首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Light-induced production of superoxide (O2*-) in spinach PSII (photosystem II) membrane particles was studied using EPR spin-trapping spectroscopy. The presence of exogenous PQs (plastoquinones) with a different side-chain length (PQ-n, n isoprenoid units in the side-chain) enhanced O2*- production in the following order: PQ-1>PQ-2>PQ-9. In PSII membrane particles isolated from the tobacco cyt (cytochrome) b559 mutant which carries a single-point mutation in the beta-subunit and also has a decreased amount of the alpha-subunit, the effect of PQ-1 was less than in the wild-type. The increase in LP (low-potential) cyt b559 content, induced by the incubation of spinach PSII membrane particles at low pH, resulted in a significant increase in O2*- formation in the presence of PQ-1, whereas it had little effect on O2*- production in the absence of PQ-1. The enhancement of O2*- formation induced by PQ-1 was not abolished by DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea]. Under anaerobic conditions, dark oxidation of LP cyt b559 increased, as pH was decreased. The presence of molecular oxygen significantly enhanced dark oxidation of LP cyt b559. Based on these findings it is suggested that short-chain PQs stimulate O2*- production via a mechanism that involves electron transfer from Pheo- (pheophytin) to LP cyt b559 and subsequent auto-oxidation of LP cyt b559.  相似文献   

2.
The mitochondrial bc(1) complex catalyzes the oxidation of ubiquinol and the reduction of cytochrome (cyt) c. The cyt b mutation A144F has been introduced in yeast by the biolistic method. This residue is located in the cyt b cd(1) amphipathic helix in the quinol-oxidizing (Q(O)) site. The resulting mutant was respiration-deficient and was affected in the quinol binding and electron transfer rates at the Q(O) site. An intragenic suppressor mutation was selected (A144F+F179L) that partially alleviated the defect of quinol oxidation of the original mutant A144F. The suppressor mutation F179L, located at less than 4 A from A144F, is likely to compensate directly the steric hindrance caused by phenylalanine at position 144. A second set of suppressor mutations was obtained, which also partially restored the quinol oxidation activity of the bc(1) complex. They were located about 20 A from A144F in the hinge region of the iron-sulfur protein (ISP) between residues 85 and 92. This flexible region is crucial for the movement of the ISP between cyt b and cyt c(1) during enzyme turnover. Our results suggested that the compensatory effect of the mutations in ISP was due to the repositioning of this subunit on cyt b during quinol oxidation. This genetic and biochemical study thus revealed the close interaction between the cyt b cd(1) helix in the quinol-oxidizing Q(O) site and the ISP via the flexible hinge region and that fine-tuning of the Q(O) site catalysis can be achieved by subtle changes in the linker domain of the ISP.  相似文献   

3.
Direct electrochemistry of site-specific mutants of yeast iso-1-cytochrome c (cyt c) and their complexes with bovine cytochrome b5 (cyt b5) has been investigated at edge-plane pyrolytic graphite (EPG) and bis(4-pyridyl)-disulphide-modified gold electrodes. Structure/function relationships have been investigated with the particular aim of clarifying the factors controlling the interactions of proteins at electrode/electrolyte interfaces and the determinants for direct electrochemistry in ternary protein/protein/electrode adducts, e.g. cyt c/cyt b5/EPG. Investigations of the cyt c mutants alone revealed a variety of electrochemical responses: all the mutants show similar voltammetric reversibility at modified gold electrodes, whereas at EPG electrodes the reversibility follows the order: Asn52Ile-Cys102Thr greater than Cys102Thr greater than Asn52Ala-Cys102Thr. Mid-point potentials follow the order: Arg13Ile (+60 +/- 5 mV vs. standard calomel electrode) greater than Cys102Thr (+40 +/- 5 mV) greater than Lys27Gln (+30 +/- 5 mV) approximately Lys72Asp (+30 +/- 5 mV) greater than Asn52Ala-Cys102Thr (+15 +/- 5 mV) greater than Asn52Ile-Cys102Thr (-10 +/- 5 mV). The structural basis for these differences is briefly discussed. When these mutants are bound to cyt b5, the differences in electrochemical response are greatly enhanced in the ternary cyt c/cyt b5/EPG adducts. A minimal analysis of these differences supports a model of multiple overlapping binding and recognition domains on cyt c which may be finely tuned to allow ternary complex formation so that a single-site variation could modify or abolish direct electrochemistry in the ternary adduct.  相似文献   

