首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently there has been evidence that contaminants other than organophosphate and carbamate pesticides may inhibit the activity of the enzyme acetylcholinesterase (AChE) both under in vitro and in vivo conditions. In this study we investigated the in vitro effect of three detergents \[dodecyl benzyl sulphonate (DBS), sodium dodecyl sulphate (SDS) and a mixture commonly used as domestic detergent (X)] and three metals \[molybdenum, barium and chromium (VI)] on AChE activity of Mytilus galloprovincialis haemolymph. All the detergents tested significantly inhibited the activity of the enzyme. The lowest observed effect concentrations were equal to 12 5 for DBS and 50 mg l-1 for SDS and X. Among the metals, molybdenum and barium had no effect on AChE activity, whereas chromium (VI) significantly depressed the activity of the enzyme at concentrations equal to or higher than 25 mg l-1. These results suggest that the use of AChE as a specific biomarker for organophosphate and carbamate pesticides should be questioned and that the use of this enzyme as a biomarker could be extended.  相似文献   

2.
Recently there has been evidence that contaminants other than organophosphate and carbamate pesticides may inhibit the activity of the enzyme acetylcholinesterase (AChE) both under in vitro and in vivo conditions. In this study we investigated the in vitro effect of three detergents \[dodecyl benzyl sulphonate (DBS), sodium dodecyl sulphate (SDS) and a mixture commonly used as domestic detergent (X)] and three metals \[molybdenum, barium and chromium (VI)] on AChE activity of Mytilus galloprovincialis haemolymph. All the detergents tested significantly inhibited the activity of the enzyme. The lowest observed effect concentrations were equal to 12 5 for DBS and 50 mg l-1 for SDS and X. Among the metals, molybdenum and barium had no effect on AChE activity, whereas chromium (VI) significantly depressed the activity of the enzyme at concentrations equal to or higher than 25 mg l-1. These results suggest that the use of AChE as a specific biomarker for organophosphate and carbamate pesticides should be questioned and that the use of this enzyme as a biomarker could be extended.  相似文献   

3.
Acetylcholinesterase (AChE) activity is a well established biomarker to monitor environmental pollution caused by neurotoxic compounds, such as organophosphorus and carbamate pesticides. The presence of these compounds results in a measurable inhibition of the enzyme. This has been shown for different marine species including blue mussels. Besides pollution, environmental variables may also have a direct or indirect effect on AChE activity, particularly in estuarine and brackish water environments. To assess the impact of abiotic factors on the AChE activity the seasonal course of gill AChE activity was followed in relation to temperature and salinity in Mytilus sp. collected from the south-western Baltic Sea. In addition, the effect of salinity on AChE activity was investigated in an experimental study. The AChE activity showed significant seasonal differences with maximum activities during the summer period and minimum activities in winter. These changes correlate significantly (p<0.001) and positively with water temperature. The experimental exposure of Mytilus sp. to different salinities (5, 7, 16 or 20 psu) resulted in changes in the gill AChE activity. Empirical orthogonal function (EOF) analysis revealed that AChE activity was significantly and negatively correlated with salinity (p<0.01). These results clearly demonstrate the need to consider the potential influence of temperature and salinity on AChE activity when applying this biomarker to monitor exposure to and effect of neurotoxic substances in estuarine and brackish water blue mussels.  相似文献   

4.
Natural variation in abiotic factors, such as temperature and pH, probably influence the activity of enzymes used as potential biomarkers in bivalve mollusks to assess environmental contamination in the field. Changes in levels of an enzymatic biomarker may thus merely reflect natural variation in the annual physiological cycle of a species rather than exposure to contaminants. To investigate this issue, we documented the relationship between pesticide levels in water and three different enzymatic biomarkers over 1 year in enclosed populations of the freshwater unionid mussel Anodonta cygnea at three different sites of exposure. We considered the natural variation in temperature, pH and dissolved oxygen over the year and across the different sites as a potential correlate of enzymatic activity to disentangle the relative contribution of abiotic factors and pesticide levels. Pesticide levels varied among the three sites and over the course of the year. Catalase (CAT) and acetylcholinesterase activity (AChE) varied as a function of abiotic factors but showed no relation to pesticide levels. Glutathione S-transferase (GST) activity was also related to abiotic factors but also decreased with increases in total pesticide levels. The lack of activity induction or inhibition by pesticides and the natural variation in abiotic factors among sites and across time limits the use of CAT and AChE to assess environmental contamination in this species.  相似文献   

