首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prohaska JR  Broderius M 《Biometals》2012,25(4):633-642
Interactions between copper and iron homeostasis have been known since the nineteenth century when anemia in humans was first described due to copper limitation. However, the mechanism remains unknown. Intestinal and liver iron concentrations are usually higher following copper deficiency (CuD). This may be due to impaired function of the multicopper oxidases hephaestin or ceruloplasmin (Cp), respectively. However, iron retention could be due to altered ferroportin (Fpn), the essential iron efflux transporter in enterocytes and macrophages. Fpn mRNA is controlled partially by intracellular iron and IRE dependence. CuD should augment Fpn based on iron level. Some argue that Fpn stability is controlled partially by membrane ferroxidase (GPI-Cp). CuD should result in lower Fpn since GPI-Cp expression and function is reduced. Fpn turnover is controlled by hepcidin. CuD results in variable Hamp (hepcidin) expression. Fpn mRNA and protein level were evaluated following dietary CuD in rats and mice. To correlate with Fpn expression, measurements of tissue iron were conducted in several rodent models. Following CuD there was little change in Fpn mRNA. Previous work indicated that under certain circumstances Fpn protein was augmented in liver and spleen following CuD. Fpn levels in CuD did not correlate with either total iron or non-heme iron (NHI), as iron levels in CuD liver were higher and in spleen lower than copper adequate controls. Fpn steady state levels appear to be regulated by a complex set of factors. Changes in Fpn do not explain the anemia of CuD.  相似文献   

2.
Release of iron from enterocytes and hepatocytes is thought to require the copper-dependent ferroxidase activity of hephaestin (Hp) and ceruloplasmin (Cp), respectively. In swine, copper deficiency (CD) impairs iron absorption, but whether this occurs in rats is unclear. By feeding a diet deficient in copper, CD was produced, as evidenced by the loss of copper-dependent plasma ferroxidase I activity, and in enterocytes, CD reduced copper levels and copper-dependent oxidase activity. Hematocrit was reduced, and liver iron was doubled. CD reduced duodenal mucosal iron and ferritin, whereas CD increased iron absorption. Duodenal mucosal DMT1-IRE and ferroportin1 expression remained constant with CD. When absorption in CD rats was compared with that seen normally and in iron-deficient anemic animals, strong correlations were found among mucosal iron, ferritin, and iron absorption, suggesting that the level of iron absorption was appropriate given that the erythroid and stores stimulators of iron absorption are opposed in CD. Because CD reduced the activity of Cp, as evidenced by copper-dependent plasma ferroxidase I activity and hepatocyte iron accumulation, but iron absorption increased, it is unlikely that the ferroxidase activity of Hp is important and suggests another function for this protein in the export of iron from the enterocyte during iron absorption. Also, the copper-dependent ferroxidase activity of Cp does not appear important for iron efflux from macrophages, because Kupffer cells of the liver and nonheme iron levels of the spleen were normal during copper deficiency, suggesting another role for Cp in these cells.  相似文献   

3.
4.
Copper deficiency leads to anemia but the mechanism is unknown. Copper deficiency also leads to hypoferremia, which may limit erythropoiesis. The hypoferremia may be due to limited function of multicopper oxidases (MCO) hephaestin in enterocytes or GPI-ceruloplasmin in macrophages of liver and spleen whose function as a ferroxidase is thought essential for iron transfer out of cells. Iron release may also be limited by ferroportin (Fpn), the iron efflux transporter. Fpn may be lower following copper deficiency because of impaired ferroxidase activity of MCO. Fpn is also dependent on the liver hormone hepcidin as Fpn is degraded when hepcidin binds to Fpn. Anemia and hypoferremia both down regulate hepcidin by separate mechanisms. Current studies confirmed and extended earlier studies with copper-deficient (CuD) rats that suggested low hepicidin resulted in augmented Fpn. However, current studies in CuD dams failed to confirm a correlation that hepcidin expression was associated with low transferrin receptor 2 (TfR2) levels and also challenged the dogma that holotransferrin can explain the correlation with hepcidin. CuD dams exhibited hypoferremia, low liver TfR2, anemia in some rats, yet no depression in Hamp expression, the hepcidin gene. Normal levels of GDF-15, the putative erythroid cytokine that suppresses hepcidin, were detected in plasma of CuD and iron-deficient (FeD) dams. Importantly, FeD dams did display greatly lower Hamp expression. Normal hepcidin in these CuD dams is puzzling since these rats may need extra iron to meet needs of lactation and the impaired iron transfer noted previously.  相似文献   

