首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study compares the seminal plasma trace metal levels of hospital workers with groups of industrial workers in a petroleum refinery, smelter, and chemical plant. The metals measured were the essential metals (copper, zinc, nickel, cobalt, and manganese) and the toxic metals (lead, cadmium, and aluminum). The group mean±SE metal level for each group (50 subjects per group) was calculated, and the statistical significance of the group mean differences of the industrial groups with the hospital group (control) was determined by the Student’s t-test. The differences observed in the smelter group were increased copper and zinc (p≤0.001) and decreased nickel, cobalt, and manganese (p≤0.001,≤0.01). The refinery group differences were increased copper, zinc, and nickel (p≤0.001) but decreased cobalt and manganese (p≤0.001). The chemical group differences were increased zinc (p≤0.001) and decreased cobalt (p≤0.001). The seminal plasma levels of the toxic metals lead and aluminum were increased in each of the industrial groups (p≤0.001). Concurrent differences were (1) decreased accumulation of nickel, cobalt, and manganese in the smelter group, (2) decreased cobalt and managanese in the refinery group, and (3) only decreased cobalt in the chemical group.  相似文献   

2.
The concentration of trace elements in L-cells has been studied as a function of the trace metal content of the growth medium. Cells were cultured in synthetic media which contained varying trace amounts of the elements manganese, iron, cobalt, copper, zinc and molybdenum. The cellular concentration of the elements potassium, iron, copper and zinc were then determined. It was found that the cell accumulates trace metals at a different rate than they are made available. Deficiencies in zinc could be “induced” in the cell by increasing the concentration of iron, manganese and cobalt; cellular iron deficiencies were observed at larger medium concentrations of zinc, manganese, copper and cobalt. Trace metal uptake by the cell was seen to parallel the utilization by multicellular organisms.  相似文献   

3.
Acid mine drainage (AMD), an acidic metal-bearingwastewater, poses a severe pollution problem attributedto post mining activities. The metals usuallyencountered in AMD and considered of concern for riskassessment are arsenic, cadmium, iron, lead, manganese,zinc, copper and sulfate. The pollution generated byabandoned mining activities in the area of Butte, Montanahas resulted in the designation of the Silver Bow Creek–ButteArea as the largest Superfund (National Priorities List) sitein the U.S. This paper reports the results of bench-scalestudies conducted to develop a resource recovery basedremediation process for the clean up of the Berkeley Pit.The process utilizes selective, sequential precipitation (SSP)of metals as hydroxides and sulfides, such as copper, zinc,aluminum, iron and manganese, from the Berkeley Pit AMDfor their removal from the water in a form suitable foradditional processing into marketable precipitates and pigments.The metal biorecovery and recycle process is based on completeseparation of the biological sulfate reduction step and themetal precipitation step. Hydrogen sulfide produced in the SRBbioreactor systems is used in the precipitation step to forminsoluble metal sulfides. The average metal recoveries usingthe SSP process were as follows: aluminum (as hydroxide) 99.8%,cadmium (as sulfide) 99.7%, cobalt (as sulfide) 99.1% copper(as sulfide) 99.8%, ferrous iron (sulfide) 97.1%, manganese(as sulfide) 87.4%, nickel (as sulfide) 47.8%, and zinc (as sulfide)100%. The average precipitate purity for metals, copper sulfide,ferric hydroxide, zinc sulfide, aluminum hydroxide and manganesesulfide were: 92.4, 81.5, 97.8, 95.6 , 92.1 and 75.0%, respectively.The final produced water contained only calcium and magnesiumand both sulfate and sulfide concentrations were below usablewater limits. Water quality of this agriculturally usable watermet the EPA's gold standard criterion.  相似文献   

