首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. The breakdown of leaf litter in streams is influenced strongly by leaf quality and the concentration of dissolved nutrients, primarily inorganic nitrogen (N) and phosphorus (P) in the water. We examined the effect of nutrient enrichment on the breakdown of three species of leaves in a hardwater, nutrient‐rich stream. The rate of microbial respiration was also measured on the decomposing leaves. 2. The breakdown rates of dogwood (Cornus stolonifera), aspen (Populus tremuloides) and birch (Betula occidentalis), k‐values of 0.0461, 0.0307 and 0.0186 day–1, respectively, were unaffected by nutrient enrichment and generally faster than reported previously. Microbial respiration on the leaves was greater than reported previously for leaves of congeneric species. It appears that leaf breakdown in the study stream was not nutrient limited. 3. Nitrogen‐based measures of leaf quality, such as percentage N and carbon (C)/nitrogen ratio, did not correspond to measured breakdown rates among the three leaf types. The best predictors of relative breakdown rates were percentage lignin and the percentage of the total carbon that occurred as lignin. We suggest that, when leaf breakdown is not nutrient limited, measures of carbon quality (i.e. lignin‐based measures) are a better assessment of overall leaf quality than are N‐based measures. 4. Previous studies have indicated that the enzymes produced by aquatic hyphomycetes (microfungi) operate most efficiently at a basic pH and in the presence of calcium ions. The hardwater conditions (pH=8.6, total hardness > 300 mg CaCO3 L–1) and abundance of dissolved NO3 and soluble reactive phosphorous (SRP) (approximately 50 μg L–1, each) in the study stream appear to have provided conditions that resulted in a high respiration rate and rapid breakdown of leaf litter.  相似文献   

2.
1. Lowland tropical streams have a chemically diverse detrital resource base, where leaf quality could potentially alter the effect of high nutrient concentrations on leaf breakdown. This has important implications given the extent and magnitude of anthropogenic nutrient loading to the environment. 2. Here, we examine if leaf quality (as determined by concentrations of cellulose, lignin and tannins) mediates the effects of high ambient phosphorus (P) concentration on leaf breakdown in streams of lowland Costa Rica. We hypothesised that P would have a stronger effect on microbial and insect processing of high‐ than of low‐quality leaves. 3. We selected three species that represented extremes of quality as measured in leaves of eight common riparian species. Species selected were, from high‐ to low‐quality: Trema integerrima > Castilla elastica > Zygia longifolia. We incubated single‐species leaf packs in five streams that had natural differences in ambient P concentration (10–140 μg soluble reactive phosphorus (SRP) L?1), because of variable inputs of solute‐rich groundwater and also in a stream that was experimentally enriched with P (approximately 200 μg SRP L?1). 4. The breakdown rate of all three species varied among the six streams: T. integerrima (k‐values range: 0.0451–0.129 day?1); C. elastica (k‐values range: 0.0064–0.021 day?1); and Z. longifolia (k‐values range: 0.002–0.008 day?1). Both ambient P concentration and flow velocity had significant effects on the breakdown rate of the three species. 5. Results supported our initial hypothesis that litter quality mediates the effect of high ambient P concentration on leaf processing by microbes and insects. The response of microbial respiration, fungal biomass and invertebrate density to high ambient P concentration was greater in Trema (high quality) than in Castilla or Zygia (low quality). Variation in flow velocity, however, confounded our ability to determine the magnitude of stimulation of breakdown rate by P. 6. Cellulose and lignin appeared to be the most important factors in determining the magnitude of P‐stimulation. Surprisingly, leaf secondary compounds did not have an effect. This contradicts predictions made by other researchers, regarding the key role of plant secondary compounds in affecting leaf breakdown in tropical streams.  相似文献   

