首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Excessive energy intake leads to fat overload and the formation of lipotoxic compounds mainly derived from the saturated fatty acid palmitate (PAL), thus promoting insulin resistance (IR) in skeletal muscle. N  3 polyunsaturated fatty acids (n  3PUFA) may prevent lipotoxicity and IR. The purpose of this study was to examine the differential effects of n  3PUFA on fatty acid metabolism and insulin sensitivity in muscle cells. C2C12 myotubes were treated with 500 μM of PAL without or with 50 μM of alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) for 16 h. PAL decreased insulin-dependent AKT activation and glucose uptake and increased the synthesis of ceramides and diglycerides (DG) derivatives, leading to protein kinase Cθ activation. EPA and DHA, but not ALA, prevented PAL-decreased AKT activation but glucose uptake was restored to control values by all n  3PUFA vs. PAL. Total DG and ceramide contents were decreased by all n  3PUFA, but only EPA and DHA increased PAL β-oxidation, decreased PAL incorporation into DG and reduced protein kinase Cθ activation. EPA and DHA emerge as better candidates than ALA to improve fatty acid metabolism in skeletal muscle cells, notably via their ability to increase mitochondrial β-oxidation.  相似文献   

2.
Plasma glucose and ketone concentrations are much higher in birds than in humans and birds exhibit resistance to insulin-mediated glucose uptake into muscle. Therefore, birds may offer a model in which to examine the effects of high plasma glucose and free fatty acid (FFA) concentrations on substrate preference. The present study examined the uptake of radiolabeled oleic acid (OA; C18:1) and radiolabeled glucose by skeletal muscle isolated from the forewing of English sparrows (Passer domesticus). In dose–response studies, unlabeled glucose and OA (20 mM each) inhibited the uptake of their respective radiolabeled counterparts. To examine the effects of glucose on OA uptake, muscles were incubated for 60 min in a buffer containing 20 mM glucose with the addition of radiolabeled OA. This level of glucose significantly decreased radiolabeled OA uptake by 36%. Using the same methodology, 20 mM OA significantly decreased radiolabeled glucose transport by 49%. Comparing control values for glucose (0.952 ± 0.04 μM/mg muscle) and OA uptake (2.20 ± 0.29 μM/mg muscle), it is evident that OA is preferentially taken up by avian skeletal muscle. As FFAs provide a greater amount of energy per mole (146 ATP/OA) than carbohydrates (36 ATP/glucose), storing and utilizing fats may be more energy-efficient for birds. As studies in mammals have shown that FFAs may impair glucose uptake pathways, it is suspected that high FFA uptake by avian skeletal muscle may induce their notably lower glucose transport.  相似文献   

3.
The VLDL (very low-density lipoprotein) receptor is a peripheral lipoprotein receptor expressing in fatty acid active tissues abundantly. In the Balb/c fasting mice, VLDL receptor as well as LPL (lipoprotein lipase), FAT (fatty acid translocase)/CD36, H-FABP (heart-type fatty acid-binding protein), ACS (acyl-CoA synthetase) and LCAD (long-chain acyl-CoA dehydrogenase) expressions increased. An electron microscopic examination indicated the lipid droplets that accumulated in the hearts of fasting Balb/c mice. During the development of SD (Sprague-Dawley) rats, VLDL receptor, LPL, FAT/CD36, H-FABP, ACS, and LCAD mRNAs concomitantly increased with growth. However, PK (pyruvate kinase) mRNA expression was negligible. In cultured neonatal rat cardiomyocytes, VLDL receptor expression increased with days in culture. Oil red-O staining showed that cardiomyocytes after 7 days in culture (when the VLDL receptor protein is present) accumulated beta-migrating VLDL. Thereby, we showed that the cardiac VLDL receptor pathway for delivery of remnant lipoprotein particles might be part of a cardiac fatty acid metabolism.  相似文献   