4.
Summary Thiobacillus thiooxidans is capable of oxidizing sulfur in digested sludge, while decreasing the pH value from about 5.5 to, say, 1.0 to 1.5. Insoluble metal sulfides can be solubilized through this acidification. Thiobacillus ferrooxidans oxidises pyritic ore in the presence of 6% centrifuged sludge if the pH value is adjusted to about 2.5. When mixing T. thiooxidans and T. ferrooxidans with sludge and 1% sulfur, the former acidifies the sludge and the latter oxidizes metal sulfides; together they solubilize more metal than T. thiooxidans alone. The following metals solubilized from their sulfides have been investigated so far: iron, copper, zinc, nickel, and cadmium. The possibility of recycling metals from sewage sludge with this method is discussed.  相似文献   

5.
Transition metal homeostasis: from yeast to human disease   总被引:1,自引:0,他引:1  
Transition metal ions are essential nutrients to all forms of life. Iron, copper, zinc, manganese, cobalt and nickel all have unique chemical and physical properties that make them attractive molecules for use in biological systems. Many of these same properties that allow these metals to provide essential biochemical activities and structural motifs to a multitude of proteins including enzymes and other cellular constituents also lead to a potential for cytotoxicity. Organisms have been required to evolve a number of systems for the efficient uptake, intracellular transport, protein loading and storage of metal ions to ensure that the needs of the cells can be met while minimizing the associated toxic effects. Disruptions in the cellular systems for handling transition metals are observed as a number of diseases ranging from hemochromatosis and anemias to neurodegenerative disorders including Alzheimer??s and Parkinson??s disease. The yeast Saccharomyces cerevisiae has proved useful as a model organism for the investigation of these processes and many of the genes and biological systems that function in yeast metal homeostasis are conserved throughout eukaryotes to humans. This review focuses on the biological roles of iron, copper, zinc, manganese, nickel and cobalt, the homeostatic mechanisms that function in S. cerevisiae and the human diseases in which these metals have been implicated.  相似文献   

6.
Summary The uptake of trace metals by two plant species (French bean and maize) has been measured on two soils subjected to various waterlogging regimes. Uptake of both manganese and iron was increased due to soil waterlogging, although reoxidation of the soil affected iron more than manganese. Zinc and copper uptake was influenced by a species factor; French bean (Phaseolus vulgaris) showed preferential uptake of zinc, whereas maize (Zea mays) took up copper preferentially. Uptake of cobalt by both species was increased due to waterlogging, following the pattern of manganese.The abilities of these species to take up trace metals from soil followed the pattern predicted by selective extraction of soil for manganese, iron and cobalt, but not for zinc and copper.  相似文献   

7.
The northern end of Lake George, Uganda, and its associated wetlands receive localized metal pollution from a former copper mine and tailings left after metal extraction. The aim of this study was to determine (i) whether the heavy metals are a threat to the biology of the major commercial fish species and (ii) whether consumption of the fish threatens human health. Concentrations of copper, zinc, cobalt and nickel in detrital sediments, plankton, and five fish species from sites in Lake George, the Kazinga Channel and Lake Edward (which are inter-connected) were determined using atomic absorption spectroscopy. The detrital sediments of Hamukungu Bay, Lake George, had average concentrations (g/g dry weight) of 96.3 zinc, 270.4 copper, 57.4 cobalt and 42.8 nickel. There were no significant differences between the Hamukungu Bay and the North Lake George site of Bushatu: both receive inflows from the mining activities. Concentrations of copper and zinc were significantly higher than background values from unpolluted freshwater ecosystems. Plankton samples showed a metal concentration gradient consistent with a gradient from the source of pollution in northern Lake George, along the Kazinga Channel to Lake Edward. The liver tissues of fish had markedly higher concentrations of copper and zinc than flesh. Concentrations of cobalt and nickel were relatively low. The highest mean concentrations of metals in liver tissue occurred in Oreochromis leucostictus (189.0 g/g Cu) and Bagrus docmac (187.5 g/g Zn) whilst the lowest occurred in Oreochromis niloticus (15.3 g/g and 78.2 g/g dry weight copper and zinc, respectively). However, O. niloticus contained the highest concentrations of cobalt (11.2 g/g) and nickel (3.8 g/g). Liver Somatic Indices (LSI) of the fish species from the different sites indicated a reduction of LSI in those fish from the most contaminated zones of northern Lake George compared with all other sites. This suggests there could be anatomical and physiological abnormalities linked to the heavy metal pollution. The flesh had only low concentrations of metals; well within international guidelines for consumption. A person would have to consume 9 kg of fresh flesh of Clarias sp. and 65 kg of O. leucostictus daily to exceed the WHO recommended intake for copper, and even more for other metals. This implies that currently metal pollution in Lake George presents an ecological rather than a human health concern.  相似文献   