3.
1. We examined effects of nutrients on leaf breakdown in interior forest streams at La Selva Biological Station, Costa Rica. We tested the hypothesis that dissolved inorganic nitrogen (DIN) becomes limiting when ambient phosphorus (P) concentration is high. We also compared the breakdown of relatively ‘low quality’ leaves (lower C : N, Trema integerrima) with that of ‘higher quality’ leaves (higher C : N, Ficus insipida) in a high‐P stream. 2. Litterbags were incubated in two streams: one enriched experimentally with P [target concentration 200 μg soluble reactive phosphorus (SRP) L?1] and one control (naturally low P concentration approximately 10 μg SRP L?1). Ammonium enrichment was achieved by adding fertiliser upstream of half of the litterbags in each stream. 3. Phosphorus addition stimulated leaf breakdown, microbial respiration, ergosterol and leaf %P. Leaf breakdown rate was consistent with those in La Selva streams with naturally high P concentration. 4. Nitrogen (N) addition had no effect on leaf breakdown, microbial respiration, ergosterol or leaf chemistry in either the P‐enriched or the reference stream, in spite of low N : P ratios. We conclude that N is probably not limiting in streams at La Selva that are naturally high in P. This may be due to moderately high ambient N concentration (>200 μg DIN L?1) prevailing throughout the year. 5. The species with a lower C : N decomposed more rapidly and supported higher microbial activity than that with a higher C : N. Subtle differences in leaf N content, as well as dissolved P concentration, may be important in determining microbial colonisation and subsequent leaf breakdown.  相似文献   

4.
Rising temperatures and nutrient enrichment are co‐occurring global‐change drivers that stimulate microbial respiration of detrital carbon, but nutrient effects on the temperature dependence of respiration in aquatic ecosystems remain uncertain. We measured respiration rates associated with leaf litter, wood, and fine benthic organic matter (FBOM) across seasonal temperature gradients before (PRE) and after (ENR1, ENR2) experimental nutrient (nitrogen [N] and phosphorus [P]) additions to five forest streams. Nitrogen and phosphorus were added at different N:P ratios using increasing concentrations of N (~80–650 μg/L) and corresponding decreasing concentrations of P (~90–11 μg/L). We assessed the temperature dependence, and microbial (i.e., fungal) drivers of detrital mass‐specific respiration rates using the metabolic theory of ecology, before vs. after nutrient enrichment, and across N and P concentrations. Detrital mass‐specific respiration rates increased with temperature, exhibiting comparable activation energies (E, electronvolts [eV]) for all substrates (FBOM E = 0.43 [95% CI = 0.18–0.69] eV, leaf litter E = 0.30 [95% CI = 0.072–0.54] eV, wood E = 0.41 [95% CI = 0.18–0.64] eV) close to predicted MTE values. There was evidence that temperature‐driven increased respiration occurred via increased fungal biomass (wood) or increased fungal biomass‐specific respiration (leaf litter). Respiration rates increased under nutrient‐enriched conditions on leaves (1.32×) and wood (1.38×), but not FBOM. Respiration rates responded weakly to gradients in N or P concentrations, except for positive effects of P on wood respiration. The temperature dependence of respiration was comparable among years and across N or P concentration for all substrates. Responses of leaf litter and wood respiration to temperature and the combined effects of N and P were similar in magnitude. Our data suggest that the temperature dependence of stream microbial respiration is unchanged by nutrient enrichment, and that increased temperature and N + P availability have additive and comparable effects on microbial respiration rates.  相似文献   

