首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have shown that 4 ng luteinizing hormone releasing hormone (LHRH) pulses induced significantly greater luteinizing hormone (LH) release from proestrous rat superfused anterior pituitary cells with no cycle related differences in follicle stimulating hormone (FSH). Current studies gave 8 ng LHRH in various pulse regimens to study amplitude, duration and frequency effects on LH and FSH secretion from estrous 0800, proestrous 1500 and proestrous 1900 cells. Regimen 1 gave 8 ng LHRH as a single bolus once/h; regimen 2 divided the 8 ng into 3 equal 'minipulses' given at 4 min intervals to extend duration; regimen 3 gave the 3 'minipulses' at 10 min intervals, thereby further extending duration: regimen 4 was the same as regimen 2, except that the 3 'minipulses' were given at a pulse frequency of 2 h rather than 1 h. In experiment 1, all four regimens were employed at proestrus 1900. FSH was significantly elevated by all 8 ng regimens as compared to 4 ng pulses; further, 8 ng divided into 3 equal 'minipulses' separated by 4 min at 1 and 3 h frequencies (regimens 2 and 4) resulted in FSH secretion that was significantly greater than with either a single 8 ng bolus (regimen 1) or when the 'minipulses' were separated by 10 min (regimen 3). In experiment 2, at proestrus 1500, FSH response to the second pulse of regimen 4 was significantly greater than in regimen 2; LH release was significantly suppressed at pulse 2 compared to regimen 2 accentuating divergent FSH secretion. At estrus 0800, FSH response to the second pulse of regimen 4 was significantly stimulated FSH at proestrus 1900, 1500 and estrus 0800, FSH divergence was most marked at proestrus 1500. These data indicate a potential role for hypothalamic LHRH secretory pattern in inducing divergent gonadotropin secretion in the rat.  相似文献   