5.
Toxic contamination of commonly consumed food products and water due to food chain vulnerability via agricultural products and commodities is a serious health hazard. This study reports on Santa Barbara Amorphous (SBA-15), a type of mesoporous silica nanoparticles, for efficient and stable acetylcholinesterase (AChE) adhesion toward detection of toxic pesticides. AChE was immobilized to the inert framework of mesoporous materials viz. SBA-15 with a proficient hydrolytic response toward acetylthiocholine. The immobilized system acts as a biosensor for the detection of pesticides, which are organophosphorus compounds in food. Both the SBA-15 and immobilized SBA-15 were characterized to give an insight on the physiochemical and morphological modification properties. The enzyme activity was accessed by Ellman’s spectrophotometric bioassay for bare and enzyme-immobilized SBA-15 that resulted in promising enzymatic activity with the counterpart. Enzyme stability was also studied, which exhibited that immobilized AChE retained its catalytic activity up to 60 days and retained 80% of the hydrolytic activity even at 37°C. On the basis of the success of immobilized enzyme (covalent) being inhibited by acetylthiocholine, the sensor was administered for the inhibition by monocrotophos and dimethoate that are used widely as pesticides in agricultural. The inhibitory concentration (IC50) value was found to be 2.5 ppb for monocrotophos and 1.5 ppb for dimethoate inhibiting immobilized AChE. This was verified using cyclic voltammetry, an electrochemical analysis thus proving that the SBA-15@AChE complex could be used as a sensitive and highly stable sensor for detecting the concentration of hazardous pesticide compounds.  相似文献   

6.
有机磷和氨基甲酸酯类杀虫剂抑制乙酰胆碱酯酶(AChE)的天然生物活性。近年来,AChE作为生物识别元素的生物传感器在杀虫剂残留量检测领域受到了广泛的关注。简要分析了AChE结构与功能关系,综述了近年来通过定点突变法设计AChE以增加对各种杀虫剂的检测灵敏度及其在生物传感器领域的应用现状,指出多种灵敏的AChE突变体同时被应用于多样品及多分析物的平行检测体系是该领域进一步的发展方向。  相似文献   

7.
Oligohaline copepods such as Eurytemora affinis are widespread in estuaries of northwestern Europe. These minute crustaceans are highly sensitive to contamination and thus serve as useful bioindicators for the monitoring of pollutant effects. The use of decreased cholinesterase (ChE) activity as a sublethal biomarker of exposure to neurotoxic compounds supposes that ChE has been defined in copepods. This study reports the partial purification and characterization of ChE extracted from E. affinis. Analysis by non-denaturing PAGE and by isoelectric focusing indicated that the enzyme is probably a single dimeric form of 140 KDa, with a pI of 6.2. This enzyme is likely an acetylcholinesterase (AChE) since it hydrolyzes acetylthiocholine iodide at a higher rate than other substrates, such as butyrylthiocholine and propionylthiocholine, at pH 7.0 and 25 degrees C, and is inhibited by eserine but not by iso-OMPA. The enzyme exhibited high sensitivity to some of the various pollutants tested. The kinetic properties of this ChE were compared with those of other invertebrate ChEs.  相似文献   