4.
Emerging evidence has shown that acute heat exposure affects metabolic characteristics and causes oxidative damage to skeletal muscle in birds. Little is known, however, about such phenomena under chronic heat stress conditions. To address this, we designed the present study to determine the influence of cyclic (32 to 24 to 32 °C: 32 °C for 8 h/d, 32–24–32HS ), and constant (32 and 34 °C, 32HS and 34HS, respectively) heat exposure on the metabolic and peroxide status in skeletal muscle of 4-wk-old male broiler chickens. Heat stress, particularly in the 32HS and 34HS groups, depressed feed intake and growth, while cyclic high temperature gave rise to a less severe stress response in performance terms. Malondialdehyde (MDA) levels in skeletal muscle were enhanced (P < 0.05) by constant heat treatment; the degree of enhancement was not as large as the changes observed in our previous ‘acute’ heat stress model. The 3HADH (3-hydroxyacyl CoA dehydrogenase related to fatty acid oxidation) and CS (citrate synthase) enzyme activities were lowered (P < 0.05) by both the cyclic and constant 34HS treatments, and constant 34HS group, respectively. These results suggest that chronic heat exposure decreases metabolic oxidation capacity in skeletal muscle of broiler chickens. On exposure to chronic heat stress, GPx activity remained relatively constant, though a temperature-dependent elevation in Cu/Zn-SOD activity was observed, implying that anti-oxidation ability was disturbed by the chronic stress condition. From these results it can be concluded that chronic heat stress did not induce oxidative damage to a major extent. This may probably be due to a decrease in metabolic oxidation capacity or due to a self-propagating scavenging system, though the system was not fully activated.  相似文献   

5.
Dietary fat restriction and increased carbohydrate intake are part of treatment in very-long-chain acyl-CoA dehydrogenase (VLCAD)-deficiency, the most common defect of long-chain fatty acid oxidation. The long-term impact of these interventions is unknown. We characterized here the effects of a fat-reduced, carbohydrate-enriched diet and an increased fat intake on energy metabolism in a mouse model of VLCAD-deficiency.Wild-type and VLCAD?/? mice were fed one year either with a normal (5.1%), a high fat (10.6%) or a low-fat, carbohydrate-enriched (2.6%) diet. Dietary effects on genes involved in lipogenesis, energy homeostasis and substrate selection were quantified by real-time-PCR. Acylcarnitines as sign of impaired energy production were determined in dried blood spots and tissues. White skeletal muscle was analyzed for muscle fiber type as well as for glycogen and triglyceride content.Both dietary modifications induced enhanced triacylglyceride accumulation in skeletal muscle and inhibition of glucose oxidation. This was accompanied by an up-regulation of genes coding for oxidative muscle fiber type I and a marked accumulation of acylcarnitines, especially prominent in the heart (164 ± 2.8 in VLCAD?/? vs. 82.3 ± 2.1 in WT μmol/mg) under a low-fat, carbohydrate-enriched diet.We demonstrate here that both dietary interventions with respect to the fat content of the diet reverse endogenous compensatory mechanisms in muscle that have evolved in VLCAD?/? mice resulting in pronounced energy deficiency. In particular, the low-fat carbohydrate-enriched diet was not effective in the long term. Further experiments are necessary to define the optimal energy provision for fatty acid oxidation defects.  相似文献   

6.
Antioxidant vitamin C (VC) supplementation is of potential clinical benefit to individuals with skeletal muscle oxidative stress. However, there is a paucity of data reporting on the bioavailability of high-dose oral VC in human skeletal muscle. We aimed to establish the time course of accumulation of VC in skeletal muscle and plasma during high-dose VC supplementation in healthy individuals. Concurrently we investigated the effects of VC supplementation on expression levels of the key skeletal muscle VC transporter sodium-dependent vitamin C transporter 2 (SVCT2) and intramuscular redox and mitochondrial measures. Eight healthy males completed a randomized placebo-controlled, crossover trial involving supplementation with ascorbic acid (2×500 mg/day) over 42 days. Participants underwent muscle and blood sampling on days 0, 1, 7, and 42 during each treatment. VC supplementation significantly increased skeletal muscle VC concentration after 7 days, which was maintained at 42 days (VC 3.0±0.2 (mean±SEM) to 3.9±0.4 mg/100 g wet weight (ww) versus placebo 3.1±0.3 to 2.9±0.2 mg/100 g ww, p=0.001). Plasma VC increased after 1 day, which was maintained at 42 days (VC 61.0±6.1 to 111.5±10.4 µmol/L versus placebo 60.7±5.3 to 59.2±4.8 µmol/L, p<0.001). VC supplementation significantly increased skeletal muscle SVCT2 protein expression (main treatment effect p=0.006) but did not alter skeletal muscle redox measures or citrate synthase activity. A main finding of our study was that 7 days of high-dose VC supplementation was required to significantly increase skeletal muscle vitamin C concentration in healthy males. Our findings implicate regular high-dose vitamin C supplementation as a means to safely increase skeletal muscle vitamin C concentration without impairing intramuscular ascorbic acid transport, antioxidant concentrations, or citrate synthase activity.  相似文献   