4.
Herein, we reported for the first time one step procedure for the preparation of cytochrome c (cyt c)-poly (5-amino-2-napthalenesulfonic acid) (PANS) modified glassy carbon electrode by cyclic voltammetrically (CV). Hereafter, we called the above modified electrode as cyt c-PANS electrode. The presence of cyt c on modified electrode was investigated with electrochemical quartz crystal microbalance (EQCM), CV, and superoxide radicals reaction studies. The reaction between cyt c in the modified electrode and superoxide radicals in solution, was exemplified by cyclic voltammetric measurements. Surface morphology of the modified electrode was investigated by using atomic force microscopy (AFM). The modified electrode showed a pair of well defined redox peak in PBS solution, pH 6.7. The modified electrode utilized for electrocatalytic reduction as well as amperometric determination of hydrogen peroxide (H(2)O(2)). The detection limit and linear range for H(2)O(2) were 5 and 50 microM to 7 mM, respectively.  相似文献   

5.
Films of human cytochrome P450 1A2 (cyt P450 1A2) and polystyrene sulfonate were constructed on carbon cloth electrodes using layer-by-layer alternate absorption and evaluated for electrochemical- and H(2)O(2)-driven enzyme-catalyzed oxidation of styrene to styrene oxide. At -0.6 V vs. saturated calomel reference electrode in an electrochemical cell, epoxidation of styrene was mediated by initial catalytic reduction of dioxygen to H(2)O(2) which activates the enzyme for the catalytic oxidation. Slightly larger turnover rates for cyt P450 1A2 were found for the electrolytic and H(2)O(2) (10 mM) driven reactions compared to conventional enzymatic reactions using cyt P450s, reductases, and electron donors for cytochromes P450 1A2. Cyt P450(cam) gave comparable turnover rates in film electrolysis and solution reactions. Results demonstrate that cyt P450 1A2 catalyzes styrene epoxidation faster than cyt P450(cam), and suggests the usefulness of this thin-film electrolytic method for relative turnover rate studies of cyt P450s.  相似文献   

6.
The increased production of NO during the early stages of apoptosis indicates its potential involvement in the regulation of programmed cell death through yet to be identified mechanisms. Recently, an important role for catalytically competent peroxidase form of pentacoordinate cytochrome c (cyt c) in a complex with a mitochondria-specific phospholipid, cardiolipin (CL), has been demonstrated during execution of the apoptotic program. Because the cyt c.CL complex acts as CL oxygenase and selectively oxidizes CL in apoptotic cells in a reaction dependent on the generation of protein-derived (tyrosyl) radicals, we hypothesized that binding and nitrosylation of cyt c regulates CL oxidation. Here we demonstrate by low temperature electron paramagnetic resonance spectroscopy that CL facilitated interactions of ferro- and ferri-states of cyt c with NO and NO(-), respectively, to yield a mixture of penta- and hexa-coordinate nitrosylated cyt c. In the nitrosylated cyt c.CL complex, NO chemically reacted with H(2)O(2)-activated peroxidase intermediates resulting in their reduction. A dose-dependent quenching of H(2)O(2)-induced protein-derived radicals by NO donors was shown using direct electron paramagnetic resonance measurements as well as immuno-spin trapping with antibodies against protein 5,5-dimethyl-1-pyrroline N-oxide-nitrone adducts. In the presence of NO donors, H(2)O(2)-induced oligomeric forms of cyt c positively stained for 3-nitrotyrosine confirming the reactivity of NO toward tyrosyl radicals of cyt c. Interaction of NO with the cyt c.CL complex inhibited its peroxidase activity with three different substrates: CL, etoposide, and 3,3'-diaminobenzidine. Given the importance of CL oxidation in apoptosis, mass spectrometry analysis was utilized to assess the effects of NO on oxidation of 1,1'2,2'-tertalinoleoyl cardiolipin. NO effectively inhibited 1,1'2,2'-tertalinoleoyl cardiolipin oxidation catalyzed by the peroxidase activity of cyt c. Thus, NO can act as a regulator of peroxidase activity of cyt c.CL complexes.  相似文献   