5.
The processing of leaves in temperate streams has been the subject of numerous studies but equivalent tropical ecosystems have received little attention. We investigated leaf breakdown of a tropical tree species (Hura crepitans, Euphorbiaceae), in a tropical stream using leaf bags (0.5 mm mesh) over a period of 24 days. We followed the loss of mass and the changes in adenosine triphosphate (ATP) concentrations and respiration rates associated with the decomposing leaves. The breakdown rate was fast (k=?0.0672/d, kd=?0.0031/degree‐day), with 81 percent loss of the initial mass within 24 days. This high rate was probably related to the stable and high water temperature (22°C) favoring strong biological activity. Respiration rates increased until day 16 (1.1 mg O2/h/g AFDM), but maximum ATP concentrations were attained at day 9 (725 nmol ATP/g AFDM) when leaf mass remaining was 52 percent. To determine the relative importance of fungi and bacteria during leaf decomposition, ATP concentrations, and respiration rates were determined in samples treated with antibiotics, after incubation in the stream. The results of the samples treated with the antifungal or the bacterial antibiotic suggest a higher contribution of the fungal community for total microbial biomass and a higher contribution of the bacterial community for microbial respiration rates, especially during the later stages of leaf decomposition. However, these results should be analyzed with caution since both antibacterial and antifungal agents did not totally eliminate microbial activity and biomass.  相似文献   

6.
Interregional comparisons of sediment microbial respiration in streams   总被引:3,自引:0,他引:3  
  • 1 The rate of microbial respiration on fine‐grained stream sediments was measured at 371 first to fourth‐order streams in the Central Appalachian region (Maryland, Pennsylvania, Virginia, and West Virginia), Southern Rocky Mountains (Colorado), and California's Central Valley in 1994 and 1995.
  • 2 Study streams were randomly selected from the United States Environmental Protection Agency's (USEPA) River Reach File (RF3) using the sample design developed by USEPA's Environmental Monitoring and Assessment Program (EMAP).
  • 3 Respiration rate ranged from 0 to 0.621 g O2 g‐1 AFDM h‐1 in Central Appalachian streams, 0‐0.254 g O2 g‐1 AFDM h‐1 in Rocky Mountain streams, and 0‐0.436 g O2 g‐1 AFDM h‐1 in Central Valley streams.
  • 4 Respiration was significantly lower in Southern Rocky Mountain streams and in cold water streams (< 15 °C) of the Central Appalachians.
  • 5 Within a defined index period, respiration was not significantly different between years, and was significantly correlated with stream temperature and chemistry (DOC, total N, total P, K, Cl, and alkalinity).
  • 6 The uniformity of respiration estimates among the three study regions suggests that sediment microbial respiration may be collected at any number of scales above the site‐level for reliable prediction of respiration patterns at larger spatial scales.
  相似文献   

7.
1. While anthropogenic stream acidification is known to lower species diversity and impair decomposition, its effects on nutrient cycling remain unclear. The influence of acid‐stress on microbial physiology can have implications for carbon (C) and nitrogen (N) cycles, linking environmental conditions to ecosystem processes. 2. We collected leaf biofilms from streams spanning a gradient of pH (5.1–6.7), related to chronic acidification, to investigate the relationship between qCO2 (biomass‐specific respiration; mg CO2‐C g?1 fungal C h?1), a known indicator of stress, and biomass‐specific N uptake (μg NH4‐N mg?1 fungal biomass h?1) at two levels of N availability (25 and 100 μg NH4‐N L?1) in experimental microcosms. 3. Strong patterns of increasing qCO2 (i.e. increasing stress) and increasing microbial N uptake were observed with a decrease in ambient (i.e. chronic) stream pH at both levels of N availability. However, fungal biomass was lower on leaves from more acidic streams, resulting in lower overall respiration and N uptake when rates were standardized by leaf biomass. 4. Results suggest that chronic acidification decreases fungal metabolic efficiency because, under acid conditions, these organisms allocate more resources to maintenance and survival and increase their removal of N, possibly via increased exoenzyme production. At the same time, greater N availability enhanced N uptake without influencing CO2 production, implying increased growth efficiency. 5. At the ecosystem level, reductions in growth because of chronic acidification reduce microbial biomass and may impair decomposition and N uptake; however, in systems where N is initially scarce, increased N availability may alleviate these effects. Ecosystem response to chronic stressors may be better understood by a greater focus on microbial physiology, coupled elemental cycling, and responses across several scales of investigation.  相似文献   