7.
In selected mammalian tissues, long chain fatty acid transporters (FABPpm, FAT/CD36, FATP1, and FATP4) are co-expressed. There is controversy as to whether they all function as membrane-bound transporters and whether they channel fatty acids to oxidation and/or esterification. Among skeletal muscles, the protein expression of FABPpm, FAT/CD36, and FATP4, but not FATP1, correlated highly with the capacities for oxidative metabolism (r ≥ 0.94), fatty acid oxidation (r ≥ 0.88), and triacylglycerol esterification (r ≥ 0.87). We overexpressed independently FABPpm, FAT/CD36, FATP1, and FATP4, within a normal physiologic range, in rat skeletal muscle, to determine the effects on fatty acid transport and metabolism. Independent overexpression of each fatty acid transporter occurred without altering either the expression or plasmalemmal content of other fatty acid transporters. All transporters increased fatty acid transport, but FAT/CD36 and FATP4 were 2.3- and 1.7-fold more effective than FABPpm and FATP1, respectively. Fatty acid transporters failed to alter the rates of fatty acid esterification into triacylglycerols. In contrast, all transporters increased the rates of long chain fatty acid oxidation, but the effects of FABPpm and FAT/CD36 were 3-fold greater than for FATP1 and FATP4. Thus, fatty acid transporters exhibit different capacities for fatty acid transport and metabolism. In vivo, FAT/CD36 and FATP4 are the most effective fatty acid transporters, whereas FABPpm and FAT/CD36 are key for stimulating fatty acid oxidation.Uptake of long chain fatty acids across the plasma membrane had long been considered to occur via passive diffusion. However, in recent years, there has been a fundamental shift in our understanding, and it is now widely recognized that long chain fatty acids cross the plasma membrane via a protein-mediated mechanism (for reviews, see Refs. 13). A number of fatty acid transporters have been identified, including fatty acid translocase/CD36 (FAT/CD36), plasma membrane-associated fatty acid binding proteins (FABPpm), and a family of fatty acid transport proteins (FATP1–6)5 (for reviews, see Refs. 1 and 4). Selected stimuli (muscle contraction, insulin, and AICAR) induce the translocation of selected fatty acid transporters (FABPpm, FAT/CD36, and FATP1) from an intracellular depot to the plasma membrane, in both heart and skeletal muscle, resulting in concurrently increased rates of fatty acid transport (for a review, see Ref. 1). Some fatty acid transporters have now also been implicated in the dysregulation of fatty acid metabolism in heart and skeletal muscle in models of insulin resistance and type 1 and 2 diabetes, including FAT/CD36 (59), FATP1 (10, 11), and possibly FATP4 (11, 12) but not FABPpm (57). Thus, in recent years, it has become widely accepted that (a) long chain fatty acids traverse the plasma membrane via a protein-mediated mechanism and (b) some of the fatty acid transporters are central to the dysregulation in skeletal muscle fatty acid metabolism in obesity and type 2 diabetes.In vivo, many of the fatty acid transporters are frequently co-expressed in different tissues. FAT/CD36 and FABPpm are ubiquitously expressed (1), whereas FATP1–6 exhibit a somewhat tissue-specific distribution pattern (13, 14). The reason for the co-expression of different fatty acid transporters within the same tissue remains unclear. It has been speculated that selected fatty acid transporters may need to interact with each other (15, 16). Alternatively, it is also possible that (a) different fatty acid transporters have discrepant transport capacities, and (b) selected transporters may channel fatty acids differentially to fatty acid oxidation and esterification into triacylglycerols in mammalian tissue.Recent evidence has shown that the transport capacities among FATPs can differ substantially, as revealed by overexpression (14, 17, 18) or knockdown studies (19), but there is little agreement as to which FATP is most effective. Extensive studies by DiRusso et al. (17) in yeast revealed that when FATP1–6 were overexpressed to similar levels (qualitative assessment), FATP4 exhibited 1.7- and 3-fold greater fatty acid transport effectiveness compared with FATP1 and FATP2, respectively, whereas no fatty acid transport capacities were attributable to FATP3, -5, and -6 (17). In contrast, in HEK293 cells, the FATP6 transport capacity was 3- and 6.5-fold greater than FATP1 and FATP4, respectively (14), whereas in 3T3-L1 adipocytes, a fatty acid transport role was evident only for FATP1 and not FATP4 (19). Others have also questioned the transport role of FATP4 (20). These discrepant findings with respect to the transport effectiveness of FATPs may reflect, in part, the use of diverse cell types with ill defined metabolic needs and/or machinery for fatty acid uptake and metabolism. Indeed, several recent reports indicate that fatty acid transport cannot be adequately examined in some cells, because these appear to lack accessory proteins that may be involved in fatty acid transport (21, 22). In addition, extrapolation of results from cultured cells to metabolically important tissue in vivo may also be problematic, since cells and mammalian tissues probably have different requirements for fatty acid utilization, and their regulation of fatty acid uptake may also differ. For example, the mechanisms regulating the acute contraction-induced up-regulation of fatty acid transport and oxidation, such as occurs in heart and skeletal muscle, is probably absent in selected cell cultures.Assessment of fatty acid transporter effectiveness, in vivo, cannot be determined in knock-out animals, since compensatory responses in some fatty acid transporters (FATP1 and -4) occur when another fatty acid transporter (FAT/CD36) has been ablated (23, 24). Thus, the relative effectiveness of selected fatty acid transporters on fatty acid transport in vivo remains unknown. In addition, whether fatty acid transporters channel fatty acids to a particular metabolic fate, as has been suggested based on studies in cultured cells (18, 19, 25), may depend on the cell type being examined.It is desirable to discern the effectiveness of selected fatty acid transporters in mammalian tissues that have a well known system for transporting and utilizing fatty acids and in which fatty acid transporters can be independently up-regulated without disturbing the expression of other fatty acid transporters. These criteria can be satisfied in rat skeletal muscle in which genes can be up-regulated under controlled conditions within a physiologically meaningful range (2628). Therefore, in the present study, we have compared the independent transport effectiveness of fatty acid transporters (FABPpm, FAT/CD36, FATP1, and FATP4) in skeletal muscle, without disturbing the expression and plasmalemmal content of other fatty acid transporters. In addition, we also examined the contributions of these transporters to fatty acid oxidation and esterification into triacylglycerols. These are the first studies to reveal that in vivo (a) the fatty acid transport effectiveness of fatty acid transporters differs considerably, and (b) in skeletal muscle, these transporters serve to channel fatty acids to oxidation, not esterification into triacylglycerols.  相似文献   

