystallorophias, in the diet. Dive depth and duration varied extensively over the cycle, and appeared related to sea ice conditions rather than representative of the locality (22 m/78 s and 40 m/102 s with and without sea-ice, respectively). Comparisons with other studies showed that different diving behaviour previously observed in different localities can also occur at the same locality, and in some cases over a single foraging trip of a single penguin when short-term variation of external conditions occurred. Accepted: 27 September 1999  相似文献   

2.
The seasonal variation in the foraging behaviour of king penguins (Aptenodytes patagonicus) was studied at Heard Island (53°05′S, 73°30′E) during 1992/1993. On seven occasions throughout the breeding cycle, time-depth-light recorders were deployed on breeding adults to record the dive activities and foraging. Foraging locations changed with season: in autumn and spring 1992, adults foraged between 48–52°S and 74–78°E, about 370 km NNE of Heard Island close to the Polar Front. Two penguins tracked in winter travelled 2220 km east of Heard Island (95°E) along the northern ice limit, and 1220 km south of Heard Island to approximately 65°S, respectively. In spring (October), the penguins again foraged further north than during winter. The foraging area utilised in October overlapped the area where the penguins foraged in March/April. The penguins' diving behaviour also varied seasonally: the modal depth of deep dives (>50 m) increased from about 100 m in February to 220 m in October. Mean dive depths increased from 70 ± 52 m in March 1992 to 160 ± 68 m in August 1992. Penguins dived deep (>50 m) only during daylight hours (16 h in February, 9 h in July). Mean dive durations ranged from 2.9 ± 1.1 min in March 1992 to 5.1 ± 1.2 min in August 1992. Associated with changes in foraging location and dive behaviour was a change in diet composition: during summer the penguins ingested mainly myctophid fish (>90%) while in winter the most important diet item was squid. Accepted: 19 October 1998  相似文献   

3.
Diving synchrony was examined for varying group sizes of African penguins (Spheniscus demersus) travelling to their foraging grounds from their breeding islands. Groups of fewer than 12 birds always dived synchronously, whereas groups of more than 17 birds always dived asynchronously. Since travelling penguins do not dive deeply, large groups of birds can remain together irrespective of diving synchronization. Observations from boats showed that foraging penguins rarely occurred in groups of more than 17 birds. We suggest that groups of penguins that do not have synchronized dives cannot forage effectively, because foraging penguins dive deeply.  相似文献   

4.
The white-chinned petrel (Procellaria aequinoctialis) is the seabird species most commonly killed by Southern Hemisphere longline fisheries. Despite the importance of diving ability for mitigating longline bycatch, little is known of this species’ diving behaviour. We obtained data from temperature–depth recorders from nine white-chinned petrels breeding on Marion Island, southwestern Indian Ocean, during the late incubation and chick-rearing period. Maximum dive depth (16 m) was slightly deeper than the previous estimate (13 m), but varied considerably among individuals (range 2–16 m). Males dived deeper than females, and birds feeding chicks dived deeper than incubating birds, but dive rate did not differ between the sexes. Time of day had no significant effect on dive depth or rate. Our findings will help to improve the design and performance of mitigation measures aimed at reducing seabird bycatch in longline fisheries, such as the calculation of minimum line sink rates and optimum aerial coverage of bird-scaring lines.  相似文献   

5.
Bird-borne data loggers were used to investigate the foraging strategies of Brünnich's guillemots breeding in a colony in the North Water Polynya: the flight performance and diving activity of incubating birds were compared to those of chick-rearing individuals. No significant differences were recorded between the bird groups in the potential foraging range. Conversely, clear differences were revealed between incubating and chick-rearing birds in diving behaviour. Chick-rearing birds were generally foraging at a significantly greater depth, and spent significantly higher proportions of the time submerged, than brooding individuals. Despite these differences, the estimated average daily energy expenditure of chick-rearing Brünnich's guillemots was only about 6% higher than that during incubation.  相似文献   