7.
Muller F  Crofts AR  Kramer DM 《Biochemistry》2002,41(25):7866-7874
The cytochrome (cyt) bc(1) complex is central to energy transduction in many species. Most investigators now accept a modified Q-cycle as the catalytic mechanism of this enzyme. Several thermodynamically favorable side reactions must be minimized for efficient functioning of the Q-cycle. Among these, reduction of oxygen by the Q(o) site semiquinone to produce superoxide is of special pathobiological interest. These superoxide-producing bypass reactions are most notably observed as the antimycin A- or myxothiazol-resistant reduction of cyt c. In this work, we demonstrate that these inhibitor-resistant cyt c reductase activities are largely unaffected by removal of O(2) in the isolated yeast cyt bc(1) complex. Further, increasing O(2) tension 5-fold stimulated the antimycin A-resistant reduction by a small amount ( approximately 25%), while leaving the myxothiazol-resistant reduction unchanged. This most likely indicates that the rate-limiting step in superoxide production is the formation of a reactive species (probably a semiquinone), capable of rapid O(2) reduction, and that in the absence of O(2) this species can reduce cyt c by some other pathway. We suggest as one possibility that a semiquinone escapes from the Q(o) site and reduces either O(2) or cyt c directly. The small increase in antimycin A-resistant cyt c reduction rate at high O(2) can be explained by the accumulation of a low concentration of a semiquinone inside the Q(o) site. Under aerobic conditions, addition of saturating levels of superoxide dismutase (SOD) inhibited 50% of cyt c reduction in the presence of myxothiazol, implying that essentially all bypass reactions occur with the production of superoxide. However, SOD inhibited only 35% of antimycin A-resistant cyt c reduction, suggesting the presence of a second, slower bypass reaction that does not reduce O(2). Given that myxothiazol blocks cyt b reduction whereas antimycin A promotes it, we propose that this second bypass occurs by reduction of the Q(o) site semiquinone by prereduced cyt b(L).  相似文献   

8.
Tumour necrosis factor alpha (TNF) cytotoxicity is mediated, at least in part, by oxidative stress. One of the post-receptor events shortly after the addition of TNF is the generation of the superoxide anion (O2-*). In the present study, we attempted to examine the role of O2-* in the regulation of mitochondrial membrane potential (Delta(Psi)m) and the release of cytochrome c (cyto c) in L929 cells after stimulation with TNF. Challenge of cells with TNF (50 ng/ml) resulted in an early (30 min after the addition of TNF) increase in the production of O2-*. The use of mitochondrial electron transport chain inhibitors such as antimycin A and rotenone could, respectively, potentiate or suppress the TNF-mediated release of O2-* and cytotoxicity. TNF also induced a late (>3 h after the addition of TNF) depolarization in the Delta(Psi)m. Reduction in the release of O2-* by rotenone (50 microM) or thenoyltrifluoroacetone (250 microM) suppressed both the TNF-mediated Delta(Psi)m depolarization and cyto c release. However, increase in the production of O2-* by antimycin A (25 microM) only slightly enhanced the TNF effect in altering the Delta(Psi)m and the release of cyto c. Treating cells with antimycin A alone could not induce a reduction in Delta(Psi)m nor a release of cyto c. Taken together, our results indicate that TNF induced damage in mitochondria in L929 cells. Our data also show that an increase in the production of O2-* was important in the TNF cytotoxicity, but was not sufficient to mimic the action of TNF.  相似文献   

9.
The structure and the electron-transfer properties of cytochrome c (cyt c) absorbed on a silver electrode were analyzed by surface-enhanced resonance Raman spectroscopy. It was found that the absorbed cyt c exists in various conformational states depending on the electrode potential. In state I the native structure of the heme protein is fully preserved and the redox potential (+0.02 V vs saturated calomel electrode) is close to the value for cyt c in solution. In state II the heme iron exists in a mixture of five-coordinated high-spin and six-coordinated low-spin configurations. It had been shown that these configurations form a thermal equilibrium [Hildebrandt, P., & Stockburger, M. (1986) J. Phys. Chem. 90,6017]. It is demonstrated that these equilibria strongly depend on the charge distribution within the electrical double layer of the silver electrode/electrolyte interface, indicating that the changes in the coordination shell are induced by electrostatic interactions. The structural alterations in state II are apparently restricted to the heme crevice, which assumes an open conformation compared to the close structure in state I. This leads to a strong decrease of the redox potentials, which were determined to be -0.31 and -0.41 V for the five-coordinated high-spin and six-coordinated low-spin configurations, respectively. On the other hand, gross distortions of the protein structure can be excluded since the reversible proton-induced conformational change of cyt c as found in solution at low pH also takes place in state II of the absorbed cyt c. The linkage of cyt c molecules to the surface is mediated by charged amino acid groups, and it depends on the potential which groups are thermodynamically favored to form such a molecular binding site. The conformational states I and II, which are in potential-dependent equilibrium, therefore refer to two different molecular binding sites. At potentials below zero charge (less than approximately -0.6 V) a rapid denaturation of the absorbed cyt c is noted, which is reflected by drastic and irreversible changes in the surface-enhanced resonance Raman spectrum. Our results are discussed on the background of previous electrochemical studies of cyt c at electrodes.  相似文献   