3.
Previous work has indicated that in long-term ovariectomized rats a potent antagonist to gonadotropin-releasing hormone (GnRH) suppressed serum luteinizing hormone (LH) more successfully than follicle-stimulating hormone (FSH). The present studies examined whether the rise in serum FSH which occurs acutely after ovariectomy, or during the proestrous secondary surge, depends on GnRH. In Experiment A, rats were ovariectomized at 0800 h of metestrus and injected with (Ac-dehydro-Pro1, pCl-D-Phe2, D-Trp3,6, NaMeLeu7)-GnRH (Antag-I) at 1200 h of the same day, or 2 or 5 days later. Antag-I blocked the LH response completely, but only partially suppressed serum FSH levels. Experiment B tested a higher dose of a more potent antagonist [( Ac-3-Pro1, pF-D-Phe2, D-Trp3,6]-GnRH; Antag-II) injected at the time of ovariectomy. The analog suppressed serum LH by 79% and FSH by 30%. Experiment C examined the effect of Antag-II on the day of proestrus on the spontaneous secondary surge of FSH, as well as on a secondary FSH surge which can be induced by exogenous LH. Antag-II, given at 1200 h proestrus, blocked ovulation and the LH surge expected at 1830 h, as well as increases in serum FSH which occur at 1830 h and at 0400 h. Exogenous LH triggered a rise in FSH in rats suppressed by Antag-II. In Experiment D proestrous rats were injected with Antag-II at 1200 h and ovariectomized at 1530 h. By 0400 h the antag had suppressed FSH in controls, but in the ovariectomized rats, a vigorous FSH response occurred.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The present series of experiments was conducted in an attempt to correlate previously reported dose-dependent and site-selective inhibitory effects of an antiestrogen, CI-628, on 17 beta-estradiol (E2)-receptor interactions in the anterior pituitary gland (AP) and hypothalamus with its effects on the preovulatory surges of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and prolactin. The effects of CI-628 on the response of the AP to luteinizing hormone-releasing hormone (LHRH) and thyrotropin-releasing hormone (TRH) also were examined. In the first study, rats exhibiting 4-day estrous cycles were injected with various doses (0.02, 0.20, 2.0, and 20 mg/kg) of CI-628 or vehicle at 0900 h on diestrus-2 and proestrus. The preovulatory LH surge and both preovulatory and secondary FSH surges were marginally affected by 0.02 mg/kg CI-628, but were completely abolished by higher doses. In contrast, a dose of 0.20 mg/kg only delayed the prolactin surge; however, higher doses were effective in extinguishing cyclic prolactin release. In a second experiment, CI-628 in rats treated on diestrus-2 and proestrus exerted a dose-dependent suppression of the AP LH response to an initial injection of LHRH on proestrous afternoon in rats whose endogenous LH surges were blocked by phenobarbital. However, AP LH responses to a second LHRH injection to assess the self-priming capacity of LHRH were attenuated only in rats given 0.20, 2.0, and 20 mg/kg CI-628. Contrastingly, the AP prolactin response to TRH was suppressed only in rats given 0.20 mg/kg CI-628.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
K A Elias  C A Blake 《Life sciences》1980,26(10):749-755
Experiments were undertaken to investigate if changes occur at the level of the anterior pituitary gland to result in selective follicle-stimulating hormone (FSH) release during late proestrus in the cyclic rat. At 1200 h proestrus, prior to the preovulatory luteinizing hormone (LH) surge in serum and the accompanying first phase of FSH release, serum LH and FSH concentrations were low. At 2400 h proestrus, after the LH surge and shortly after the onset of the second or selective phase of FSH release, serum LH was low, serum FSH was elevated about 4-fold, pituitary LH concentration was decreased about one-half and pituitary FSH concentration was not significantly decreased. During a two hour invitro incubation, pituitaries collected at 2400 h released nearly two-thirds less LH and 2.5 times more FSH than did pituitaries collected at 1200 h. Addition of luteinizing hormone releasing hormone (LHRH) to the incubations caused increased pituitary LH and FSH release. However, the LH and FSH increments due to LHRH in the 2400 h pituitaries were not different from those in the 1200 h pituitaries. The results indicate that a change occurs in the rat anterior pituitary gland during the period of the LH surge and first phase of FSH release which results in a selective increase in the basal FSH secretory rate. It is suggested that this change is primarily responsible for the selective increase in serum FSH which occurs during the second phase of FSH release.  相似文献   

6.
The purpose of this study was to investigate whether melanin-concentrating hormone (MCH) acts directly on the median eminence and on the anterior pituitary of female rats regulating LHRH and gonadotropin release. In addition, immunohistochemistry was used to examine the density and distribution of MCH-immunoreactive fibers in the median eminence of proestrous rats. MCH-immunoreactive fibers were found in both the internal and external layers of the median eminence and in close association with hypophysial portal vessels. In the first series of in vitro experiments, median eminences and anterior pituitaries were incubated in Krebs-Ringer bicarbonate buffer containing two MCH concentrations (10(-10) and 10(-8) M). The lowest MCH concentration (10(-10) M) increased (P < 0.01) LHRH release only from proestrous median eminences. Anterior pituitaries incubated with both MCH concentrations also showed that 10(-10) M MCH increased gonadotropin release only from proestrous pituitaries. In the second series of experiments, median eminences and pituitaries from proestrous rats were incubated with graded concentrations of MCH. MCH (10(-10) and 10(-9) M) increased (P < 0.01) LHRH release from the median eminence, and only 10(-10) M MCH increased (P < 0.01) LH and FSH release from the anterior pituitary. The effect of MCH on the stimulation of both gonadotropins from proestrous pituitaries was similar to the effect produced by LHRH. Simultaneous incubation of pituitaries with MCH and LHRH did not modify LH but increased the FSH release induced by LHRH. The present results suggest that MCH could be involved in the regulation of preovulatory gonadotropin secretion.  相似文献   