8.
Galanin-like peptide (GALP) is a neuropeptide involved in energy metabolism. The interactive effect of GALP and exercise on energy metabolism has not been investigated. The aim of this study was to determine if energy metabolism in spontaneously exercising mice could be promoted by intracerebroventricular (ICV) GALP administration. Changes in respiratory exchange ratio in response to GALP ICV administration indicated that lipids were primarily consumed followed by a continuous consumption of glucose throughout the dark period in non-exercising mice. In mice permitted to spontaneously exercise on a running-wheel, GALP ICV administration increased the consumed oxygen volume and heat production level from 5 to 11 h after administration. These effects occurred independently from the total running distance. The interaction between GALP ICV administration and spontaneous exercise decreased body weight within 24 h (F(1,16) = 5.772, p < 0.05), with no significant interaction observed regarding food and water intake or total distance. Energy metabolism-related enzymes were assessed in liver and skeletal muscle samples, with a significant interaction on mRNA expression between GALP ICV administration and spontaneous exercise observed in phosphoenolpyruvate carboxykinase (F(1,16) = 18.602, p < 0.001) that regulates gluconeogenesis and glucose transporter-4 (F(1,16) = 21.092, p < 0.001). GALP significantly decreased the mRNA expression of sterol regulatory element-binding protein-1c (p < 0.05) that regulates fatty acid synthesis regardless of spontaneous exercise with no changes to acetyl-CoA carboxylase a and fatty acid synthetase. These results indicate the GALP ICV administration can further promote energy metabolism when administered to spontaneously exercising mice.  相似文献   