8.
Acetylcholinesterase (AChE, EC3.1.1.7.) is the molecular target for the carbamate and organophosphate pesticides that are used to combat parasitic arthropods. In this paper we report the functional heterologous expression of AChE from Lucilia cuprina (the sheep blowfly) in HEK293 cells. We show that the expressed enzyme is cell-surface-exposed and possesses a glycosyl-phosphatidylinositol membrane anchor. The substrates acetyl-, propionyl- and butyrylthiocholine (AcTC, PropTC, ButTC), and also 11 further thiocholine and homo-thiocholine derivatives were chemically synthesized to evaluate and compare their substrate properties in L. cuprina AChE and recombinant human AChE. The Michaelis-Menten constants KM for AcTC, PropTC and ButTC were found to be 3-7-fold lower for the L. cuprina AChE than for the human AChE. Additionally, 2-methoxyacetyl-thiocholine and isobutyryl-thiocholine were better substrates for the insect enzyme than for the human AChE. The AcTC, PropTC and ButTC specificities and the Michaelis-Menten constants for recombinant L. cuprina AChE were similar to those determined for AChE extracted from L. cuprina heads, which are a particularly rich source of this enzyme. The median inhibition concentrations (IC50 values) were determined for 21 organophosphates, 23 carbamates and also 9 known non-covalent AChE inhibitors. Interestingly, 11 compounds were 100- to >4000-fold more active on the insect enzyme than on the human enzyme. The substrate and inhibitor selectivity data collectively indicate that there are structural differences between L. cuprina and human AChE in or near the active sites, suggesting that it may be possible to identify novel, specific L. cuprina AChE inhibitors. To this end, a high throughput screen with 107,893 compounds was performed on the L. cuprina head AChE. This led to the identification of 195 non-carbamate, non-organophosphate inhibitors with IC50 values below 10 ??M. Analysis of the most potent hit compounds identified 19 previously unknown inhibitors with IC50 values below 200 nM, which were up to 335-fold more potent on the L. cuprina enzyme than on the human AChE. Some of these compounds may serve as leads for lead optimization programs to generate fly-specific pesticides.  相似文献   

9.
Marine copepods such as Tigriopus brevicornis are widespread along the Atlantic coast of Europe. These minute crustaceans are highly sensitive to contamination and thus serve as useful bioindicators for the monitoring of pollutant effects. The use of decreased cholinesterase (ChE) activity as a subletal biomarker of exposure to neurotoxic supposes that ChE has been defined in copepods. This study reports the partial purification, separation and characterization of ChE extracted from T. brevicornis. This enzyme is apparently an acetylcholinesterase (AChE) since it hydrolyzed acetylthiocholine iodide at a higher rate than other substrates and was inhibited by eserine but not by iso-OMPA. Electrophoretic studies showed that there is probably a single dimeric form defined by its apparent molecular weight (200 kDa) and sensitivity to inhibitors. The kinetic properties of this ChE were compared with those of other invertebrate ChE.  相似文献   

10.
Du D  Tao Y  Zhang W  Liu D  Li H 《Biosensors & bioelectronics》2011,26(10):4231-4235
Acetylcholinesterase (AChE) activity is a well established biomarker for biomonitoring of exposures to organophosphates (OPs) pesticides and chemical nerve agents. In this work, we described a novel electrochemical oxidative desorption-process of thiocholine, the product of enzymatic reaction, for rapid and highly sensitive determination of AChE activity in human serum. This principle is based on self-assembling of produced thiocholine onto core-shell Fe(3)O(4)/Au nanoparticles (Fe(3)O(4)/AuNPs) magnetic nanocomposites and its oxidation at electrode surface. Fe(3)O(4) magnetic core is not only used for magnetic separation from sample solutions, but also carrying more AuNPs due to its large surface-to-volume ratio. The core-shell Fe(3)O(4)/AuNPs nanocomposites were characterized by UV-Vis spectroscopy, field-emission scanning electron microscopy (FE-SEM) and electrochemical measurements. A linear relationship was obtained between the AChE activity and its concentration from 0.05 to 5.0 mU mL(-1) with a detection limit of 0.02 mU mL(-1). The method showed good results for characterization of AChE spiked human serum and detection of OP exposures from 0.05 to 20 nM, with detection limit of 0.02 nM. This new oxidative desorption assay thus provides a sensitive and quantitative tool for biomonitoring of the exposure to OP pesticides and nerve agents.  相似文献   