5.
Ferroportin (Fpn), a ferrous iron Fe(II) transporter responsible for the entry of iron into plasma, is regulated post-translationally through internalization and degradation following binding of the hormone hepcidin. Cellular iron export is impaired in mice and humans with aceruloplasminemia, an iron overload disease due to mutations in the ferroxidase ceruloplasmin (Cp). In the absence of Cp Fpn is rapidly internalized and degraded. Depletion of extracellular Fe(II) by the yeast ferroxidase Fet3p or iron chelators can maintain cell surface Fpn in the absence of Cp. Iron remains bound to Fpn in the absence of multicopper oxidases. Fpn with bound iron is recognized by a ubiquitin ligase, which ubiquitinates Fpn on lysine 253. Mutation of lysine 253 to alanine prevents ubiquitination and maintains Fpn-iron on cell surface in the absence of ferroxidase activity. The requirement for a ferroxidase to maintain iron transport activity represents a new mechanism of regulating cellular iron export, a new function for Cp and an explanation for brain iron overload in patients with aceruloplasminemia.  相似文献   

6.
In an attempt to identify a sensitive and improved marker of mammalian copper status during neonatal development experiments compared two plasma cuproenzymes, peptidylglycine alpha-amidating monooxygenase (PAM ), an enzyme involved in peptide posttranslational activation, to ceruloplasmin (Cp), a ferroxidase involved in iron mobilization. Dietary Cu deficiency (Cu-) was studied in dams and offspring at postnatal age 3 (P3), P12, and P28. Rodent Cp activity rose during lactation whereas PAM activity fell. Reduction in Cp activity was more severe than reduction in PAM activity in Cu- offspring and dams. Cp activity was greater in rats than mice whereas PAM activity was similar in adults but greater in mouse than rat pups. Both cuproenzymes changed during neonatal development and when dietary copper was limiting. With proper controls, each enzyme can be used to assess copper status.  相似文献   

7.
During iron deficiency, perturbations in copper homeostasis have frequently been documented. Previous studies in iron-deprived rats demonstrated that enterocyte and hepatic copper levels increase and a copper transporter (the Menkes Copper ATPase; Atp7a) is induced in the duodenal epithelium in parallel to iron transport-related genes (e.g. Dmt1, Dcytb, Fpn1). Moreover, two ferroxidase proteins involved in iron homeostasis, hephaestin expressed in enterocytes and ceruloplasmin, produced and secreted into blood by the liver, are copper-dependent enzymes. We thus aimed to test the hypothesis that Atp7a function is important for the copper-related compensatory response of the intestinal epithelium to iron deficiency. Accordingly, iron homeostasis was studied for the first time in mice expressing a mutant Atp7a protein with minimal activity (Brindled [MoBr /y]). Mutant mice were rescued by perinatal copper injections, and, after a 7–8 week recovery period, were deprived of dietary iron for 3 weeks (along with WT littermates). Adult MoBr /y mice displayed copper-deficiency anemia but had normal iron status; in contrast, iron-deprived MoBr /y mice were iron deficient and more severely anemic with partial amelioration of the copper-deficient phenotype. Intestinal iron absorption in both genotypes (WT and MoBr /y) increased ∼3-fold when mice consumed a low-iron diet and ∼6-fold when mice were concurrently bled. WT mice exhibited no alterations in copper homeostasis in response to iron deprivation or phlebotomy. Conversely, upregulation of iron absorption was associated with increased enterocyte and liver copper levels and serum ferroxidase (ceruloplasmin) activity in MoBr /y mice, typifying the response to iron deprivation in many mammalian species. We thus speculate that a copper threshold exists that is necessary to allow appropriate regulate of iron absorption. In summary, MoBr /y mice were able to adequately regulate iron absorption, but unlike in WT mice, concurrent increases in enterocyte and liver copper levels and serum ferroxidase activity may have contributed to maintenance of iron homeostasis.  相似文献   