8.
1. Although dissolved nutrients and the quality of particulate organic matter (POM) influence microbial processes in aquatic systems, these factors have rarely been considered simultaneously. We manipulated dissolved nutrient concentrations and POM type in three contiguous reaches (reference, nitrogen, nitrogen + phosphorus) of a low nutrient, third‐order stream at Hubbard Brook Experimental Forest (U.S.A). In each reach we placed species of leaves (mean C : N of 68 and C : P of 2284) and wood (mean C : N of 721 and C : P of 60 654) that differed in elemental composition. We measured the respiration and biomass of microbes associated with this POM before and after nutrient addition. 2. Before nutrient addition, microbial respiration rates and biomass were higher for leaves than for wood. Respiration rates of microbes associated with wood showed a larger response to increased dissolved nutrient concentrations than respiration rates of microbes associated with leaves, suggesting that the response of microbes to increased dissolved nutrients was influenced by the quality of their substrate. 3. Overall, dissolved nutrients had strong positive effects on microbial respiration and fungal, but not bacterial, biomass, indicating that microbial respiration and fungi were nutrient limited. The concentration of nitrate in the enriched reaches was within the range of natural variation in forest streams, suggesting that natural variation in nitrate among forest streams influences carbon mineralisation and fungal biomass.  相似文献   

9.
Response of soil respiration (CO2 emission) to simulated nitrogen (N) deposition in a mature tropical forest in southern China was studied from October 2005 to September 2006. The objective was to test the hypothesis that N addition would reduce soil respiration in N saturated tropical forests. Static chamber and gas chromatography techniques were used to quantify the soil respiration, following four‐levels of N treatments (Control, no N addition; Low‐N, 5 g N m?2 yr?1; Medium‐N, 10 g N m?2 yr?1; and High‐N, 15 g N m?2 yr?1 experimental inputs), which had been applied for 26 months before and continued throughout the respiration measurement period. Results showed that soil respiration exhibited a strong seasonal pattern, with the highest rates found in the warm and wet growing season (April–September) and the lowest rates in the dry dormant season (December–February). Soil respiration rates showed a significant positive exponential relationship with soil temperature, whereas soil moisture only affect soil respiration at dry conditions in the dormant season. Annual accumulative soil respiration was 601±30 g CO2‐C m?2 yr?1 in the Controls. Annual mean soil respiration rate in the Control, Low‐N and Medium‐N treatments (69±3, 72±3 and 63±1 mg CO2‐C m?2 h?1, respectively) did not differ significantly, whereas it was 14% lower in the High‐N treatment (58±3 mg CO2‐C m?2 h?1) compared with the Control treatment, also the temperature sensitivity of respiration, Q10 was reduced from 2.6 in the Control with 2.2 in the High‐N treatment. The decrease in soil respiration occurred in the warm and wet growing season and were correlated with a decrease in soil microbial activities and in fine root biomass in the N‐treated plots. Our results suggest that response of soil respiration to atmospheric N deposition in tropical forests is a decline, but it may vary depending on the rate of N deposition.  相似文献   

10.
Summary Carbon dioxide effluxes from plants, litter and soil were measured in two mixed-grassland sites in Saskatchewan, Canada. Ecosystems at both locations were dominated by Agropyron dasystachyum (Hook.) Scribn. Respiration rates of intact and experimentally-modified systems were measured in field chambers using alkali-absorption. Removal of green leaves, dead leaves, and litter from a wet sward reduced respiration to as low as 58% of the rate in an intact system. In a dry sward green shoots were the only significant above-ground source of CO2.Carbon dioxide effluxes from different parts of A. dasystachyum plants, and from soil samples were measured in laboratory vessels at 20° using alkali-absorption. Respiration of green leaves (1.46 mg CO2 g-1 h-1) was significantly higher than microbial respiration in moist, dead leaf samples (0.79 mg CO2 g-1 h-1) or litter (0.75 mg CO2 g-1 h-1). Microbial respiration in air-dried, dead plant material was very low. Average repiration rates of roots separated from soil cores (0.24 mg CO2 g-1 h-1) were lower than many values reported in the literature, probably because the root population sampled included inactive, suberized and senescent roots. Root respiration was estimated to be 17–26% of total CO2 efflux from intact cores.Laboratory data and field measurements of environmental conditions and plant biomass were combined in order to reconstruct the CO2 efflux from the shoot-root-soil system. Reconstructed rates were 1.3 to 2.3 times as large as field measured rates, apparently because of stimulation to respiration caused by the experimental manipulations. The standing dead and litter fractions contributed 26% and 23% of the total CO2 efflux in a wet sward. Both field-measured and reconstructed repiration values suggest that in situ decomposition of standing dead material under moist conditions can be a significant part of carbon balance in mixed grassland.  相似文献   