10.
In several classes of proteins the redox center provides an additional intrinsic biophysical probe that could be used to study the protein structure and function. In present report reorganization energy (lambda, as a parameter describing electron transfer properties) was used to study the protein structural changes around the heme prosthetic group in cytochrome c (cyt c). We attempted to monitor the value of this parameter upon the unfolding process of cyt c by urea, during which it was increased sigmoidally from about 0.52 to 0.82 eV for native and unfold protein, respectively. Results indicate that by structural changes in the heme site, lambda provides a complementary tool for following the unfolding process. Assuming a reversible two-state model for cyt c unfolding, Delta G(H2O), Cm and m values were determined to be 8.32+/-0.7 kcal mol(-1), 1.53+/-0.19 kcalmol(-1)M(-1) and 5.03 M, respectively.  相似文献   

11.
Gold (Au) and platinum (Pt) screen-printed electrodes were modified with Prussian Blue (PB) for the development of amperometric sensors selective for hydrogen peroxide detection. The sensors exhibited sensitivities towards H(2)O(2) equal to 2 A M(-1) cm(-2) for Au and 1 A M(-1) cm(-2) for Pt electrodes. The sensors were also employed as the basis for construction of glucose biosensors through further modification with crystallised glucose oxidase immobilised in a Nafion membrane. In order to improve the operational stability of the modified electrodes a buffer solution containing tetrabutylammonium toluene-4-sulfonate was used. The long-term performance of the sensors and biosensors were evaluated by continuous monitoring of hydrogen peroxide and glucose solutions (50 microM and 1 mM, respectively) in the flow-injection mode for 10 h.  相似文献   

12.
Cytochrome c2 (cyt) is the mobile electron donor to the reaction center (RC) in photosynthetic bacteria. The electrostatic interactions involved in the dynamics of docking of cyt onto the RC were examined by double mutant studies of the rates of electron transfer between six modified Rhodobacter sphaeroides RCs in which negatively charged acid residues were replaced with Lys and five modified Rhodobacter capsulatus Cyt c2 molecules in which positively charged Lys residues were replaced with Glu. We measured the second-order rate constant, k2, for electron transfer from the reduced cyt to the oxidized primary donor on the RC, which reflects the energy of the transition state for the formation of the active electron transfer complex. Strong interactions were found between Lys C99 and Asp M184/Glu M95, and between Lys C54 and Asp L261/Asp L257. The interacting residues were found to be located close to each other in the recently determined crystal structure of the cyt-RC complex [Axelrod, H., et al. (2002) J. Mol. Biol. (in press)]. The interaction energies were approximately inversely proportional to the distances between charges. These results support earlier suggestions [Tetreault, M., et al. (2001) Biochemistry 40, 8452-8462] that the structure of the transition state in solution resembles the structure of the cyt-RC complex in the cocrystal and indicate that specific electrostatic interactions facilitate docking of the cyt onto the RC in a configuration optimized for both binding and electron transfer. The specific interaction between Asp M184 and Lys C99 may help to nucleate short-range hydrophobic contacts.  相似文献   