9.
《Small Ruminant Research》2008,80(2-3):167-173
Diets supplemented with long chain, n  3 polyunsaturated fatty acids (PUFA) have improved the health and performance of neonatal and growing animals. This study was conducted with lambs that were orphaned at approximately 1 day of age to determine whether supplementing milk replacer fed lambs with oils rich in long chain n  3 or n  6 PUFA would alter plasma lipid profiles and affect growth characteristics and immune functions. From days 1 to 28 of age, lambs had ad libitum access to commercial milk replacer. From days 7 to 28 of age, lambs received twice daily either 1 g of soybean oil, 1 g of fish oil, or 1 g of safflower oil per os in a gelatin capsule (n = 60 pens; 20 pens/treatment; one ewe and one ram with similar initial body weights/pen). On days 7, 14, 21, and 28 of age, lambs were weighed, and jugular blood was collected from ram lambs. Lymphocyte proliferation in vitro, differential white blood cell (WBC) counts, and weight gains were quantified. Plasma from days 7 and 28 was used for fatty acid analyses. Fish oil increased (P < 0.001) plasma total n  3 fatty acid concentration and total n  3:total n  6 fatty acid ratio. Pen body weight (i.e., total lamb weight per pen) increased (P < 0.001) with day (day 7, 11.9 kg; day 14, 15.1 kg; day 21, 18.2 kg; and day 28, 21.2 kg), but oil treatment did not affect pen body weight. Neither oil treatment, day, nor oil treatment × day interaction were significant for pen body weight gains (3.5 kg), pen average daily gains (0.5 kg), pen milk intakes (19.0 kg), or pen gain:feed ratio (0.18) measured during three intervals: days 7–14; days 14–21; and days 21–28. Day, but not oil treatment, affected (P < 0.001) unstimulated, concanavalin A stimulated, and lipopolysaccharides stimulated lymphocyte proliferation: days 14, 21, and 28 proliferation > day 7 proliferation. For neutrophils per 100 WBC, the treatment × day interaction was significant (P < 0.05). Oil treatment and day affected (P < 0.01 and <0.05, respectively) lymphocyte numbers per 100 WBC. For monocytes, eosinophils, and basophils, neither oil treatment, day, nor the oil treatment × day interaction were significant. Fish oil altered plasma fatty acid profiles, but it did not seem to improve measures of the performance or immune function of healthy, milk replacer fed lambs.  相似文献   

10.
Acute Kidney Injury (AKI) is frequently encountered in hospitalized patients where it is associated with increased mortality and morbidity notably affecting muscle wasting. Increased protein degradation has been shown to be the main actor of AKI-induced muscle atrophy, but the proteolytic pathways involved are poorly known. The Ubiquitin Proteasome System (UPS) is almost systematically activated in various catabolic situations, and the E3 ligases MuRF1 and MAFbx are generally up regulated in atrophying muscles. We hypothesized that the UPS may be one of the main actors in catabolic skeletal muscles from AKI animals. We used gentamicin-induced acute kidney disease (G-AKI) in rats fed a high protein diet to promote acidosis. We first addressed the impact of G-AKI in the development of mild catabolic conditions. We found that both muscle atrophy and UPS activation were induced with the development of G-AKI. In addition, the phasic muscles were more sensitive to 7-days G-AKI (−11 to −17%, P < 0.05) than the antigravity soleus muscle (−11%, NS), indicating a differential impact of AKI in the musculature. We observed an increased expression of the muscle-specific E3 ligases MuRF1 and MAFbx in phasic muscles that was highly correlated to the G-AKI severity (R2 = 0.64, P < 0.01 and R2 = 0.71, P < 0.005 respectively). Conversely, we observed no variation in the expression of three other E3 ligases (Nedd4, Trim32 and Fbxo30/MUSA1). Altogether, our data indicate that MuRF1 and MAFbx are sensitive markers and potential targets to prevent muscle atrophy during G-AKI.  相似文献   