11.
Spatial variability in selected chemical, physical and biological parameters was examined in waters draining relatively pristine tropical forests spanning elevations from 35 to 2600 meters above sea level in a volcanic landscape on Costa Rica's Caribbean slope. Waters were sampled within three different vegetative life zones and two transition zones. Water temperatures ranged from 24–25 °C in streams draining lower elevations (35–250 m) in tropical wet forest, to 10 °C in a crater lake at 2600 m in montane forest. Ambient phosphorus levels (60–300 µg SRP L–1; 66–405 µg TP L–1) were high at sites within six pristine drainages at elevations between 35–350 m, while other undisturbed streams within and above this range in elevation were low (typically <30.0 µg SRP L–1). High ambient phosphorus levels within a given stream were not diagnostic of riparian swamp forest. Phosphorus levels (but not nitrate) were highly correlated with conductivity, Cl, Na, Ca, Mg and SO4. Results indicate two major stream types: 1) phosphorus-poor streams characterized by low levels of dissolved solids reflecting local weathering processes; and 2) phosphorus-rich streams characterized by relatively high Cl, SO4, Na, Mg, Ca and other dissolved solids, reflecting dissolution of basaltic rock at distant sources and/or input of volcanic brines. Phosphorus-poor streams were located within the entire elevation range, while phosphorus-rich streams were predominately located at the terminus of Pleistocene lava flows at low elevations. Results indicate that deep groundwater inputs, rich in phosphorus and other dissolved solids, surface from basaltic aquifers at breaks in landform along faults and/or where the foothills of the central mountain range merge with the coastal plain.  相似文献   

12.
Climate warming is expected to increase respiration rates of tropical forest trees and lianas, which may negatively affect the carbon balance of tropical forests. Thermal acclimation could mitigate the expected respiration increase, but the thermal acclimation potential of tropical forests remains largely unknown. In a tropical forest in Panama, we experimentally increased nighttime temperatures of upper canopy leaves of three tree and two liana species by on average 3  ° C for 1 week, and quantified temperature responses of leaf dark respiration. Respiration at 25  ° C (R25) decreased with increasing leaf temperature, but acclimation did not result in perfect homeostasis of respiration across temperatures. In contrast, Q10 of treatment and control leaves exhibited similarly high values (range 2.5–3.0) without evidence of acclimation. The decrease in R25 was not caused by respiratory substrate depletion, as warming did not reduce leaf carbohydrate concentration. To evaluate the wider implications of our experimental results, we simulated the carbon cycle of tropical latitudes (24 ° S–24 ° N) from 2000 to 2100 using a dynamic global vegetation model (LM3VN) modified to account for acclimation. Acclimation reduced the degree to which respiration increases with climate warming in the model relative to a no‐acclimation scenario, leading to 21% greater increase in net primary productivity and 18% greater increase in biomass carbon storage over the 21st century. We conclude that leaf respiration of tropical forest plants can acclimate to nighttime warming, thereby reducing the magnitude of the positive feedback between climate change and the carbon cycle.  相似文献   