8.
Cations, including calcium, magnesium, potassium, sodium, copper, iron, nickel and zinc, inhibited (up to 40%) extracellular binding and intracellular uptake of cadmium by Lemna polyrhiza in solution culture. Test plants showed a high capacity of extracellular cadmium binding which was competitively inhibited by copper, nickel and zinc; however, calcium, magnesium and potassium caused non-competitive inhibition. Iron and sodium increased K m and decreased V max, thereby causing mixed inhibition of extracellular binding. Intracellular cadmium uptake displayed Michaelis-Menten kinetics. It was competitively inhibited by calcium, magnesium, iron, nickel and zinc. Monovalent cations (sodium and potassium) caused non-competitive and copper caused mixed inhibition of intracellular cadmium uptake. Thus, high levels of cations and metals in the external environment should be expected to lower the cadmium accumulation efficiency of L. polyrhiza.  相似文献   

9.
Atomic absorption studies indicate that the DNA-dependent RNA polymerase II from wheat germ contains about 7 tightly bound zinc atoms per enzyme molecule. This value has been repeatedly obtained with a number of enzyme preparations subjected to varying conditions of purification and dialysis. However, prolonged dialysis of the enzyme with the metal chelator o-phenanthroline results in the loss of enzyme activity and extraction of the bound zinc. Other metals including copper, cobalt, manganese, magnesium, chromium, nickel and iron were not present in significant amounts.  相似文献   

10.
Selective enrichments enabled the recovery of moderately thermophilic isolates with copper bioleaching ability from a spent copper sulfide heap. Phylogenetic and physiological characterization revealed that the isolates were closely related to Sulfobacillus thermosulfidooxidans, Acidithiobacillus caldus and Acidimicrobium ferrooxidans. While isolates exhibited similar physiological characteristics to their corresponding type strains, in general they displayed similar or greater tolerance of high copper, zinc, nickel and cobalt concentrations. Considerable variation was found between species and between several strains related to S. thermosulfidooxidans. It is concluded that adaptation to metals present in the bioleaching heap from which they were isolated contributed to but did not entirely explain high metals tolerances. Higher metals tolerance did not confer stronger bioleaching performance, suggesting that a physical, mineralogical or chemical process is rate limiting for a specific ore or concentrate.  相似文献   

11.
Summary Heavy metals including mercury, cadmium, cobalt, and copper (100 μM) exerted an adverse effect on the viability of isolated rat adrenal capsular (zona glomerulosa), adrenal decapsular (fasciculata and reticularis), and Leydig cells of the testis with mercury being the most potent. Due to the decreased cell viability there was a parallel reduction in corticotropin-stimulated, corticosterone production by adrenal decapsular cells and luteinizing hormone-stimulated testosterone production by Leydig cells. The results indicated a direct toxic action of these heavy metals on steroid-producing cell in the adrenal gland and the tectis. Other metals tested, including lead, zinc, aluminum, chromium, iron, nickel, and lithium, did not exert any deleterious effect on cell viability or hormone-induced steroidogenesis, in adrenal and Leydig cells when tested up to a concentration of 100 μM.  相似文献   