7.
These experiments explored the mechanism underlying FSH hypersecretion on estrous afternoon in rats injected with RU486 (RU) on proestrus. Four-day cyclic rats were injected with RU at 12:00 h on proestrus (1 or 4 mg/0.2 ml oil; s.c.), and its effects on LH and FSH secretion at 18:30 h on estrus were compared with those of antiprogestagens ZK299 (ZK) (1 or 4 mg/0.2 ml oil; s.c.) and Org31806 (OR) (2 or 8 mg/0.2 ml oil; s.c.). Additionally, rats treated with RU or nembutal (PB) (60 mg/kg; i.p. at 13:00 h on proestrus) were injected with an LHRH antagonist (LHRHa) at 10:00 h on estrus (1 mg/0.2 ml saline; s.c.) or progesterone (P) (7.7, 15.5 or 30.9 mg/0.2 ml oil; s.c.) on proestrus at 10:00 h in RU-injected rats and at 14:00 h in PB-injected rats. Animals were killed by decapitation at 18:30 h on estrus and serum LH and FSH concentrations were determined. Rats treated with 1 or 4 mg of RU or Org or 4 mg of ZK recorded increased serum FSH on estrous afternoon, while 1 mg ZK had no effect. PB increased mainly serum LH levels and, to a lesser extent, FSH levels. P decreased serum FSH concentrations in both RU- and PB-injected rats. LHRHa reversed the effects of PB on FSH secretions, but reduced FSH hypersecretion induced by RU only. These results are interpreted to mean that, in the absence of proestrous afternoon P-inhibitory action of the neural stimulus controlling LHRH release, FSH secretion on estrous afternoon involves two components: one is LHRH dependent while, in contrast to LH secretion, the other is LHRH independent, and only expressed in a low estrogen background.  相似文献   

8.
The changes in serum gonadotrophins in male hamsters following one injection of 15 μg luteinizing hormone releasing hormone (LHRH) (Group A) were compared with those following the last injection of LHRH in animals receiving an injection approximately every 12 hr for 4 days (Group B) or 12 days (Group C). Peak follicle stimulating hormone (FSH) levels (ng/ml) were 1776±218 (Group A), 2904±346 (Group B), and 4336±449 (Group C). Peak luteinizing hormone (LH) values (ng/ml) were 1352±80 (Group A), 410±12 (Group B), and 498±53 (Group C). Serum FSH:LH ratios, calculated from the concentrations measured 16 hr after the last LHRH injections, were higher in Groups B and C than in Group A. Similar injections of LHRH (100 ng or 15 μg/injection) for 6 days elevated the serum FSH:LH ratio in intact males. Five such LHRH injections (100 ng/injection) blunted the rise in serum LH in orchidectomized hamsters. Direct effects of LHRH on gonadotrophin secretory dynamics or altered brain-pituitary-testicular interactions may alter the ratio of FSH to LH in the hamster.  相似文献   

9.
T A Kellom  J L O'Conner 《Steroids》1991,56(5):284-290
The effects of luteinizing hormone releasing hormone (LHRH) pulse amplitude, duration, and frequency on divergent gonadotropin secretion were examined using superfused anterior pituitary cells from selected stages of the rat estrous cycle. Cells were stimulated with one of five LHRH regimens. With low-amplitude LHRH pulses (regimen 1) in the presence of potentially estrogenic phenol red, LH response in pituitary cells from proestrus 1900, estrus 0800, and diestrus 1,0800 were all significantly larger (P less than 0.05) than the other stages tested. In the absence of phenol red, responsiveness at proestrus 1900 was significantly larger than proestrus 0800, proestrus 1500, and estrus 0800 (P less than 0.01, 0.05, and 0.05, respectively); other cycle stages tested were smaller. No significant differences were observed between cycle stages for follicle-stimulating hormone (FSH) secretion in the presence or absence of phenol red. Because pituitary cells at proestrus 1900 were the most responsive to low-amplitude 4 ng LHRH pulses, they were also used to study the effects of LHRH pulses of increased amplitude or duration and decreased frequency. Increasing the amplitude (regimen 2) or the duration (regimens 3 to 5) increased FSH secretion; this effect was greatest with regimens 3 and 5. When regimens 3 and 5 were studied in pituitary cells obtained at proestrus 1500, FSH was significantly increased by both regimes, but most by regimen 5; furthermore, LH release was significantly reduced. When regimens 3 and 5 were studied in pituitary cells obtained at estrus 0800, FSH release was elevated most significantly by regimen 5. Thus, variations in LHRH pulse regimen were found to be capable of inducing significant divergence in FSH release from superfused anterior pituitary cells derived from specific stages of the estrous cycle.  相似文献   