13.
Nitrogen (N) deposition is projected to increase significantly in tropical regions in the coming decades, where changes in climate are also expected. Additional N and warming each have the potential to alter soil carbon (C) storage via changes in microbial activity and decomposition, but little is known about the combined effects of these global change factors in tropical ecosystems. In this study, we used controlled laboratory incubations of soils from a long‐term N fertilization experiment to explore the sensitivity of soil C to increased N in two N‐rich tropical forests. We found that fertilization corresponded to significant increases in bulk soil C concentrations, and decreases in C loss via heterotrophic respiration (P< 0.05). The increase in soil C was not uniform among C pools, however. The active soil C pool decomposed faster with fertilization, while slowly cycling C pools had longer turnover times. These changes in soil C cycling with N additions corresponded to the responses of two groups of microbial extracellular enzymes. Smaller active C pools corresponded to increased hydrolytic enzyme activities; longer turnover times of the slowly cycling C pool corresponded to reduced activity of oxidative enzymes, which degrade more complex C compounds, in fertilized soils. Warming increased soil respiration overall, and N fertilization significantly increased the temperature sensitivity of slowly cycling C pools in both forests. In the lower elevation forest, respired CO2 from fertilized cores had significantly higher Δ14C values than control soils, indicating losses of relatively older soil C. These results indicate that soil C storage is sensitive to both N deposition and warming in N‐rich tropical soils, with interacting effects of these two global change factors. N deposition has the potential to increase total soil C stocks in tropical forests, but the long‐term stability of this added C will likely depend on future changes in temperature.  相似文献   

14.
The influence of site fertility on soil microbial biomass and activity is not well understood but is likely to be complex because of interactions with plant responses to nutrient availability. We examined the effects of long-term (8 yr) fertilization and litter removal on forest floor microbial biomass and N and C transformations to test the hypothesis that higher soil resource availability stimulates microbial activity. Microbial biomass and respiration decreased by 20–30 % in response to fertilization. Microbial C averaged 3.8 mg C/g soil in fertilized, 5.8 mg C/g in control, and 5.5 mg C/g in litter removal plots. Microbial respiration was 200 µg CO2-C g–1 d–1 in fertilized plots, compared to 270 µg CO2-C g–1 d–1 in controls. Gross N mineralization and N immobilization did not differ among treatments, despite higher litter nutrient concentrations in fertilized plots and the removal of substantial quantities of C and N in litter removal plots. Net N mineralization was significantly reduced by fertilization. Gross nitrification and NO3 immobilization both were increased by fertilization. Nitrate thus became a more important part of microbial N cycling in fertilized plots even though NH4 + availability was not stimulated by fertilization.Soil microorganisms did not mineralize more C or N in response to fertilization and higher litter quality; instead, results suggest a difference in the physiological status of microbial biomass in fertilized plots that influenced N transformations. Respiration quotients (qCO2, respiration per unit biomass) were higher in fertilized plots (56 µg CO2-C mg C–1 d–1) than control (48 µg CO2-C mg C–1 d –1) or litter removal (45 µg CO2-C mg C–1 d–1), corresponding to higher microbial growth efficiency, higher proportions of gross mineralization immobilized, and lower net N mineralization in fertilized plots. While microbial biomass is an important labile nutrient pool, patterns of microbial growth and turnover were distinct from this pool and were more important to microbial function in nitrogen cycling.  相似文献   