11.
Acetylcholinesterase (AChE) activity is a well‐known biomarker for exposure to organophosphate or carbamate compounds in aquatic organisms. However, the effect of dibutyl phthalate (DBP) and di‐ethylhexyl phthalate (DEHP), widely used as a plasticizer, on the change of AChE activity is not yet known. Bagrid catfish Pseudobagrus fulvidraco were administrated with 100, 500 and 1000 mg kg?1 diet of DBP or DEHP and the effects on AChE activity were assessed in the liver, gill, kidney, heart, brain, muscle and eye of the exposed fish. All tissues contained different background AChE activity in non‐treated bagrid catfish: the highest was observed in the brain, followed by muscle, heart, and kidney. The enzyme activities in various tissues were significantly inhibited after exposure to DBP or DEHP in a concentration‐dependent manner, especially in brain and muscle. A similar, but less pronounced, inhibition was also observed in liver and kidney when exposed to DBP and DEHP. Although AChE activity in gill and heart was also affected by DBP and DEHP, the decrease in these organs was least marked in these organs. Exposure to 1000 mg kg?1 led to mortalities of 8.0% with DBH and 14% with DEHP; both seemed to be ascribable to phthalate toxicity. This study is the first report that the measurement of AChE activity in bagrid catfish is a valuable biomarker of DBP and DEHP exposure. This biomarker could be incorporated into a battery of biomarkers to strengthen the confidence with which ecotoxicologists can assess the impact of phthalate ester pollution in the aquatic environment.  相似文献   

12.
We report an analytical method using a thin film electro-acoustic resonator for the detection of organophosphorus pesticides. The acetylcholinesterase (AChE) enzyme was immobilized on the surface of the resonator. In the presence of organophosphorus compounds, the degree of inhibitory effect of organophosphorus compounds on the AChE activity and the concentration of pesticides were detected in real time by measuring the frequency shift of the resonator. The proposed device has a remarkably low detection limit of 1.8×10(-11)M and obvious advantages such as small size, simple operation, and integrated circuit compatibility, providing a promising tool for pesticide analysis.  相似文献   

13.
The enzyme acetylcholinesterase (AChE) terminates synaptic transmission at cholinergic synapses by hydrolyzing the neurotransmitter acetylcholine, but can also exert 'non-classical', morpho-regulatory effects on developing neurons such as stimulation of neurite outgrowth. Here, we investigated the role of AChE binding to laminin-1 on the regulation of neurite outgrowth by using cell culture, immunocytochemistry, and molecular biological approaches. To explore the role of AChE, we examined fiber growth of cells overexpressing different forms of AChE, and/or during their growth on laminin-1. A significant increase of neuritic growth as compared with controls was observed for neurons over-expressing AChE. Accordingly, addition of globular AChE to the medium increased total length of neurites. Co-transfection with PRIMA, a membrane anchor of AChE, led to an increase in fiber length similar to AChE overexpressing cells. Transfection with an AChE mutant that leads to the retention of AChE within cells had no stimulatory effect on neurite length. Noticeably, the longest neurites were produced by neurons overexpressing AChE and growing on laminin-1, suggesting that the AChE/laminin interaction is involved in regulating neurite outgrowth. Our findings demonstrate that binding of AChE to laminin-1 alters AChE activity and leads to increased neurite growth in culture. A possible mechanism of the AChE effect on neurite outgrowth is proposed due to the interaction of AChE with laminin-1.  相似文献   