8.
Multicopper oxidases (MCOs) are a specific group of enzymes that contain multiple copper centers through which different substrates are oxidized. Main members of MCO family include ferroxidases, ascorbate oxidases, and laccases. MCO type of ferroxidases is key to iron transport across the plasma membrane. In Drosophila, there are four potential multicopper oxidases, MCO1–4. No convincing evidence has been presented so far to indicate any of these, or even any insect multicopper oxidase, to be a ferroxidase. Here we show Drosophila MCO3 (dMCO3) is highly likely a bona fide ferroxidase. In vitro activity assay with insect-cell-expressed dMCO3 demonstrated it has potent ferroxidase activity. Meanwhile, the ascorbate oxidase and laccase activities of dMCO3 are much less significant. dMCO3 expression in vivo, albeit at low levels, appears mostly extracellular, reminiscent of mammalian ceruloplasmin in the serum. A null dMCO3 mutant, generated by CRISPR/Cas9 technology, showed disrupted iron homeostasis, evidenced by increased iron level and reduced metal importer Mvl expression. Notably, dMCO3-null flies phenotypically are largely normal at normal or iron stressed-conditions. We speculate the likely existence of a similar iron efflux apparatus as the mammalian ferroportin/ferroxidase in Drosophila. However, its importance to fly iron homeostasis is greatly minimized, which is instead dominated by another iron efflux avenue mediated by the ZIP13-ferritin axis along the ER/Golgi secretion pathway.  相似文献   

9.
We demonstrated previously that loading iron into ferritin via its own ferroxidase activity resulted in damage to the ferritin while ferritin loaded by ceruloplasmin, a copper-containing ferroxidase, was not damaged and had similar characteristics to native ferritin (Welch et al. (2001) Free Radic Biol Med 31:999–1006). Interestingly, it has been suggested that the formation of hemosiderin, a proposed degradation product of ferritin, is increased in animals deficient in copper. In this study, groups of rats were fed normal diets, copper deficient diets, iron supplemented diets, or copper deficient-iron supplemented diets for 60 days. Rats fed copper-deficient diets had no detectable active serum ceruloplasmin, which indicates that they were functionally copper deficient. There was a significant increase in the amount of iron in isolated hemosiderin fractions from the livers of copper-deficient rats, even more than that found in rats fed only an iron-supplemented diet. Histological analysis showed that copper-deficient rats had iron deposits (which are indicative of hemosiderin) in their hepatocytes and Kupffer cells, whereas rats fed diets sufficient in copper only had iron deposits in their Kupffer cells. Histologic evidence of iron deposition was more pronounced in rats fed diets that were deficient in copper. Additionally, sucrose density-gradient sedimentation profiles of ferritin loaded with iron in vitro via its own ferroxidase activity was found to have similarities to that of the sedimentation profile of the hemosiderin fraction from rat livers. The implications of these data for the possible mechanism of hemosiderin formation are discussed.  相似文献   

10.
Hephaestin (Hp) is a trans-membrane protein, which plays a critical role in intestinal iron absorption. Hp was originally identified as the gene responsible for the phenotype of sex-linked anaemia in the sla mouse. The mutation in the sla protein causes accumulation of dietary iron in duodenal cells, causing severe microcytic hypochromic anaemia. Although mucosal uptake of dietary iron is normal, export from the duodenum is inhibited. Hp is homologous to ceruloplasmin (Cp), a member of the family of multi copper ferroxidases (MCFs) and possesses ferroxidase activity that facilitates iron release from the duodenum and load onto the serum iron transport protein transferrin. In the present study, attempts were made to produce biologically active recombinant mouse hephaestin as a secretory form tagged with green fluorescent protein (GFP), Hpsec-GFP. Plasmid expressing Hpsec-GFP was constructed and transfected into COS and CHO cells. The GFP aided the monitoring expression in real time to select the best conditions to maximise expression and provided a tag for purifying and analysing Hpsec-GFP. The protein had detectable oxidase activity as shown by in-gel and solution-based assays. The methods described here can provide the basis for further work to probe the interaction of hephaestin with other proteins using complementary fluorescent tags on target proteins that would facilitate the fluorescence resonance energy transfer measurements, for example with transferrin or colocalisation studies, and help to discover more about hephaestin works at the molecular level.  相似文献   