15.
Microbial responses to three years of CO2 enrichment (600 μL L–1) in the field were investigated in calcareous grassland. Microbial biomass carbon (C) and soil organic C and nitrogen (N) were not significantly influenced by elevated CO2. Microbial C:N ratios significantly decreased under elevated CO2 (– 15%, P = 0.01) and microbial N increased by + 18% (P = 0.04). Soil basal respiration was significantly increased on one out of 7 sampling dates (+ 14%, P = 0.03; December of the third year of treatment), whereas the metabolic quotient for CO2 (qCO2 = basal respiration/microbial C) did not exhibit any significant differences between CO2 treatments. Also no responses of microbial activity and biomass were found in a complementary greenhouse study where intact grassland turfs taken from the field site were factorially treated with elevated CO2 and phosphorus (P) fertilizer (1 g P m–2 y–1). Previously reported C balance calculations showed that in the ecosystem investigated growing season soil C inputs were strongly enhanced under elevated CO2. It is hypothesized that the absence of microbial responses to these enhanced soil C fluxes originated from mineral nutrient limitations of microbial processes. Laboratory incubations showed that short-term microbial growth (one week) was strongly limited by N availability, whereas P was not limiting in this soil. The absence of large effects of elevated CO2 on microbial activity or biomass in such nutrient-poor natural ecosystems is in marked contrast to previously published large and short-term microbial responses to CO2 enrichment which were found in fertilized or disturbed systems. It is speculated that the absence of such responses in undisturbed natural ecosystems in which mineral nutrient cycles have equilibrated over longer periods of time is caused by mineral nutrient limitations which are ineffective in disturbed or fertilized systems and that therefore microbial responses to elevated CO2 must be studied in natural, undisturbed systems.  相似文献   

16.
揭示不同恢复阶段热带森林土壤细菌呼吸季节变化及其主控因素,对于探明土壤细菌呼吸对热带森林恢复的响应机制具有重要的科学意义。以西双版纳不同恢复阶段热带森林(白背桐群落、崖豆藤群落和高檐蒲桃群落)为研究对象,运用真菌呼吸抑制法及高通量宏基因组测序技术分别测定土壤细菌呼吸速率和细菌多样性,并采用回归分析及结构方程模型揭示热带森林恢复过程中土壤细菌多样性、pH、土壤碳氮组分变化对土壤细菌呼吸速率的影响特征。结果表明:1)不同恢复阶段热带森林土壤细菌呼吸速率表现为:高檐蒲桃群落((1.51±0.62)CO2 mg g-1 h-1)显著高于崖豆藤群落((1.16±0.56)CO2 mg g-1 h-1)和白背桐群落((0.82±0.60)CO2 mg g-1 h-1)(P<0.05)。2)不同恢复阶段土壤细菌呼吸速率呈显著的单峰型季节变化(P<0.05),最大值均出现在9月:高檐蒲桃群落((...  相似文献   

17.
Measurements of photosynthesis and respiration were made on leaves in summer in a Quercus rubra L. canopy at approximately hourly intervals throughout 5 days and nights. Leaves were selected in the upper canopy in fully sunlit conditions (upper) and in the lower canopy (lower). In addition, leaves in the upper canopy were shaded (upper shaded) to decrease photosynthesis rates. The data were used to test the hypothesis that total night‐time respiration is dependent on total photosynthesis during the previous day and that the response is mediated through changes in storage in carbohydrate pools. Measurements were made on clear sunny days with similar solar irradiance and air temperature, except for the last day when temperature, especially at night, was lower than that for the previous days. Maximum rates of photosynthesis in the upper leaves (18.7 μmol m?2 s?1) were approximately four times higher than those in the lower leaves (4.3 μmol m?2 s?1) and maximum photosynthesis rates in the upper shaded leaves (8.0 μmol m?2 s?1) were about half those in the upper leaves. There was a strong linear relationship between total night‐time respiration and total photosynthesis during the previous day when rates of respiration were normalized to a fixed temperature of 20°C, removing the effects of temperature from this relationship. Measurements of specific leaf area, nitrogen and chlorophyll concentration and calculations of the maximum rate of carboxylation activity, Vcmax, were not significantly different between upper and upper shaded leaves 5 days after the shading treatment was started. There were small, but significant decreases in the rate of apparent maximum electron transport at saturating irradiance, Jmax (P>0.05), and light use efficiency, ? (P<0.05), for upper shaded leaves compared with those for upper leaves. This suggests that the duration of shading in the experiment was sufficient to initiate changes in the electron transport, but not the carboxylation processes of photosynthesis. Support for the hypothesis was provided from analysis of soluble sugar and starch concentrations in leaves. Respiration rates in the upper shaded leaves were lower than those expected from a relationship between respiration and soluble sugar concentration for fully exposed upper and lower leaves. However, there was no similar difference in starch concentrations. This suggests that shading for the duration of several days did not affect sugar concentrations but reduced starch concentrations in leaves, leading to lower rates of respiration at night. A model was used to quantify the significance of the findings on estimated canopy CO2 exchange for the full growing season. Introducing respiration as a function of total photosynthesis on the previous day resulted in a decrease in growing season night‐time respiration by 23% compared with the value when respiration was held constant. This highlights the need for a process‐based approach linking respiration to photosynthesis when modelling long‐term carbon exchange in forest ecosystems.  相似文献   