11.
《Small Ruminant Research》2010,89(2-3):151-155
The effect of organic system on the fatty acid profile of milk and CLA content was evaluated using 30 pregnant pluriparous goats, divided into two homogeneous groups (S and O) of 15 goats each. Group S was housed in a stable and received alfalfa hay as forage, while group O was raised according EC Regulation 834/2007 and led to pasture. After the kids weaning, goats were milked twice a day for 5 months. Daily milk yield was recorded and, monthly, representative milk samples from the two daily milkings were analysed for chemical and fatty acid profile. Average milk yield did not differ statistically between the groups. The goats of the O group had significantly higher fat content in milk than those of group S (65.9 g/day vs. 54.3 g/day, P < 0.01). Among milk fatty acids, organic system significantly affected the percentages of C18:1 c9, C18:1 t11, linoleic acid, alpha-linolenic acid, monounsaturated fatty acid and polyunsaturated fatty acid. Organic system highly influenced the c9 t11 conjugated linoleic acid (CLA) (0.810 g/100 g of fat vs. 0.542 g/100 g of fat, for groups O and S, respectively, P < 0.01), t10 c12 CLA (0.041 g/100 g of fat vs. 0.024 g/100 g of fat, for groups O and S, respectively, P < 0.01) and ∑CLA (0.87 g/100 g of fat vs. 0.58 g/100 g of fat for groups O and S, respectively, P < 0.01) concentrations of milk.  相似文献   

12.
The phospholipid (PL) fatty acyl chain (FA) composition (mol%) was determined in the kidney, liver, lung and brain of 8 avian species ranging in body mass from 150 g (Japanese quail, Coturnix coturnix japonica) to 19 kg (turkey, Meleagris gallopavo). In all organs except the brain, docosahexaenoic acid (C22:6 n3, DHA) was found to show a negative allometric scaling (allometric exponent: B = ? 0.18; ? 0.20 and ? 0.24, for kidney, liver and lung, respectively). With minor inter-organ differences, smaller birds had more n3 FAs and longer FA chains in the renal, hepatic and pulmonary PLs. Comparing our results with literature data on avian skeletal muscle, liver mitochondria and kidney microsomes and divergent mammalian tissues, the present findings in the kidney, liver and lung PLs seem to be a part of a general relationship termed “membranes as metabolic pacemakers”. Marked negative allometric scaling was found furthermore for the tissue malondialdehyde concentrations in all organs except the brain (B = ? 0.17; ? 0.13 and ? 0.05, respectively). In the liver and kidney a strong correlation was found between the tissue MDA and DHA levels, expressing the role of DHA in shaping the allometric properties of membrane lipids.  相似文献   

13.
We compared the intracellular distribution and regulatory role of fatty acid transporter protein (FATP1) and fatty acid translocase (FAT/CD36) on muscle cell fatty acid metabolism. With the use of adenoviruses, FATP1 and FAT genes were delivered to primary cultured human muscle cells. FATP1 and FAT moderately enhanced palmitate and oleate transport evenly at concentrations of 0.05, 0.5, and 1 mM. Long-term (16 h) consumption of palmitate and oleate from the media, and particularly incorporation into triacylglyceride (TAG), was stimulated equivalently by FATP1 and FAT at all fatty acid concentrations tested. In contrast, long-term CO2 production was reduced by FATP1 and FAT at all doses of palmitate and at the lower concentrations of oleate. Neither FATP1 nor FAT markedly altered the production of acid-soluble metabolic intermediates from palmitate or oleate. The intracellular localization of fusion constructs of FATP1 and FAT with enhanced green fluorescent protein (EGFP) was examined. Independently of fatty acid treatment, FATPGFP was observed throughout the cytosol in a reticular pattern and concentrated in the perinuclear region, partly overlapping with the Golgi marker GM-130. FATGFP was found in the extracellular membrane and in cytosolic vesicles not coincident with GM-130. Neither FATP1 nor FAT proteins colocalized with lipid droplets in oleate-treated cells. We conclude that whereas FAT is localized on the extracellular membrane, FATP1 is active in the cytosol and imports fatty acids into myotubes. Overall, both FATP1 and FAT stimulated transport and consumption of palmitate and oleate, which they channeled away from complete oxidation and toward TAG synthesis. palmitate; oleate; fatty acid binding proteins; skeletal muscle  相似文献   