11.
12.
The Menkes copper ATPase (Atp7a) and metallothionein (Mt1a) are induced in the duodenum of iron-deficient rats, and serum and hepatic copper levels increase. Induction of a multi-copper ferroxidase (ceruloplasmin; Cp) has also been documented. These findings hint at an important role for Cu during iron deficiency. The intestinal divalent metal transporter 1 (Dmt1) is also induced during iron deficiency. The hypothesis that Dmt1 is involved in the copper-related compensatory response during iron deficiency was tested, utilizing a mutant Dmt1 rat model, namely the Belgrade (b/b) rat. Data from b/b rats were compared with phenotypically normal, heterozygous +/b rats. Intestinal Atp7a and Dmt1 expression was increased in b/b rats, whereas Mt1a expression was unchanged. Serum and liver copper levels did not increase in the Belgrades nor did Cp protein or activity. The lack of fully functional Dmt1 may thus partially blunt the compensatory response to iron deficiency by 1) decreasing copper levels in enterocytes, as exemplified by a lack of Mt1a induction and a lesser induction of Atp7a, 2) abolishing the frequently described increase in liver and serum copper, and 3) attenuating the documented increase in Cp expression and activity.  相似文献   

13.
The effects of various forms of lactoferrin (Lf) interacting with ceruloplasmin (Cp, ferro-O2-oxidoreductase, EC 1.16.3.1) on oxidase activity of the latter were studied. Comparing the incorporation of Fe3+ oxidized by Cp into Lf and serum transferrin (Tf) showed that at pH 5.5 apo-Lf binds the oxidized iron seven times and at pH 7.4 four times faster than apo-Tf under the same conditions. Apo-Lf increased the oxidation rate of Fe2+ by Cp 1.25 times when Cp/Lf ratio was 1 : 1. Lf saturated with Fe3+ or Cu2+ increased the oxidation rate of iron 1.6 and 2 times when Cp to holo-Lf ratios were 1 : 1 and 1 : 2, respectively. Upon adding to Cp the excess amounts of apo-Lf (Cp/apo-Lf < 1 : 1) or of holo-Lf (Cp/holo-Lf < 1 : 2) the oxidation rate of iron no longer changed. Complex Cp-Lf demonstrating ferroxidase activity was discovered in breast milk.  相似文献   

14.
The goal of this study was to determine the effects of Fe supplementation on the anemia of Cu deficiency in rats. In addition, we observed changes in serum and organ Cu and Fe during the development of Cu deficiency. In Experiment 1, weanling male Sprague-Dawley rats were fed AIN-93G diets containing either <0.3 mg Cu [Cu deficient (CuD)] or 6.0 mg Cu [Cu adequate (CuA)] per kilogram diet, and 35 mg Fe/kg. Five rats from each group were killed at intervals for the analysis of hematologic parameters and mineral content of various organs. In Experiment 2, two groups of 24 rats each were fed either the CuA diet or the CuD diet for 14 days. Then, three sets of eight rats in each group received three separate Fe treatments: (1) daily intraperitoneal injections of 400 mug Fe (Cu-free ferric citrate) per rat for another 14 days, (2) fed similar diets that contained three times the normal amount of Fe (105 mg/kg) for 14 days, or (3) received no further Fe treatment. At day 21, all rats were fed a 1-g meal labeled with (59)Fe to determine Fe absorption. After 28 days, rats were killed for the analyses of Fe and Cu status. Results of Experiment 1 showed that within 14 days, CuD rats had lower blood hemoglobin (Hgb), red blood cell count, and mean corpuscular volume than CuA rats. Copper concentrations in all tissues measured were lower in the CuD rats than in controls. Serum ceruloplasmin (Cp) activity in CuD rats was only 0.8% of CuA rats at day 7. During this period, enterocyte and liver Fe concentrations were elevated and serum Fe was reduced, but there was no change in spleen Fe. Results of Experiment 2 showed that CuD rats absorbed less Fe than CuA rats. Supplemental Fe by diet or by intraperitoneal injections did not prevent anemia in the CuD rats or affect other parameters of Cu status. Serum total iron binding capacity [transferrin (Tf)] was not changed by Cu deficiency or by Fe supplementation; however, percent Tf saturation was reduced in CuD rats but was not enhanced by Fe supplementation. These data suggest that anemia of Cu deficiency occurs because of reduced Fe absorption, and it inhibits release of Fe from the liver and inefficient loading of Fe into Tf because of very low plasma Cp activity. The latter then leads to inefficient delivery of Fe to the erythroid cells for heme and Hgb synthesis.  相似文献   