12.
A biogeochemical study of a polluted wetland site in Kitwe, Zambia shows high concentration of trace metals (e.g., > 25 and ≈ 2 fold higher than the Eco-toxic threshold values of copper and cobalt, respectively) with many sequestered with the sediment organic phase. Depth profiles in surface sediments suggest trace metal cycling between porewater and solid phases, including that of cobalt. This study documents a bacterium displaying resistance to, and accumulation of cobalt, and that cobalt has a positive effect on growth. The isolate was enriched from the microbial community and identified using 16S rRNA gene sequence analysis as a strain of Comamonas testosteroni (designated C. testosteroni TDKW). Improved growth of C. testosteroni TDKW was seen with the addition of up to 200 μM cobalt (optimal growth ca. 100 μM), while concentrations above 4 mM completely inhibited growth. C. testosteroni TDKW also exhibited resistance to high concentrations of iron and manganese, but showed limited resistance to copper or nickel. Further analysis revealed cellular cobalt accumulation and the presence of heavy-metal resistance genes, tentatively suggesting that this organism could contribute to in situ biological cycling of cobalt in mineral contaminated aquatic systems.  相似文献   

13.
Understanding relationships between cationic metals such as cadmium, copper, nickel, lead and zinc, and amorphous iron sulfides, measured as acid volatile sulfide (AVS), is key to predicting metal bioavailability and toxicity insediments. The objective of the present study was to assess seasonal and spatial variations of AVS in freshwater sediments contaminated with zinc. Sediments were sampled from three streams with varying levels of zinc contamination at two different times, March and June of 1995, representing cold- and warm-weather situations. Interstitial (pore) water concentrations of zinc, and solid phase concentrations of AVS and zinc were measured in surficial and deep sediment horizons. Toxicity tests (10-d) with the amphipodHyalella azteca were conducted using intact cores. Sediment zinc concentrations from six sites within the primary test stream differed by about five-fold, and also varied seasonally. Acid volatile sulfide concentrations were generally lower than those of zinc, and pore water zinc concentrations typically were elevated. There was a positive correlation between solid-phase AVS and zinc concentrations, suggesting that the system was dominated by zinc, as opposed to iron sulfides. In contrast to expectations arising from some studies of seasonal variations of AVS in iron-dominated systems, AVS concentrations were smaller in June than in March. However, this was likely due to a major storm event and associated sediment scouring before the June sampling, rather than to seasonal processes related to variations in temperature and dissolved oxygen. Based upon an indirect analysis of depth variations in AVS, there was some indication that zinc sulfide might be less prone to oxidation than iron sulfide. There was a strong correlation between toxicity of the sediment samples toH. azteca and interstitial water concentrations of zinc; however, the possible contribution of other contaminants to sediment toxicity cannot be dismissed.  相似文献   

14.
Many reports have documented wetlands removing a wide variety of contaminants in mine drainage, including aluminum, arsenic, cadmium, cobalt, copper, cyanide, iron, lead, manganese, nickel, selenium, uranium, and zinc. This article reviews biogeochemical processes responsible for their ability to transform and retain metals into insoluble forms. Shallow depth and large inputs of organic matter are key characteristics of wetlands that promote chemical and biological processes effecting metal removal. Aquatic macrophytes play an essential role in creating and maintaining this environment, but their uptake of metals usually accounts for a minor proportion of the total mass removed. Sorption onto organic matter is important in metal removal, particularly for copper, nickel, and uranium. Aluminum, iron, and manganese are often removed by hydrolysis, with the resulting acidification of water buffered by alkalinity produced in wetland sediments by anaerobic bacteria. Bacterial sulfate reduction accounts for much of this alkalinity. It can also contribute significantly to metal removal by formation of insoluble sulfides. Other important processes include the formation of insoluble carbonates, reduction to nonmobile forms, and adsorption onto iron oxides and hydroxides. Examples from field studies are presented throughout the review to illustrate these processes.  相似文献   

15.
Levels of nine heavy metals were measured in the livers and salt glands of greater scaup (Aythya marila), black duck (Anas rubripes) and mallard (A. platyrhynchos) from Raritan Bay, New Jersey to determine if the functioning avian salt gland concentrates heavy metals. Heavy metals examined were cadmium, cobalt, chromium, copper, lead, mercury, manganese, nickel and zinc. Heavy metal levels varied significantly by species and tissue for chromium, copper, lead, and manganese, and by tissue for cobalt, mercury, nickel and zinc. In comparing tissues cobalt was higher in the salt glands than in livers of all three species; chromium and nickel were higher in the salt gland than liver for mallard and black duck; and lead, manganese and zinc were higher in the liver than the salt gland in greater scaup. Generally metal levels were higher in the salt gland for mallard and black duck, and in the liver for greater scaup.  相似文献   

