首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The dynamics of crustacean zooplankton in the littoral and pelagic zones of four forest lakes having variable water qualities (colour range 130–340 mg Pt l−1, Secchi depth 70–160 cm) were studied. The biomass of zooplankton was higher in the littoral zone than in the pelagic zone only in the lake having the highest transparency. In the three other lakes, biomass was significantly higher in the pelagic zone than in the littoral zone. In the two lakes with highest transparency, the littoral biomass of cladocerans significantly followed the development of macrophyte vegetation, and cladoceran biomass reached the maximum value at the time of highest macrophyte coverage. In lakes with lowest transparency, littoral zooplankton biomass developed independently of macrophyte density and decreased when macrophyte beds were densest. The seasonal development of the littoral copepod biomass did not follow the development of macrophytes in any of the lakes. The mean size of cladocerans in the pelagic zone decreased with increasing Secchi depth of the lake, whereas in the littoral zone no such phenomenon was detected. Seasonally, when water transparency increased temporarily in two of the lakes, the mean size of cladocerans in the pelagic zone decreased steeply. For copepods, no relationship between water transparency and body size was observed. The results suggested that in humic lakes the importance of the littoral zone as a refuge decreases with decreasing transparency of the water and that low water transparency protects cladocerans from fish predation. All the observed between-lake differences could not be explained by fish predation, but were probably attributed to the presence of chaoborid larvae with variable densities. Feeding efficiency of chaoborids is not affected by visibility and thus they can obscure the relationship between water quality, fish density, and the structure of crustacean zooplankton assemblages. Handling editor: S. I. Dodson  相似文献   

2.
In aquatic ecosystems, predation is affected both by turbulence and visibility, but the combined effects are poorly known. Both factors are changing in lakes in the Northern Hemisphere; the average levels of turbulence are predicted to increase due to increasing wind activities, while water transparency is decreasing, e.g., due to variations in precipitation, and sediment resuspension. We explored experimentally how turbulence influenced the effects of planktivorous fish and invertebrate predators on zooplankton when it was combined with low visibility caused by high levels of water color. The study was conducted as a factorial design in 24 outdoor ponds, using the natural zooplankton community as a prey population. Perch and roach were used as vertebrate predators and Chaoborus flavicans larvae as invertebrate predators. In addition to calm conditions, the turbulent dissipation rate used in the experiments was 10−6 m2 s−3, and the water color was 140 mg Pt L−1. The results demonstrated that in a system dominated by invertebrates, predation pressure on cladocerans increased considerably under intermediate turbulence. Under calm conditions, chaoborids caused only a minor reduction in the crustacean biomass. The effect of fish predation on cladocerans was slightly reduced by turbulence, while predation on cyclopoids was strongly enhanced. Surprisingly, under turbulent conditions fish reduced cyclopoid biomass, whereas in calm water it increased in the presence of fish. We thus concluded that turbulence affects fish selectivity. The results suggested that in dystrophic invertebrate-dominated lakes, turbulence may severely affect the abundance of cladocerans. In fish-dominated dystrophic lakes, on the other hand, turbulence-induced changes in planktivory may considerably affect copepods instead of cladocerans. In lakes inhabited by both invertebrates and fish, the response of top-down regulation to turbulence resembles that in fish-dominated systems, due to intraguild predation. The changes in planktivorous predation induced by abiotic factors may possibly cascade to primary producers.  相似文献   

3.
Food web management is a frequently used lake restoration method, which aims to reduce phytoplankton biomass by strengthening herbivorous zooplankton through reduction of planktivorous fish. However, in clay‐turbid lakes several factors may reduce the effectivity of food web management. Increasing turbidity reduces the effectivity of fish predation and weakens the link between zooplankton and phytoplankton. Therefore, the effects of fish stock manipulations may not cascade to lower trophic levels as expected. Additionally, in clay‐turbid conditions invertebrate predators may coexist in high densities with planktivorous fish and negate the effects of fish reductions. For instance, in the stratifying regions of the clay‐turbid Lake Hiidenvesi, Chaoborus flavicans is the main regulator of cladocerans and occupies the water column throughout the day, although planktivorous Osmerus eperlanus is very abundant. The coexistence of chaoborids and fish is facilitated by a metalimnetic turbidity peak, which prevents efficient predation by fish. In the shallow parts of the lake, chaoborids are absent despite high water turbidity. We suggest that, generally, the importance of invertebrate predators in relation to vertebrate predators may change along turbidity and depth gradients. The importance of fish predation is highest in shallow waters with low turbidity. When water depth increases, the importance of fish in the top‐down regulation of zooplankton declines, whereas that of chaoborids increases, the change along the depth gradient being moderate in clear‐water lakes and steep in highly turbid lakes. Thus, especially deep clay‐turbid lakes may be problematic for implementing food web management as a restoration tool.  相似文献   