14.
《Cytokine》2015,72(2):327-333
Skeletal muscle has recently been described as an endocrine organ, capable of releasing cytokines and regulators of metabolism. Microdialysis of the interstitial space of skeletal muscle enables analysis of the release of such cytokines. The purpose of this study was to determine the transient changes in concentration of metabolites and cytokines in human skeletal muscle in a 7 h period following the insertion of a microdialysis probe. In total, sixteen microdialysis catheters were inserted into the vastus lateralis of male participants (age 26.2 ± 1.35 y, height 180.8 ± 3.89 cm, mass 83.9 ± 3.86 kg, BMI 25.7 ± 0.87 kg m−2, body fat 26.1 ± 3.0%). Serial samples were analyzed by micro-enzymatic and multiplexed immunoassay. Muscle interstitial glucose and lactate levels remained stable throughout, amino acid concentrations stabilized after 2.5 h, however, insertion of a microdialysis catheter induced a 29-fold increase in peak IL-6 (p < 0.001) and 35-fold increase in peak IL-8 concentrations (p < 0.001) above basal levels 6 h post insertion. In contrast to stable amino acid, glucose and lactate concentrations after 2 h, commonly reported markers of tissue homeostasis in in vivo microdialysis, the multi-fold increase in IL-6 and IL-8 following insertion of a microdialysis catheter is indicative of a sustained disturbance of tissue homeostasis.  相似文献   

15.
A mild and efficient method for the conversion of fatty acid methyl esters from lard into ascorbyl esters via lipase-catalyzed transesterification in co-solvent mixture is described. A solvent engineering strategy was firstly applied to improve fatty acid ascorbyl esters production. The co-solvent mixture of 30% t-pentanol:70% isooctane (v/v) was optimal. Response surface methodology (RSM) and central composite design (CCD) were employed to estimate the effects of reaction parameters, such as reaction time (12–36 h), temperature (45–65 °C), enzyme amount (10–20%, w/w, of fat acid methyl esters), and substrate molar ratio of fatty acid methyl esters to ascorbic acid (8:1–12:1) for the synthesis of fatty acid ascorbyl esters in co-solvent mixture. Based on the RSM analysis, the optimal reaction conditions were determined as follows: reaction time 34.32 h, temperature 54.6 °C, enzyme amount 12.5%, substrate molar ratio 10.22:1 and the maximum conversion of fatty acid ascorbyl esters was 69.18%. The method proved to be applicable for the synthesis of ascorbyl esters using Novozym 435 in solvent.  相似文献   

16.
The purpose of this study was to determine how dexamethasone (DEX) regulates the expression and activity of αvβ3 integrin. FACS analysis showed that DEX treatment induced expression of an activated αvβ3 integrin. Its expression remained high as long as DEX was present and continued following DEX removal. FACS analysis showed that the upregulation of αvβ3 integrin was the result of an increase in the expression of the β3 integrin subunit. By real time qPCR, DEX treatment induced a 6.2-fold increase (p < 0.04) in β3 integrin mRNA by day 2 compared to control and remained elevated for 6 days of treatment and then an additional 10 days once the DEX was removed. The increase in β3 integrin mRNA levels required only 1 day of DEX treatment to increase levels for 4 days in the absence of DEX. In contrast, DEX did not alter β1 integrin mRNA or protein levels. The DEX-induced upregulation of β3 integrin mRNA was partly due to an increase in its half-life to 60.7 h from 22.5 h in control cultures (p < 0.05) and could be inhibited by RU486 and cycloheximide, suggesting that DEX-induced de novo protein synthesis of an activation factor was needed. The calcineurin inhibitors cyclosporin A (CsA) and FK506 inhibited the DEX induced increase in β3 integrin mRNA. In summary, the DEX-induced increase in β3 integrin is a secondary glucocorticoid response that results in prolonged expression of αvβ3 integrin and the upregulation of the β3 integrin subunit through the calcineurin/NFAT pathway.  相似文献   