18.
Nitrogen (N) deposition is a component of global change that has considerable impact on belowground carbon (C) dynamics. Plant growth stimulation and alterations of fungal community composition and functions are the main mechanisms driving soil C gains following N deposition in N‐limited temperate forests. In N‐rich tropical forests, however, N deposition generally has minor effects on plant growth; consequently, C storage in soil may strongly depend on the microbial processes that drive litter and soil organic matter decomposition. Here, we investigated how microbial functions in old‐growth tropical forest soil responded to 13 years of N addition at four rates: 0 (Control), 50 (Low‐N), 100 (Medium‐N), and 150 (High‐N) kg N ha?1 year?1. Soil organic carbon (SOC) content increased under High‐N, corresponding to a 33% decrease in CO2 efflux, and reductions in relative abundances of bacteria as well as genes responsible for cellulose and chitin degradation. A 113% increase in N2O emission was positively correlated with soil acidification and an increase in the relative abundances of denitrification genes (narG and norB). Soil acidification induced by N addition decreased available P concentrations, and was associated with reductions in the relative abundance of phytase. The decreased relative abundance of bacteria and key functional gene groups for C degradation were related to slower SOC decomposition, indicating the key mechanisms driving SOC accumulation in the tropical forest soil subjected to High‐N addition. However, changes in microbial functional groups associated with N and P cycling led to coincidentally large increases in N2O emissions, and exacerbated soil P deficiency. These two factors partially offset the perceived beneficial effects of N addition on SOC storage in tropical forest soils. These findings suggest a potential to incorporate microbial community and functions into Earth system models considering their effects on greenhouse gas emission, biogeochemical processes, and biodiversity of tropical ecosystems.  相似文献   

19.
Ergosterol and ATP concentrations, microbial respiration and sporulation rates of aquatic hyphomycetes associated with leaves of Castanea sativa decomposing in a 5th order stream were determined periodically over a period of 102 days in order to compare ergosterol and ATP as indicators of fungal biomass. ATP and ergosterol concentrations exhibited a significant positive correlation (F = 4.459, DF = 28, P < 0.001) during the first stages of leaf breakdown (until day 39), i.e., during periods of increasing fungal biomass. No correlation was found between ATP and ergosterol concentrations during later stages of decomposition (days 39 to 102). Respiration rates increased rapidly up to 0.525 mg O2 h1 g1 AFDM during the first month and remained high until the end of the experiment. Sporulation rates peaked at day 9 (1069 conidia day1 mg1 AFDM) and decreased during later stages of decomposition. ATP‐to‐biomass conversion factors were determined for both fungi (0.59 μmol ATP g1 dry mass) and bacteria (1.30 μmol ATP g1 dry mass) collected from the stream and grown in the laboratory. Estimates of fungal biomass based on ATP concentrations were similar to those calculated from ergosterol concentrations during the first 39 days of breakdown. The results here presented suggest that ATP is a reliable method to quantify microbial biomass in streams and that the relative importance of bacteria increases at later stages of decomposition. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号