6.
Foraging ranges of king penguins Aptenodytes patagonicus were estimated by combining information on the feeding rates to chicks and brood shift lengths of adults (assessed by daily weighings of large chicks and daily checks of marked birds brooding small chicks) with measurements of travelling speeds and activity budgets at sea (assessed using remote recording devices). Adults brooding small chicks were relieved on average every 13 days and large chicks were fed every four days. Adults with large chicks spent 36% of their time, between attachment of the device and recapture, travelling at an average speed of 8.7 km.h-1. This gives an estimated mean maximum foraging range of about 300 km. Adults attending small chicks spent 19% of their time away swimming, giving an estimated mean maximum foraging range of 225 km. Extreme foraging ranges for all birds were 75 and 902 km for penguins returning between two and 24 days at sea, respectively. Total distance travelled was highly correlated with time away from the colony.  相似文献   

7.
Despite the large biomass of macaroni penguins Eudyptes chrysolophus in the Southern Ocean, their feeding ecology is poorly known at some important breeding localities. We investigated the diving behaviour and diet of female macaroni penguins feeding small chicks on Marion Island (46o52′S, 37o5′E), South Africa, one of the species’ most northerly breeding sites, supporting 4% of their global population. We then compared our results with similar studies from other localities. In December 2008, we collected information on 12 foraging trips from 6 individuals using time-depth recorders, as well as diet from 42 individuals. Median trip duration was 22.8 h (5.6–80.8 h). Penguins performed 42.8 ± 15.9 dives per hour at sea, with dive depths averaging 24.6 ± 8.6 m and lasting 40.8 ± 12.1 s, although 74.3% of dives were <10 m. Euphasids dominated their diet (86% by mass), mainly Thysanoessa vicina. A second peak in dive depths at 55–80 m might reflect the 12% of fish in their diet. The substantial proportion of shallow night dives (30% of total dives) suggests some foraging occurs at night. Differences in diving patterns of individual macaroni penguins in this study confirmed the behavioural flexibility of these birds reported from other breeding localities. However, most other studies assumed that dives <3–5 m were commuting dives whereas our study suggests that at least some prey are caught during shallow dives. We highlight how different analytical methods can change the outcome of studies. Despite macaroni penguins’ apparent flexibility in foraging behaviour during the breeding season, their numbers are decreasing globally. Further investigations of their foraging behaviour are needed to assess potential competition with other predators and krill fisheries.  相似文献   

8.
The short-term behavioural effects of helicopter overflights on breeding king penguins Aptenodytes patagonicus at South Georgia were examined. Seventeen helicopter overflights were made at altitudes between 230 and 1,768 m (750–5,800 ft) above ground level. Noise from the aircraft engines and helicopter blades increased sound levels in the colony from a background level of 65–69 dB(A) to a maximum mean peak level of 80 dB(A) during overflights. Penguin behaviour changed significantly during all overflights at all altitudes compared to the pre- and post-flight periods. Pre-overflight behaviour resumed within 15 min of the aircraft passing overhead and no chicks or eggs were observed to be taken by predators during overflights. Non-incubating birds showed an increased response with reduced overflight altitude, but this was not observed in incubating birds. Variability in overflight noise levels did not affect significantly the behaviour of incubating or non-incubating birds. Penguins exhibited a reduced response to overflights as the study progressed (despite later flights generally being flown at lower altitudes) suggesting some degree of habituation to aircraft. To minimise disturbance to king penguins we recommend a precautionary approach such that overflights are undertaken at the maximum altitude that is operationally practical, or preferably are avoided altogether.  相似文献   

9.
CôTé SD 《Animal behaviour》2000,59(4):813-821
King penguins, Aptenodytes patagonicus, vigorously defend small territories in very dense colonies. The egg-laying season lasts approximately 4 months, but only pairs that reproduce during the first half of the period succeed in fledging a chick. I examined various factors affecting aggressiveness of king penguins during the breeding season and focused on the differences between central and peripheral territories. Pairs on peripheral territories experienced twice as many encounters with avian predators as did central birds. The vast majority of peripheral birds were late breeders, indicating that reproductive success was very low among penguins defending a territory on the edge of the colony. Time invested in territory defence and rate of agonistic encounters between breeding neighbours increased from the incubation to the brooding period. Parents gave most threat displays to territorial neighbours when the chick was very young and just before crèche formation. Distance to colony edge was not related to aggressiveness in incubating birds, however, the rate of pecking and flipper blows increased from the edge to the centre during brooding. In addition, aggressiveness of breeding penguins towards travelling birds trespassing into their territory increased with distance to edge. Early breeders were not more aggressive than late breeders but the proportion of time spent in territory defence increased with the number of days a bird had spent incubating. As expected, I did not detect any sex difference in aggressive behaviour. Birds occupying territories on the beach were generally more aggressive during the incubation period than those located on the valley sides. Reproductive status (incubating versus brooding) and territory location were the main factors explaining the various levels of aggressiveness observed in breeding king penguins. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