15.
In the neonatal period, there is a high iron load, while both the level and molar oxidase activity of ceruloplasmin are low. On the other hand, the neonatal xanthine oxidase (XO) activity is higher than later in life and XO has a significant iron-oxidizing capacity. We therefore studied the physiological contribution of XO to the ferroxidase activity of the plasma in 20 full-term newborn infants. Ferroxidase activity was measured spectrophotometrically, with Fe++ as substrate. The uric acid formed by XO was assayed by means of HPLC, with electrochemical detection.

The total ferroxidase activity in the plasma was about one-fourth of the adult level and rapidly increased doubling within 3 days after birth. About 90% of the plasma ferroxidase activity was due to ceruloplasmin, the remainder being accounted for by ferroxidase II. The XO activity underwent a 30% (statistically non-significant) elevation at 24 h, though ferroxidase activity attributable to XO was not detected at any time.

Accordingly, XO does not seem to add substantially to the total iron-oxidizing capacity of the plasma in the neonatal period. The high molar ferroxidase activity is probably of importance at the endothelial cell surface.  相似文献   

16.
Metal ion homeostasis mechanisms in the food-borne human pathogen Campylobacter jejuni are poorly understood. The Cj1516 gene product is homologous to the multicopper oxidase CueO, which is known to contribute to copper tolerance in Escherichia coli. Here we show, by optical absorbance and electron paramagnetic resonance spectroscopy, that purified recombinant Cj1516 contains both T1 and trinuclear copper centers, which are characteristic of multicopper oxidases. Inductively coupled plasma mass spectrometry revealed that the protein contained approximately six copper atoms per polypeptide. The presence of an N-terminal “twin arginine” signal sequence suggested a periplasmic location for Cj1516, which was confirmed by the presence of p-phenylenediamine (p-PD) oxidase activity in periplasmic fractions of wild-type but not Cj1516 mutant cells. Kinetic studies showed that the pure protein exhibited p-PD, ferroxidase, and cuprous oxidase activities and was able to oxidize an analogue of the bacterial siderophore anthrachelin (3,4-dihydroxybenzoate), although no iron uptake impairment was observed in a Cj1516 mutant. However, this mutant was very sensitive to increased copper levels in minimal media, suggesting a role in copper tolerance. This was supported by increased expression of the Cj1516 gene in copper-rich media. A mutation in a second gene, the Cj1161c gene, encoding a putative CopA homologue, was also found to result in copper hypersensitivity, and a Cj1516 Cj1161c double mutant was found to be more copper sensitive than either single mutant. These observations and the apparent lack of alternative copper tolerance systems suggest that Cj1516 (CueO) and Cj1161 (CopA) are major proteins involved in copper homeostasis in C. jejuni.  相似文献   