10.
We investigated whether neural afferents to the medial basal hypothalamus play an acute role in the estrous phase of FSH release in the 4-day cyclic rat. A cannula was inserted into the right atrium of the heart under brief ether anesthesia during the early afternoon of proestrus for subsequent blood collections and injection of LHRH. In some of the rats, the medial basal hypothalamus was surgically isolated from the rest of the brain with a small knife under brief ether anesthesia between 2000 h and 2130 h of proestrus. Control groups consisted of naive rats which were not treated during the night of proestrus and sham-operated animals in which the knife was lowered to the corpus callosum between 2000 h and 2130 h or proestrus. Rats were bled at 2200 h of proestrus and at 0200 h, 0600 h and 1000 h of estrus for radioimmunoassay of plasma FSH and LH. The plasma FSH levels in all 3 groups between 2200 h of proestrus and 1000 h of estrus were elevated above levels observed in other cannulated rats bled to the onset of the proestrous phase of FSH release at 1400 h of proestrus. There were no statistically significant differences in plasma FSH or LH concentrations at any of the time periods between the 3 groups of serially bled rats. The deafferentation procedure did not appear to impair the pituitary gland's ability to secret gonadotrophins as injection of 50 ng of LHRH after the bleeding at 1000 h of estrus caused substantial elevations in plasma FSH and LH concentrations which were not different between the 3 groups. The results suggest that neural afferents to the medial basal hypothalamus play no acute role in the estrous phase of FSH release in the cyclic rat.  相似文献   

11.
Summary 1. Intact or ovariectomized (OVX) cyclic rats injected or not with RU486 (4 mg/0.2 ml oil) from proestrus onwards were bled at 0800 and 1800h on proestrus, estrus and metestrus. Additional RU486-treated rats were injected with: LHRH antagonist (LHRHa), estradiol benzoate (EB) or bovine follicular fluid (bFF) and sacrified at 1800 h in estrous afternoon. LH and FSH serum levels were determined by RIA.2. RU486-treated intact or OVX rats had decreased preovulatory surges of LH and FSH, abolished secondary secretion of FSH and hypersecretion of FSH in estrous afternoon. The latter was decreased by LHRHa and abolished by EB or bFF. In contrast, EB induced an hypersecretion of LH in RU486-treated rats at 1800h in estrus.3. It can be concluded that in the absence of the proestrous progesterone actions, the absence of the inhibitory effect of the ovary in estrus evoked a LHRH independent secretion of FSH.  相似文献   

12.
Summary 1. In the rat, the LH-dependent ovarian progesterone rise mediates several actions of the primary surge of LH on the ovary. This experiment was aimed at elucidating the effects of the antiprogestagen RU486 on the LH-dependent decrease in both the serum concentrations and the ovarian content of inhibin.2. All rats in this experiment were treated with an antagonist of LHRH (1 mg/200 µl saline at 0800 h in proestrus) to supress the endogenous release of LH. One group of rats received 32 µg LH/250 µl saline at 1200 h in proestrus. Other group was given 4 mg RU486/200 µl oil at 0800 h in proestrus. The third group was injected with both RU486 and LH. Rats from the control group were injected with 250 µl saline and 200 µl oil. Animals were decapitated at 1700 h in proestrus and trunk blood and ovaries collected to determine the serum concentrations of LH, FSH, progesterone, 17ß-estradiol and inhibin as well as the ovarian content of inhibin.3. The ovulatory dose of LH in LHRHa-treated rats decreased both the serum concentrations and the ovarian content of inhibin and increased the serum concentrations of FSH. The administration of RU486 blocked the effect of LH on the serum concentrations of inhibin but not that on the ovarian content of inhibin.4. Since the antiprogestagen RU486 blocked the effect of LH on the serum concentrations of inhibin, we conclude that ovarian progesterone, besides mediating the effects of the primary LH surge on the ovulatory process and luteinization, participates in the LH-dependent drop in the serum concentrations of inhibin in proestrous afternoon.  相似文献   