16.
The heavy metal accumulation in epiphytic lichens along the Sarp-Samsun Highway in Black Sea Region of Turkey was analyzed by using energy dispersive X-ray fluorescence (EDXRF) and flame atomic absorption spectroscopy (FAAS) methods. The analysis showed that the lichen samples contained elevated concentrations of the following metals: titanium, chromium, manganese, iron, cobalt, nickel, copper, zinc, tin, barium, and lead. A strong positive correlation was observed between the lead concentration of the lichens and the traffic density.  相似文献   

17.
The induction of sister chromatid exchanges (SCE) by chloride and nitrate salts of nickel, cobalt, cadmium and zinc were studied in meristematic root cells of Vicia faba. Salts of nickel, cobalt and cadmium significantly increased the frequency of SCE, whereas chloride and nitrate salts of zinc did not increase the frequency of SCE significantly above the spontaneous level. The reported data demonstrate that the induction of SCE in Vicia faba may represent a valuable bioindicator for detecting the cytogenetic damage of heavy metals.  相似文献   

18.
Changes in essential trace elements and heavy metals may affect the atherosclerotic state of patients on maintenance hemodialysis (HD). The aim of the study was to evaluate the relation between the serum levels of some trace elements and heavy metals (iron, zinc, manganese, copper, magnesium, cobalt, cadmium, lead, and copper/zinc ratio) and carotid artery intima-media thickness (CIMT) in HD patients. Fifty chronic HD patients without known atherosclerotic disease and 48 age- and sex-matched healthy individuals were included in the study. The serum levels of trace elements (iron, zinc, manganese, copper, and magnesium) and heavy metals (cobalt, cadmium, and lead) were measured by Atomic Adsorption Spectrophotometer (UNICAM-929). CIMT was assessed by carotid artery ultrasonography. The serum levels of iron, zinc, and manganese were lower; levels of copper, magnesium, cobalt, cadmium, lead, and copper/zinc ratio were higher in HD patients compared to controls. CIMT in HD patients were higher than the control group (0.64?±?0.11 vs 0.42?±?0.05, p?相似文献   

19.
Four novel cobalt(II), copper(II), nickel(II) and zinc(II) complexes of the fluoroquinolone antibiotic ciprofloxacin have been prepared. The compounds were characterized by IR, UV-Visible, molar conductivity and elemental analyses. In all of the complexes, the drug ligand, ciprofloxacin (CFL) was coordinated through two carbonyl oxygen atoms. Octahedral and square-planar geometries have been proposed for the cobalt(II), nickel(II) and zinc(II), and copper(II) complexes, respectively. In vitro tests of susceptibility to these metal complexes showed stronger activity than that of ciprofloxacin against Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae and Bacillus dysenteriae.  相似文献   

20.
The in vitro and in vivo effects of copper, zinc, cadmium, nickel, cobalt, and manganese on nitrate reductase, malate dehydro-genase, isocitrate dehydrogenase, and glucose-6-phosphate dehydrogenase of zinc-, copper- and non-resistant populations of Silene cucubalus were investigated. During the in vitro experiments no resistant enzyme could be detected; enzymes of resistant and non-resistant ecotypes had a similar sensibility to all the metals. Nitrate reductase was the most sensitive enzyme. During the in vivo experiments remarkable differences were found. The nitrate reductase and the isocitrate dehydrogenase of the zinc-resistant population were activated when adding zinc to the culture medium, especially the nitrate reductase showed high activities at zinc concentrations where the nitrate reductase of the non-zinc-resistant populations was nearly completely inhibited. The zinc-resistant ecotype had a real need for zinc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号