10.
ABSTRACT

With the development and implementation of tracking technology, we are now able to monitor the foraging behaviour of seabirds while at sea. Time-Depth Recorders (TDRs) were fitted to Hutton's shearwaters (Puffinus huttoni), an endangered endemic New Zealand species, to measure how diving behaviour varies over the breeding cycle. Hutton's shearwaters (~350?g) dive up to 339 times per day (average 68.8) at depths to 35?m (average 5.6?m), and for periods up to 60?s (average 19.2?s). Incubating birds dived deeper than birds feeding chicks, and a significant difference in diving depth and dive duration were detected at different times of the day. Neither dive frequency nor dive duration differed significantly between years, but there was some annual variation in dive depths. The temporal variation we observed in the diving behaviour of Hutton's shearwaters suggests they are likely to exploit different types of pelagic prey at different stages in their breeding cycle. With on-going changes in the marine environment, monitoring changes in feeding behaviour using TDRs may provide a way to assess environmental change and improve the conservation of this species.  相似文献   

11.
The diving behaviour of female southern rockhopper penguins (Eudyptes chrysocome) was studied at Noir Island (54°30′S–73°00′W), Chile, in the southeast Pacific Ocean. This isolated island is located at the edge of the continental shelf in an area where the Humboldt Current originates, and holds a population of more than 150,000 breeding pairs. On 13 December 2005, four TDRs were successfully attached to females at the end of the brooding period and recorded diving activity at intervals of 2 s over the next 4 weeks. In total, 40 complete foraging trips were recorded. Trip duration was on average 42.4 ± 40.1 h and the proportion of overnight trips (60%) was the highest value found so far for this species. Mean dive depth and dive duration was 20.6 ± 19.4 m and 63.7 ± 36.4 s, respectively. The diving effort was higher than that of brooding females from the Indian Ocean and comparable with that of conspecifics from colonies in the southwest Atlantic in terms of diving rate (38 ± 14.2 dives h−1), but slightly lower as regards the proportion of time spent underwater (61 ± 10.5%). This study confirms that the diving behaviour of rockhopper penguins varies as a function of the physical and biological characteristics of the foraging areas and of the particular stage of the breeding season.  相似文献   

12.
The impact of relatively small externally attached time series recorders on some foraging parameters of seabirds was investigated during the austral summer of 1995 by monitoring the diving behaviour of 10 free-ranging king penguins (Aptenodytes patagonicus) over one foraging trip. Time-depth recorders were implanted in the abdominal cavities of the birds, and half of the animals also had dummy loggers attached on their backs. Although most of the diving behaviour was not significantly affected by the external loggers (P>0.05), the birds with externally attached loggers performed almost twice as many shallow dives, between 0 and 10 m depth, as the birds without external loggers. These shallow dives interrupted more frequently the deep-diving sequences in the case of birds with external loggers (percentage of deep dives followed by deep dives: 46% for birds with implants only vs. 26% for birds with an external attachment). Finally, the distribution pattern of the postdive durations plotted against the hour of the day was more heterogeneous for the birds with an external package. In addition, these penguins had extended surfacing times between two deep dives compared to birds without external attachments (P<0.0001). These results suggest the existence of an extra energy cost induced by externally attached loggers.  相似文献   

13.
To investigate thermoregulatory adjustments at sea, body temperatures (the pectoral muscle and the brood patch) and diving behavior were monitored during a foraging trip of several days at sea in six breeding king penguins Aptenodytes patagonicus. During inactive phases at sea (water temperature: 4-7 degrees C), all tissues measured were maintained at normothermic temperatures. The brood patch temperature was maintained at the same values as those measured when brooding on shore (38 degrees C). This high temperature difference causes a significant loss of heat. We hypothesize that high-energy expenditure associated with elevated peripheral temperature when resting at sea is the thermoregulatory cost that a postabsorptive penguin has to face for the restoration of its subcutaneous body fat. During diving, mean pectoral temperature was 37.6 +/- 1.6 degrees C. While being almost normothermic on average, the temperature of the pectoral muscle was still significantly lower than during inactivity in five out of the six birds and underwent temperature drops of up to 5.5 degrees C. Mean brood patch temperature was 29.6 +/- 2.5 degrees C during diving, and temperature decreases of up to 21.6 degrees C were recorded. Interestingly, we observed episodes of brood patch warming during the descent to depth, suggesting that, in some cases, king penguins may perform active thermolysis using the brood patch. It is hypothesized that functional pectoral temperature may be regulated through peripheral adjustments in blood perfusion. These two paradoxical features, i.e., lower temperature of deep tissues during activity and normothermic peripheral tissues while inactive, may highlight the key to the energetics of this diving endotherm while foraging at sea.  相似文献   