13.
Proestrus surges of serum LH, FSH and prolactin (PRL) were significantly reduced when morphine HCl (50 and 10 mg/kg) was administered to 4-day cycling rats just prior to the proestrous critical period. The inhibitory effect of morphine was reversed by naloxone, a morphine antagonist, at the dose which had no effect on the proestrus surges of serum LH, FSH or PRL. The hypothalamic LH-RF content of proestrous rats at 1800 hr (during the proestrus surge) was not significantly different from that at 1400 hr (before the surge) and was not affected by pretreatment with morphine or naloxone. Our results suggest that naloxone reverses the anti-ovulatory effect of morphine by antagonizing the inhibitory effect of morphine on preovulatory surges of gonadotropins or PRL.  相似文献   

14.
Injecting 2 or 4 mg of cycloheximide (cyclo) at the onset of the proestrous release of gonadotropins prolongs the estrogen (E2) surge, diminishes progesterone (P4) secretion, and prevents ovulation by 0900 h of the next morning (Saidapur and Greenwald, 1981). The present study was designed to determine the effects of 0, 2, 4, or 8 mg cyclo injected at 1400 h proestrus (Day 4) on ovarian protein synthesis and other parameters. Ovulation was delayed until 1400 h estrus by 2 mg cyclo or prevented by 8 mg, and the latter treatment resulted in the death of all animals by 48 h. After 4 mg cyclo, ovulation was delayed in some animals, but the most characteristic feature was the development of large cystic follicles that ultimately transformed into corpora hemorrhagica. All animals lived after the injection of 4 mg cyclo. Ovaries collected 2, 8, 16, or 24 h after treatment were incubated with [3H]leucine for 1 h to assess the effects of cyclo on protein synthesis. Injection of phenobarbital at 1300 h proestrus, which blocks follicle-stimulating hormone (FSH) and luteinizing hormone (LH) surges, reduced ovarian protein synthesis at 1600 h to 61% of the control value. The incorporation of [3H]leucine was reduced to 75%, 37%, and 35% of the 1600-h control value by 2, 4, and 8 mg cyclo, respectively, but without affecting surge levels of FSH and LH. However, by 0600 h estrus, protein synthesis was increased significantly in all the cyclo-treated groups, which provides insight into the half-life of the compound (approximately equal to 8 h for 2-4 mg cyclo). At 1600 and 2200 h proestrus cyclo resulted in serum FSH and LH levels similar to controls, but increased serum prolactin and prolonged E2 levels at Day 4 of 2200 h and decreased serum P4 at both times. The second surge in FSH, which is in progress by 0600 h estrus, was abolished by 4 or 8 mg cyclo but not by the 2-mg dose. This is the first time for any species that ovarian protein synthesis has been measured in the proestrous normal or cyclo-treated animal. We conclude for the hamster that 4 mg cyclo is the optimal dose for blocking ovarian protein synthesis and ovulation and inducing formation of cystic follicles.  相似文献   