14.
Acetylcholinesterase is a key enzyme of the animal nerve system. The enzyme is the primary target of organophosphorous (OP) and carbamate (CB) insecticides. The insect AChE is being extensively used in development of new insecticides or in vitro selection of the new designed insecticides, and in pharmacological and toxicological field. Rapid assays using AChE-based methods have been proposed as an efficient and rapid method for the detection of pesticides, especially in many Asian markets. In this study, the acetylcholinesterase gene was cloned from housefly (Musca domestica) susceptible to organophosphate (OP) and carbamate (CB) insecticides, and expressed in baculovirus-insect cells system using a bioreactor with oxygen supplementation. The recombinant housefly AChE was purified using ammonium sulfate precipitation and procainamide affinity chromatography, and approximately 0.42 mg of the purified AChE with high biological activity (118.9 U/mg) was obtained from 100 ml of culture solution. The purified AChE was highly sensitive to OP and CBs insecticides. In conclusion, an efficient expression and purification system has been developed for large-scale production of recombinant housefly AChE. The recombinant enzyme is potential to be used for the detection of pesticide residues.  相似文献   

15.
The legal and illegal use of organophosphorus and carbamate pesticides represents one of many threats to birds. The activity of the cholinesterase enzyme in plasma is used as a non‐destructive biomarker to diagnose the exposure of birds to these pesticides. Scavengers are one of the most important bird groups threatened by the use of baits poisoned with anticholinesterase pesticides. Knowledge of the characteristics of this enzyme in each bird species is crucial, as several studies indicate that more than one cholinesterase form may be present in the plasma of birds. In this study, cholinesterase activity was characterized in the plasma of the Eurasian Griffon Vulture Gyps fulvus by using several substrates and inhibitors of the enzyme, and its normal activity value was also determined. The in vitro sensitivity of Gyps fulvus plasma cholinesterase to carbamate insecticides (aldicarb, carbaryl and methomyl) was also investigated. The results indicated that propionylthiocholine iodide was the preferred substrate to determine plasma cholinesterase activity, followed by acetylcholine iodide and S‐butyrylcholine iodide, and acetylcholinesterase was the predominant enzymatic activity in Gyps fulvus plasma. Aldicarb was the most potent in vitro inhibitor of plasma cholinesterase activity in this species. However, cholinesterase enzymatic activity was significantly inhibited by all tested carbamates, providing further evidence that this biomarker is a suitable tool to monitor the exposure to these poisons in the field, highlighting its utility in conservation programmes.  相似文献   

16.
An acetylcholinesterase (AChE) based amperometric bioelectrode for a selective detection of low concentrations of organophosphorus pesticides has been developed. The amperometric needle type bioelectrode consists of a bare cavity in a PTFE isolated Pt-Ir wire, where the AChE was entrapped into a photopolymerised polymer of polyvinyl alcohol bearing styrylpyridinium groups (PVA-SbQ). Cyclic voltammetry, performed at Pt and AChE/Pt disk electrodes, confirmed the irreversible, monoelectronic thiocholine oxidation process and showed that a working potential of +0.410 V vs. Ag/AgCl, KCl(sat) was suitable for a selective and sensitive amperometric detection of thiocholine. The acetylthiocholine detection under enzyme kinetic control was found in the range of 0.01-0.3 U cm(-2) of immobilised AChE. The detection limit, calculated for an inhibition ratio of 10%, was found to reach 5 microM for dipterex and 0.4 microM for paraoxon. A kinetic analysis of the AChE-pesticide interaction process using Hanes-Woolf or Lineweaver-Burk linearisations and secondary plots allowed identification of the immobilised enzyme inhibition process as a mixed one (non/uncompetitive) for both dipterex and paraoxon. The deviation from classical Michaelis Menten kinetics induced from the studied pesticides was evaluated using Hill plots.  相似文献   