17.
The effect of nutritional copper (Cu) deficiency on the antiinflammatory activity and pharmacokinetics of aspirin (ASA) was investigated in rats. Male, weanling Sprague-Dawley rats were fed either a Cu-deficient (CuD) or Cu-sufficient (CuS) diet for 49–50 d. The antiinflammatory activity of ASA was studied using the carrageenan-induced paw edema (CPE) test. ANOVA analyses of edema volumes at 2, 3, 4, 5, and 21 h postcarrageenan indicated significant differences between groups. The percent inhibition of edema due to ASA treatment in CuS was lower than that in CuD rats at 5 h, AUC5h, and AUC21h. ASA was found to be significantly more effective in inhibiting the CPE in CuD rats when compared to the CuS rats. Thus, we hypothesized that the increase in ASA's antiinflammatory activity in CuD rats was a result of a decrement in its elimination during nutritional Cu deficiency. The elimination of ASA in CuD and CuS rats was studied using an iv dose of 200 mg/kg. Concentrations of ASA and salicylic acid (SA) were determined in blood; whereas the concentrations of SA, salicylic phenol-glucuronide (SPG), and salicyluric acid (SUA) were determined in urine by HPLC. The results of the pharmacokinetic analyses from blood and urinary data indicated no significant differences in the disposition of ASA between CuD and CuS rats. For instance, the total body clearance for ASA (mean±SD, mL/min/kg) was 37.9±9.4 and 38.5±13.9 (p>0.05); and the volume of distribution (Vd) for ASA (mean±SD, mL/kg) was 385.5±110.3 and 397.1.1±137.9 (p>0.05) for CuD and CuS groups, respectively. Thus, contrary to our hypothesis, the enhanced antiinflammatory activity of ASA in CuD rats does not appear to be mediated via a decrement in the elimination of the drug. In addition, plasma ASA-esterase activity was found to be independent of Cu nutritional status.  相似文献   

18.
The copper-containing plasma protein caeruloplasmin (Cp) has been shown to possess several oxidase activities, but with the exception of its ferrous ion oxidising (ferroxidase) activity which so far appear to be of minor biological relevance. Recently, Kim and colleagues (Kim et al. (1998) FEBS Lett. 431, pp. 473-475) observed that Cp can catalytically remove hydrogen peroxide in the presence of thiols. Here, we show that Cp can remove both hydrogen peroxide and lipid hydroperoxides at physiologically relevant concentrations of reduced glutathione known to be present in lung and lung lining fluid. The glutathione peroxidase-like activity of Cp together with its ferroxidase activity would completely remove the primary reactants required for both Fenton chemistry and lipid peroxidation.  相似文献   

19.
A noticeable effect of sulfite treatment was observed on the plasma ceruloplasmin ferroxidase activity of rats with normal sulfite oxidase activity when compared to normal controls. The plasma levels of selenium, iron, and zinc were unaffected by sulfite in normal and sulfite oxidase (SOX)-deficient rats. While plasma level of Mn was decreasing, plasma Cu level increased in SOX-deficient rats. Treating SOX-deficient groups with sulfite did not alter plasma level of Mn but made plasma level of Cu back to its normal level. This is the first evidence that Cu and Mn status were affected in experimental sulfite oxidase deficiency induced by low molybdenum diet with tungsten addition deserving further research to determine the underlying mechanisms of these observations in experimental sulfite oxidase deficiency.  相似文献   

20.
Multicopper oxidases (MCO) contain at least four copper atoms arrayed in three distinct ligand fields supported by two canonical structural features: (1) multiples of the cupredoxin fold and (2) four unique sequence elements that include the ten histidine and one cysteine ligands to the four copper atoms. Ferroxidases are a subfamily of MCO proteins that contain residues supporting a specific reactivity towards ferrous iron; these MCOs play a vital role in iron metabolism in bacteria, algae, fungi, and mammals. In contrast to the fungal ferroxidases, e.g., Fet3p from Saccharomyces cerevisiae, the mammalian ceruloplasmin (Cp) is twice as large (six vs. three cupredoxin domains) and contains three type 1, or “blue,” copper sites. Chlamydomonas reinhardtii expresses a putative ferroxidase, Fox1, which has sequence similarity to human Cp (hCp). Eschewing the standard sequence-based modeling paradigm, we have constructed a function-based model of the Fox1 protein which replicates hCp’s six copper-site ligand arrays with an overall root mean square deviation of 1.4 Å. Analysis of this model has led also to assignment of motifs in Fox1 that are unique to ferroxidases, the strongest evidence to date that the well-characterized fungal high-affinity iron uptake system is essential to iron homeostasis in green algae. The model of Fox1 also establishes a subfamily of MCO proteins with a noncanonical copper-ligand organization. These diverse structures suggest alternative mechanisms for intramolecular electron transfer and require a new trajectory for the evolution of the MCO superfamily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号