15.
The feedback effects of dihydrotestosterone (DHT) on gonadotropin secretion in rams were investigated using DHT-implanted castrate rams (wethers) infused with intermittent pulsatile luteinizing hormone-releasing hormone (LHRH) for 14 days. Castration, as anticipated, reduced both serum testosterone and DHT but elevated serum LH and follicle-stimulating hormone (FSH). Dihydrotestosterone implants raised serum DHT in wethers to intact ram levels and blocked the LH and FSH response to castration. The secretory profile of these individuals failed to show an endogenous LH pulse during any of the scheduled blood sampling periods, but a small LH pulse was observed following a 5-ng/kg LHRH challenge injection. Dihydrotestosterone-implanted wethers given repeated LHRH injections beginning at the time of castration increased serum FSH and yielded LH pulses that were temporally coupled to exogenous LHRH administration. While the frequency of these secretory episodes was comparable to that observed for castrates, amplitudes of the induced LH pulses were blunted relative to those observed for similarly infused, testosterone-implanted castrates. Dihydrotestosterone was also shown to inhibit LH and FSH secretion and serum testosterone concentrations in intact rams. In summary, it appears that DHT may normally participate in feedback regulation of LH and FSH secretion in rams. These data suggest androgen feedback is regulated by deceleration of the hypothalamic LHRH pulse generator and direct actions at the level of the adenohypophysis.  相似文献   

16.
Basal serum levels of follicle stimulating hormone (FSH), luteinizing hormone (LH), and testosterone (T) and the responsiveness of these hormones to a challenge dose of luteinizing hormone releasing hormone (LHRH), were determined in juvenile, pubertal, and adult rhesus monkeys. The monkey gonadotrophins were analyzed using RIA reagents supplied by the World Health Organization (WHO) Special Programme of Human Reproduction. The FSH levels which were near the assay sensitivity in immature monkeys (2.4 +/- 0.8 ng/ml) showed a discernible increase in pubertal animals (6.4 +/- 1.8 ng/ml). Compared to other two age groups, the serum FSH concentration was markedly higher (16.1 +/- 1.8 ng/ml) in adults. Serum LH levels were below the detectable limits of the assay in juvenile monkeys but rose to 16.2 +/- 3.1 ng/ml in pubertal animals. When compared to pubertal animals, a two-fold increase in LH levels paralleled changes in serum LH during the three developmental stages. Response of serum gonadotrophins and T levels to a challenge dose of LHRH (2.5 micrograms; i.v.) was variable in the different age groups. The present data suggest: an asynchronous rise of FSH and LH during the pubertal period and a temporal correlation between the testicular size and FSH concentrations; the challenge dose of LHRH, which induces a significant rise in serum LH and T levels, fails to elicit an FSH response in all the three age groups; and the pubertal as compared to adult monkeys release significantly larger quantities of LH in response to exogenous LHRH.  相似文献   

17.
P M Wise 《Life sciences》1982,31(2):165-173
The purpose of the following study was to assess the changes in the proestrous hormone profile in middle-aged cycling rats to better understand the inter-relationship and possible interaction of these hormones during the transition to estrous acyclicity. Median eminence LHRH concentrations and serum LH, FSH, estradiol and progesterone concentrations were measured in young (3-4 months old) and middle-aged (8-10 months old) proestrous rats at 0900, 1200, 1500 and 1800h. The data demonstrate that (1) baseline hormone concentrations prior to the surge at 0900h are the same in middle-aged and young rats; (2) the proestrous gonadotropin surge is temporally delayed in middle-aged rats; (3) this delay is preceded by lower median eminence LHRH concentrations and serum estradiol concentrations at 1200h; (4) serum progesterone concentrations are lower in middle-aged rats during the preovulatory gonadotropin surge (at 1500 and 1800h) probably as a consequence of the delayed LH surge.  相似文献   