17.
Firefly luciferase (EC 1.13.12.5) (FL) is the key enzyme in the firefly bioluminescence method (FB), which is widely used to determine the viability of living cells. The FB method can also be applied to monitoring the influence of different pollutants, such as pesticides. Firefly luciferase is a hydrophobic enzyme and its activity depends on the type of solvent, pH and substances present in the reaction mixture. The influence of three aromatic pesticides, including fenoxaprop-p-ethyl (I), diclofop-methyl (II) and metsulfuron methyl (III), on the enzyme activity was indirectly evaluated through the measurement of emitted light in the bioluminescence reaction, expressed in relative luminescence units (RLU). The reaction mixture used in the bioluminescence measurements consisted of: Tris buffer (pH 7.75), adenosine triphosphate (ATP) and ATP monitoring reagent, where FL is present. Ethanol-water solutions of each pesticide were then added at concentrations of 2.4 x 10(-4)-2.4 x 10(-8) mol/L. The FL activity inhibition factors (FL In%) were determined. The FL activity was maximally inhibited in the presence of all pesticides under study at a concentration of 2.4 x 10(-4) mol/L and was lowered by about 15-26% for pesticide I at concentrations of 2.4 x 10(-5)-2.4 x 10(-8) mol/L, whereas pesticides II and III, applied in the same concentration range, showed smaller FL inhibition values (5.3-20%). The pesticide degradation products (obtained after a 1 month period), measured in the same experimental conditions, in most cases exhibited a much less inhibitory effect on the enzyme activity than the corresponding initial pesticide.  相似文献   

18.
An acetylcholinesterase (AChE) based amperometric bioelectrode for a selective detection of low concentrations of organophosphorus pesticides has been developed. The amperometric needle type bioelectrode consists of a bare cavity in a PTFE isolated Pt-Ir wire, where the AChE was entrapped into a photopolymerised polymer of polyvinyl alcohol bearing styrylpyridinium groups (PVA-SbQ). Cyclic voltammetry, performed at Pt and AChE/Pt disk electrodes, confirmed the irreversible, monoelectronic thiocholine oxidation process and showed that a working potential of +0.410 V vs. Ag/AgCl, KCl sat was suitable for a selective and sensitive amperometric detection of thiocholine. The acetylthiocholine detection under enzyme kinetic control was found in the range of 0.01-0.3 U cm ?2 of immobilised AChE. The detection limit, calculated for an inhibition ratio of 10%, was found to reach 5 μM for dipterex and 0.4 μM for paraoxon. A kinetic analysis of the AChE-pesticide interaction process using Hanes-Woolf or Lineweaver-Burk linearisations and secondary plots allowed identification of the immobilised enzyme inhibition process as a mixed one (non/uncompetitive) for both dipterex and paraoxon. The deviation from classical Michaelis Menten kinetics induced from the studied pesticides was evaluated using Hill plots.  相似文献   

19.
Five biomarkers, catalase (CAT) activity, glutathione-S-transferase (GST) activity, the neural transmitter enzyme acetylcholinesterase (AChE), reduced glutathione (GSH) and malondialdehyde (MDA) levels were measured in specimens of Fulvia fragilis collected from Bizerta lagoon (Tunisia). Results demonstrated that F. fragilis showed differential biomarker response according to the importance of the anthropogenic pressure and the nature of pollutants that affect the lagoon. A clear organotropism was also observed with a higher biomarker response in digestive gland than in gills of this bivalve. These results indicate that F. fragilis constitutes a useful tool as sentinel organism for biomonitoring of aquatic pollution.  相似文献   

20.
The mouse acetylcholinesterase AChE(H) was expressed in the yeast Kluyveromyces lactis. The AChE(H) activity was detectable in intact cells whereas it was absent in the culture media. Glucanase treatment and immunoelectron microscopy data indicated that AChE(H) is anchored to plasma membrane and that the mouse GPI-signaling is compatible with the K. lactis targeting machinery. The AChE(H) was also expressed in a K. lactis strain carrying an inactivated allele of KlPMR1, the gene coding for a P-type Ca(2+)-ATPase of the Golgi apparatus. This mutant displays changes in protein glycosylation and cell wall structure. The AChE(H) activity detected in Klpmr1Delta cells was more than twofold higher than that observed in wild-type cells. The combination of AChE expression and anchoring with the characteristics of Klpmr1Delta strain of K. lactis resulted in yeast cells displaying high AChE activity. This could be regarded as a novel sensing unit to be employed for detecting AChE inhibitors as pesticides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号