14.
 The mean maximum dive depth from 49 foraging bouts by northern rockhopper penguins, measured using capillary-tube depth gauges, was 66±4 m (12–168 m). There were no differences in the maximum dive depths between male and female penguins. Northern rockhopper penguins dived deeper in early than in late creche stages (83±7 vs 57±4 m), and this was associated with probable dietary changes, squid dominating the diet by mass (44%) in November, and fish (64%) in December 1994 at Amsterdam Island. Received: 10 January 1996/Accepted: 31 March 1996  相似文献   

15.
J. P. Croxall    D. R. Briggs    A. Kato    Y. Naito    Y. Watanuki    T. D. Williams 《Journal of Zoology》1993,230(1):31-47
The pattern and characteristics of diving in two female macaroni penguins Eudyptes chrysolophus was studied, during the brooding period, using continuous-recording time-depth recorders, for a total of I8 days (15 consecutive days) during which the depth, duration and timing of 4876 dives were recorded. Diving in the first 11 days was exclusively diurnal, averaging 244 dives on trips lasting 12 hours. Near the end of the brooding period trips were longer and included diving at night. About half of all trips (except those involving continuous night-time diving) was spent in diving and dive rate averaged 14–25 dives per hour (42 per hour at night). The duration of day time dives varied between trips, and averaged 1.4–1.7 min, with a subsequent surface interval of 0.5–0.9 min. Dive duration was significantly directly related to depth, the latter accounting for 53% of the variation. The average depths of daytime dives were 20–35 m (maximum depth 11 5 m). Dives at night were shorter (average duration 0.9 min) and much shallower (maximum 11 m); depth accounted for only 6% of the variation in duration. Estimates of potential prey capture rates (3–5 krill per dive; one krill every 17–20 s) are made. Daily weight changes in chicks were directly related to number of dives, but not to foraging trip duration nor time spent diving. Of the other species at the same site which live by diving to catch krill, gentoo penguins forage exclusively diurnally, making longer. deeper dives; Antarctic fur seals, which dive to similar depths as macaroni penguins, do so mainly at night.  相似文献   

16.
Many animals that possess a gizzard swallow stones or sandy grit, supposedly to aid in the mechanical breakdown of food. While this has been well documented in the literature, our study is the first to report the presence of stones in the gizzard of king penguin chicks. We found stones, so called ‘gastroliths’, in the pyloric region of the gizzard, the part of the digestive tract that is specialised for the mechanical breakdown of food. Stones were already present in the gizzard of chicks and, hence, during the first year of the life of king penguins, which is spent on land. Some chicks were found to have more than 130 stones (0.5–22 mm in size) in their gizzard. The gastroliths we found in king penguins are of the same geological origin as rocks present at the colony, which suggests that birds swallowed them there. The functional role of gastroliths in penguin chicks and adults is still unknown. We discuss the potential roles that these gastroliths might play in king penguins (i.e. aid in digestion, buoyancy control during foraging at sea, adaptation to fasting).  相似文献   

17.
Thousands of penguins are banded annually world-wide, even though little is known about the potential impact of these flipper bands. In this paper, the possible effect of banding on the survivorship, breeding frequency and other ecological factors on king penguins was investigated. The extended laying period (3–4 months) of the king penguin allows the observation of non-lethal effects that could influence the time of laying and thus the reproductive success. Three hundred and eighty-three breeding king penguins on the colony of “la Baie du Marin” on Possession Island, Crozet Archipelago were either single- or double-flipper banded. The results show that the returning birds were laying late the following breeding season, and that double-banded birds lay significantly later than single-banded birds. Furthermore, our data suggest a lower return rate for double-banded birds than for single-banded birds (45% as opposed to 76%). The low return rate of single-banded birds, when compared to an interannual survivorship estimated to be 96.5%, also raises questions concerning the potential impact of single banding. Received: 2 January 1998 / Accepted: 23 May 1998  相似文献   