18.
Peptidase activity capable of inactivating luteinizing hormone (LHRH) may have a physiological role in partially determining hypothalamic LHRH levels as well as LHRH levels at the gonadotrope. In our previous work ( Lapp and O' Conner , 1984, companion paper), use of the synthetic substrate leucine-p-nitroanilide (Leu-p-NA) to assay LHRH-degradative activity was validated by several methods. The current studies were conducted in order to monitor peptidase activity in the hypothalamus and pituitary throughout the rat 4-day estrous cycle. Activity in both tissues was significantly decreased during proestrus and diestrus I. It seems possible that the proestrous reduction in peptidase activity represents a permissive period necessary for the induction of the LHRH and LH surges. The decreased degradative activity in the pituitary on diestrus I may be involved in inducing the pituitary LHRH receptors which are reportedly synthesized prior to proestrus. The peptidase exhibits positive cooperativity with Leu-p-NA, and the degree of this cooperativity also fluctuates during the estrous cycle. Estradiol and progesterone given alone or in combination to prepubertal castrate animals increased the activity of the hypothalamic peptidase in vitro. The degree of positive cooperativity with which the enzyme functioned was also apparently altered by these gonadal steroids.  相似文献   

19.
In higher primates, increased circulating follicle‐stimulating hormone (FSH) levels seen during late menstrual cycle and during menstruation has been suggested to be necessary for initiation of follicular growth, recruitment of follicles and eventually culminating in ovulation of a single follicle. With a view to establish the dynamics of circulating FSH secretion with that of inhibin A (INH A) and progesterone (P4) secretions during the menstrual cycle, blood was collected daily from bonnet monkeys beginning day 1 of the menstrual cycle up to 35 days. Serum INH A levels were low during early follicular phase, increased significantly coinciding with the mid cycle luteinizing hormone (LH) surge to reach maximal levels during the mid luteal phase before declining at the late luteal phase, essentially paralleling the pattern of P4 secretion seen throughout the luteal phase. Circulating FSH levels were low during early and mid luteal phases, but progressively increased during the late luteal phase and remained high for few days after the onset of menses. In another experiment, lutectomy performed during the mid luteal phase resulted in significant decrease in INH A concentration within 2 hr (58.3±2 vs. 27.3±3 pg/mL), and a 2‐ to 3‐fold rise in circulating FSH levels by 24 hr (0.20±0.02 vs. 0.53±0.14 ng/mL) that remained high until 48 hr postlutectomy. Systemic administration of Cetrorelix (150 µg/kg body weight), a gonadotropin releasing hormone receptor antagonist, at mid luteal phase in monkeys led to suppression of serum INH A and P4 concentrations 24 hr post treatment, but circulating FSH levels did not change. Administration of exogenous LH, but not FSH, significantly increased INH A concentration. The results taken together suggest a tight coupling between LH and INH A secretion and that INH A is largely responsible for maintenance of low FSH concentration seen during the luteal phase. Am. J. Primatol. 71:817–824, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Hamsters were injected sc at 1400 hr on proestrus with either 4 mg cycloheximide (which blocks ovulation but only transiently affects ovarian protein synthesis) or saline and killed at 2-hr intervals until 0400 hr on estrus. After cycloheximide, the first surge of FSH (at 1600 hr) was half the normal value and the second surge of FSH (beginning at 2200 hr) was eliminated. Control follicles at 1400 hr had approximately the same number of FSH and hCG receptors with about one-third as many PRL receptors. Down regulation of FSH and hCG receptors for control follicles occurred by 2400 hr while PRL receptors dropped abruptly 4 hr earlier. Compared to the 1400-hr control values, the maximal loss of FSH, LH, and PRL receptors was 40, 45, and 85%, respectively. Although cycloheximide tended to slightly delay the loss of FSH receptors at 2000-2200 hr it did not prevent the ultimate fall in FSH and hCG receptors; the loss of PRL receptors was accelerated by 4 hr. Cycloheximide prevented or delayed follicular growth, resumption of meiosis, and cumulus expansion. The altered proestrous profile of steroids after cycloheximide (prolonged follicular estradiol and reduced progesterone) is therefore not associated with drastic alterations in the number of FSH and hCG binding sites. On the other hand, PRL receptors represent fast turnover protein(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号