17.
The present study deals with the production of structured lipid containing omega-3 and omega-6 fatty acids in the ratio of 1:1 by incorporating omega-3 fatty acids (α-linolenic acid) from linseed oil into groundnut oil using lipase (Lipozyme IM from Rhizomucor miehei) catalyzed acidolysis reaction in hexane. The reaction conditions were optimized by response surface methodology with a four-variable five-level central composite rotatable experimental design. The influence of four independent parameters, namely ratio of fatty acid concentrate from linseed to groundnut oil (0.66–1.98, w/w), reaction temperature (30–60 °C), enzyme concentration (1–5%) and reaction time (2–54 h) on omega-3 fatty acids incorporation into groundnut oil were optimized. Optimal conditions for the structured lipid containing omega-3 to omega-6 fatty acids in the ratio of 1:1 were determined to be; enzyme concentration 3.75% (w/w), temperature 37.5 °C, incubation time 30.81 h and ratio of free fatty acid concentrate from linseed oil to groundnut oil 1.16 (w/w).  相似文献   

18.
Cardiopulmonary and skeletal muscle effects of combined aerobic and resistance training vs. aerobic training were studied in men with coronary heart disease. Sixteen men with coronary heart disease underwent a cardiopulmonary exercise testing and a quadriceps skeletal muscle fatigue assessment. Patients were divided into two groups and trained in a combined aerobic and resistance or aerobic training group during 7 weeks. Maximal voluntary contraction and isometric endurance time were measured with electromyographic signals recorded from vastus lateralis (VL), rectus femoris (RF) and vastus medialis (VM) during isometric endurance time. Exercise tolerance increased only in the combined group (p < 0.05). Maximal voluntary contraction and isometric endurance time did not change after training in either group but was performed at 5.8% higher force output for the combined group. After training, median frequency values were higher for the VL and VM (p < 0.001) in the aerobic group and also higher for the VL, RF (p < 0.001) and VM (p < 0.05) in the combined group. Combined aerobic and resistance training was more effective to improve exercise tolerance, decrease skeletal muscle fatigue and correct neuromuscular alterations in men with coronary heart disease.  相似文献   

19.
Fatty acid transport protein 1 (FATP1), a member of the FATP/Slc27 protein family, enhances the cellular uptake of long-chain fatty acids (LCFAs) and is expressed in several insulin-sensitive tissues. In adipocytes and skeletal muscle, FATP1 translocates from an intracellular compartment to the plasma membrane in response to insulin. Here we show that insulin-stimulated fatty acid uptake is completely abolished in FATP1-null adipocytes and greatly reduced in skeletal muscle of FATP1-knockout animals while basal LCFA uptake by both tissues was unaffected. Moreover, loss of FATP1 function altered regulation of postprandial serum LCFA, causing a redistribution of lipids from adipocyte tissue and muscle to the liver, and led to a complete protection from diet-induced obesity and insulin desensitization. This is the first in vivo evidence that insulin can regulate the uptake of LCFA by tissues via FATP1 activation and that FATPs determine the tissue distribution of dietary lipids. The strong protection against diet-induced obesity and insulin desensitization observed in FATP1-null animals suggests FATP1 as a novel antidiabetic target.  相似文献   

20.
A prolyl endopeptidase (PEP) was purified to homogeneity from the skeletal muscle of common carp using a procedure involving ammonium sulfate fractionation and column chromatography involving DEAE-Sephacel, Phenyl-Sepharose, DEAE-Sepharose Fast Flow, and hydroxyapatite. The molecular weight of the PEP was 82 kDa as determined by SDS-PAGE. Using Suc-Gly-Pro-MCA as a substrate, the optimal pH and temperature of the purified enzyme were pH 6.0 and 35 °C, respectively, and the Km and kcat were 8.33 μM and 1.71 S?1, respectively. The activity of the PEP was inhibited by SUAM-14746, a specific inhibitor of prolyl endopeptidases, and was partially inhibited by the serine proteinase inhibitors PMSF and Pefabloc SC. According to peptide mass fingerprinting, 12 peptide fragments with a total of 134 amino acid residues were obtained, which were highly identical to prolyl endopeptidases from zebrafish (Danio rerio) and sponge (Amphimedon queenslandica), confirming the purified enzyme was a prolyl endopeptidase. Our present study for the first time reported the existence of a prolyl endopeptidase in fish muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号