18.
Analyses of the body masses of Adélie penguins (Pygoscelis adeliae) departing on foraging trips of long and short duration (> and<40 h, respectively) during chick rearing showed that the departure weights of birds prior to long trips were significantly lighter than were those prior to short trips. Penguins, particularly males, were significantly heavier at the start of the guard stage than at the end and both sexes gained similar amounts of body mass during the crèche period. Results support the hypothesis that the foraging effort of Adélie penguins at Béchervaise Island is partitioned between the sexes, with males accepting a net rate of negative energy gain to provide regular meals for their offspring during the guard stage. Adélie penguin foraging behaviour may be driven by a trade-off between the allocation of food to chicks and the storage of parental body reserves, similar to that previously postulated for some species of flying seabirds. The relevance of such a foraging strategy to the breeding success of penguins in the Mawson region of eastern Antarctica is discussed in relation to micronekton distribution in the area. Accepted: 3 June 2000  相似文献   

19.
The Cape cormorant Phalacrocorax capensis is unusual among cormorants in using aerial searching to locate patchily distributed pelagic schooling fish. It feeds up to 80 km offshore, often roosts at sea during the day and retains more air in its plumage and is more buoyant than most other cormorants. Despite these adaptations to its pelagic lifestyle, little is known of its foraging ecology. We measured the activity budget and diving ecology of breeding Cape cormorants. All foraging took place during the day, with 3.6 ± 1.3 foraging trips per day, each lasting 85 ± 60 min and comprising 61 ± 53 dives. Dives lasted 21.2 ± 13.9 s (maximum 70 s), attaining an average depth of 10.2 ± 6.7 m (maximum 34 m), but variability in dive depth both within and between foraging trips was considerable. The within-bout variation in dive depth was greater when making shallow dives, suggesting that pelagic prey were targeted mainly when diving to <10 m. Diving ecology and total foraging time were similar to other cormorants, but the time spent flying (122 ± 51 min day−1, 14% of daylight) was greater and more variable than other species. Searching flights lasted up to 1 h, and birds made numerous short flights during foraging bouts, presumably following fast-moving schools of pelagic prey. Compared with the other main seabird predators of pelagic fish in the Benguela region, Cape gannets Morus capensis and African penguins Spheniscus demersus , Cape cormorants made shorter, more frequent foraging trips. Their foraging range while feeding small chicks was 7 ± 6 km (maximum 40 km), similar to penguins (10–20 km), but less than gannets (50–200 km). Successful breeding by large colonies depends on the reliable occurrence of pelagic fish schools within this foraging range.  相似文献   

20.
We present data on diving pattern and performance (dive depth, duration, frequency and organization during the foraging trip) in gentoo penguins Pygoscelis papua , obtained using time-depth recorders ( n = 9 birds, 99 foraging trips). These data are used to estimate various parameters of foraging activity, e.g. foraging range, prey capture rates, and are compared in relation to breeding chronology. Foraging trip duration was 6 h and 10 h, and trip frequency 1.0/day and 0.96/day, during the brooding and creche periods, respectively. Birds spent on average 52%of each foraging trip diving. Dive depth and duration were highly bimodal: shallow dives (< 21 m) averaged 4 m and 0.23 min, and deep dives (> 30 m) 80 m and 2.5 min, respectively. Birds spent on average 71%and 25%of total diving time in deep and shallow dives, respectively. For deep dives, dive duration exceeded the subsequent surface interval, but shallow dives were followed by surface intervals 2–3 times dive duration. We suggest that most shallow dives are searching/exploratory dives and most deep dives are feeding dives. Deep dives showed clear diel patterns averaging 40 m at dawn and dusk and 80–90 m at midday. Estimated foraging ranges were 2.3 km and 4.1 km during the brood and creche period, respectively. Foraging trip duration increased by 4 h between the brood and creche periods but total time spent in deep dives (i.e. time spent feeding) was the same (3 h). Of 99 foraging trips, 56%consisted of only one dive bout and 44%of 2–4 bouts delimited by extended surface intervals > 10 min. We suggest that this pattern of diving activity reflects variation in spatial distribution of prey rather than the effect of physiological constraints on diving ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号