13.
Reactive halogen species (RHS; X(2) and HOX, where X represents Cl, Br, or I) are metabolites mediated by neutrophil activation and its accompanying respiratory burst. We have investigated the interaction between RHS and mitochondrial cytochrome c (cyt c) by using electrospray mass spectrometry and electron spin resonance (ESR). When the purified cyt c was reacted with an excess amount of hypochlorous acid (HOCl) at pH 7.4, the peroxidase activity of cyt c was increased by 4.5-, 6.9-, and 8.6-fold at molar ratios (HOCl/cyt c) of 2, 4, and 8, respectively. In comparison with native cyt c, the mass spectra obtained from the HOCl-treated cyt c revealed that oxygen is covalently incorporated into the protein as indicated by molecular ions of m/z = 12,360 (cyt c), 12,376 (cyt c + O), and 12,392 (cyt c + 2O). Using tandem mass spectrometry, a peptide (obtained from the tryptic digests of HOCl-treated cyt c) corresponding to the amino acid sequence MIFAGIK, which contains the methionine that binds to the heme, was identified to be involved in the oxygen incorporation. The location of the oxygen incorporation was unequivocally determined to be the methionine residue, suggesting that the oxidation of heme ligand (Met-80) by HOCl results in the enhancement of peroxidase activity of cyt c. ESR spectroscopy of HOCl-oxidized cyt c, when reacted with H(2)O(2) in the presence of the nitroso spin trap 2-methyl-2-nitrosopropane (MNP), yielded more immobilized MNP/tyrosyl adduct than native cyt c. In the presence of H(2)O(2), the peroxidase activity of HOCl-oxidized cyt c exhibited an increasing ability to oxidize tyrosine to tyrosyl radical as measured directly by fast flow ESR. Titration of both native cyt c and HOCl-oxidized cyt c with various amounts of H(2)O(2) indicated that the latter has a decreased apparent K(m) for H(2)O(2), implicating that protein oxidation of cyt c increases its accessibility to H(2)O(2). HOCl-oxidized cyt c also displayed an impaired ability to support oxygen consumption by the purified mitochondrial cytochrome c oxidase, suggesting that protein oxidation of cyt c may break the electron transport chain and inhibit energy transduction in mitochondria.  相似文献   

14.
Cytochromes c6 from three cyanobacteria were tested as substrates for membranous cyt. c oxidase(aa3) of Anacystis and Synechocystis using intact spheroplasts or isolated plasma(CM) and thylakoid(ICM) membranes. Neither spheroplasts nor CM/ICM gave significant O2 uptake rates with NADH without added cyt. c. Horse cyt. c (at low ionic strength) or cyt. c6 from Anacystis, Synechocystis or Microcystis (at high ionic strength) supported substantial HCN- & CO-sensitive NADH oxidase activity, consistent with in vivo O2 uptake. Cyanobacterial respiratory electron transport involves NADH dehydrogenase(fpN), plastoquinone, cyt. b/c(f), cyt. c6 & cyt. aa3, in both CM & ICM. In ICM, fpN and cyt. aa3 are functionally replaced in the light by PS II and PS I, respectively. In both membranes, cyt. c6 is an obligatory electron donor to cyt. aa3 &/or to P700. Respiratory action of acidic cyt. c6 (in unicellular species) may be unmasked only under conditions of elevated ionic strength.  相似文献   

15.
A novel approach is described for generating reactive oxidizing centers in heme proteins, with zinc hemoglobin (Zn Hb) and zinc cytochrome c (Zn cyt c) used as examples. The reaction of 3Zn* Hb with [CoIII(NH3)5 Cl]2+, and of 3Zn* cyt c with methyl viologen are described. In the case of Zn Hb the cation radical produced decays with a rate constant of k3 = 2400s-1. Using this value the rate of the reaction (formula; see text) can be calculated to be 4500s-1.  相似文献   

16.
The mitochondrial electron transport chain is a source of oxygen superoxide anion (O(2)(-)) that is dismutated to H(2)O(2). Although low levels of ROS are physiologically synthesized during respiration, their increase contributes to cell injury. Therefore, an efficient machinery for H(2)O(2) disposal is essential in mitochondria. In this study, the ability of brain mitochondria to acquire cardiolipin (CL), phosphatidylglycerol (PG), and phosphatidylserine (PS) in vitro through a fusion process was exploited to investigate lipid effects on ROS. MTT assay, oxygen consumption, and respiratory ratio indicated that the acquired phospholipids did not alter mitochondrial respiration and O(2)(-) production from succinate. However, in CL-enriched mitochondria, H(2)O(2) levels where 27% and 47% of control in the absence and in the presence of antimycin A, respectively, suggesting an increase in H(2)O(2) elimination. Concomitantly, cytochrome c (cyt c) was released outside mitochondria. Since free oxidized cyt c acquired peroxidase activity towards H(2)O(2) upon interaction with CL in vitro, a contribution of cyt c to H(2)O(2) disposal in mitochondria through CL conferred peroxidase activity is plausible. In this model, the accompanying CL peroxidation should weaken cyt c-CL interactions, favouring the detachment and release of the protein. Neither cyt c peroxidase activity was elicited by PS in vitro, nor cyt c release was observed in PS-enriched mitochondria, although H(2)O(2) levels were significantly decreased, suggesting a cyt c-independent role of PS in ROS metabolism in mitochondria.  相似文献   

17.
18.
Formation of cytochrome c (cyt c)/cardiolipin (CL) peroxidase complex selective toward peroxidation of polyunsaturated CLs is a pre-requisite for mitochondrial membrane permeabilization. Tyrosine residues - via the generation of tyrosyl radicals (Tyr) - are likely reactive intermediates of the peroxidase cycle leading to CL peroxidation. We used mutants of horse heart cyt c in which each of the four Tyr residues was substituted for Phe and assessed their contribution to the peroxidase catalysis. Tyr67Phe mutation was associated with a partial loss of the oxygenase function of the cyt c/CL complex and the lowest concentration of H(2)O(2)-induced Tyr radicals in electron paramagnetic resonance (EPR) spectra. Our MS experiments directly demonstrated decreased production of CL-hydroperoxides (CL-OOH) by Tyr67Phe mutant. Similarly, oxidation of a phenolic substrate, Amplex Red, was affected to a greater extent in Tyr67Phe than in three other mutants. Tyr67Phe mutant exerted high resistance to H(2)O(2)-induced oligomerization. Measurements of Tyr fluorescence, hetero-nuclear magnetic resonance (NMR) and computer simulations position Tyr67 in close proximity to the porphyrin ring heme iron and one of the two axial heme-iron ligand residues, Met80. Thus, the highly conserved Tyr67 is a likely electron-donor (radical acceptor) in the oxygenase half-reaction of the cyt c/CL peroxidase complex.  相似文献   

19.
K A Gray  E Davidson  F Daldal 《Biochemistry》1992,31(47):11864-11873
Site-directed mutagenesis was used to investigate which of the highly conserved methionine residues (M183 and M205) provides the sixth axial ligand to the heme Fe in the cyt c1 subunit of the bc1 complex from the bacterium Rhodobacter capsulatus. These residues were changed to leucine (cM183L) and valine (cM205V). Two additional mutants were constructed, 1 in which a stop codon was inserted at M205 (cM205*) and the second in which 127 amino acids were deleted between the signal sequence and the putative C-terminal transmembrane alpha-helix (c delta SfuI). Only cM205V grew photosynthetically, and membranes isolated from this strain catalyzed quinol-dependent reduction of cyt c in amounts similar to that in a wild-type strain. Even though cM183L could not grow photosynthetically, it contained all the appropriate polypeptides and cofactors of the bc1 complex, as shown by SDS-PAGE and optical difference spectroscopy of intact membrane particles. Neither of the two deletion mutants contained a stable complex. Flash absorption spectroscopy using chromatophores showed no cytochrome c rereduction after oxidation by the reaction center in cM183L. The bc1 complex from each strain was isolated and characterized. Oxidation reduction midpoint potential titrations revealed that cyt c1 from cM183L had a dramatically shifted Em value (delta Em = -390 mV) compared with wild type and cM205V. While the optical absorption spectrum of cyt c1 from cM183L suggested that the c-type heme was low-spin, nonetheless it was able to react with the exogenous ligand carbon monoxide. The overall data support that M183, and not M205, is the sixth ligand to the heme Fe of cyt c1 of the bc1 complex.  相似文献   

20.
The inhibition of neuraminidase from Clostridium chauvoei (jakari strain) with partially purified methanolic extracts of some plants used in Ethnopharmacological practice was evaluated. Extracts of two medicinal plants, Tamarindus indicus and Combretum fragrans at 100-1000 microg/ml, both significantly reduced the activity of the enzyme in a dose-dependent fashion (P < 0.001). The estimated IC50 values for Tamarindus indicus and Combretum fragrans were 100 and 150 microg/ml respectively. Initial velocity studies conducted, using fetuin as substrate revealed a non-competitive inhibition with the Vmax significantly altered from 500 micromole min(-1) mg(-1) to 240 micromole min(-1) mg(-1) and 340 micromole min(-1) mg(-1) in the presence of Tamarindus indicus and Combretum fragrans respectively. The KM remained unchanged at 0.42 mM. The computed Index of physiological efficiency was reduced from 1.19min(-1) to 0.57min(-1) and 0.75min(-1) with Tamarindus indicus and Combretum fragrans as inhibitors respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号