4.
1. Structural complexity may stabilise predator–prey interactions and affect the outcome of trophic cascades by providing prey refuges. In deep lakes, vulnerable zooplankton move vertically to avoid fish predation. In contrast, submerged plants often provide a diel refuge against fish predation for large‐bodied zooplankton in shallow temperate lakes, with consequences for the whole ecosystem. 2. To test the extent to which macrophytes serve as refuges for zooplankton in temperate and subtropical lakes, we introduced artificial plant beds into the littoral area of five pairs of shallow lakes in Uruguay (30°–35°S) and Denmark (55°–57°N). We used plants of different architecture (submerged and free‐floating) along a gradient of turbidity over which the lakes were paired. 3. We found remarkable differences in the structure (taxon‐richness at the genus level, composition and density) of the zooplankton communities in the littoral area between climate zones. Richer communities of larger‐bodied taxa (frequently including Daphnia spp.) occurred in the temperate lakes, whereas small‐bodied taxa characterised the subtropical lakes. More genera and a higher density of benthic/plant‐associated cladocerans also occurred in the temperate lakes. The density of all crustaceans, except calanoid copepods, was significantly higher in the temperate lakes (c. 5.5‐fold higher). 4. Fish and shrimps (genus Palaemonetes) seemed to exert a stronger predation pressure on zooplankton in the plant beds in the subtropical lakes, while the pelagic invertebrate Chaoborus sp. was slightly more abundant than in the temperate lakes. In contrast, plant‐associated predatory macroinvertebrates were eight times more abundant in the temperate than in the subtropical lakes. 5. The artificial submerged plants hosted significantly more cladocerans than the free‐floating plants, which were particularly avoided in the subtropical lakes. Patterns indicating diel horizontal migration were frequently observed for both overall zooplankton density and individual taxa in the temperate, but not the subtropical, lakes. In contrast, patterns of diel vertical migration prevailed for both the overall zooplankton and for most individual taxa in the subtropics, irrespective of water turbidity. 6. Higher fish predation probably shapes the general structure and dynamics of cladoceran communities in the subtropical lakes. Our results support the hypothesis that horizontal migration is less prevalent in the subtropics than in temperate lakes, and that no predator‐avoidance behaviour effectively counteracts predation pressure in the subtropics. Positive effects of aquatic plants on water transparency, via their acting as a refuge for zooplankton, may be generally weak or rare in warm lakes.  相似文献   

5.
Summary A zooplankton community was established in outdoor experimental ponds, into which a vertebrate predator (topmouth gudgeon: Pseudorasbora parva) and/or an invertebrate predator (phantom midge larva: Chaoborus flavicans) were introduced and their predation effects on the zooplankton community structure were evaluated. In the ponds which had Chaoborus but not fish, small- and medium-sized cladocerans and calanoid copepods were eliminated while rotifers became abundant. A large-sized cladoceran Daphnia longispina, whose juveniles had high helmets and long tailspines as anti-predator devices, escaped from Chaoborus predation and increased. In the ponds which had fish but not Chaoborus, the large-sized Daphnia was selectively predated by the fish while small-and medium-sized cladocerans and calanoid copepods predominated. In the ponds containing both Chaoborus and fish, the fish reduced the late instar larvae (III and IV) of Chaoborus but increased the early instar larvae (I and II). Small- and large-sized cladocerans were scarcely found. The former might have been eliminated by predation of the early instar larvae of Chaoborus, while the latter was probably predated by fish. Consequently, the medium-sized cladocerans, which may have succeeded in escaping from both types of predator, appeared abundantly. The results suggest that various combinations of vertebrate and invertebrate predators are able to drive various kinds of zooplankton community structure.  相似文献   

6.
1. The fish fauna of many shallow Mediterranean Lakes is dominated by small‐bodied exotic omnivores, with potential implications for fish–zooplankton interactions still largely unknown. Here we studied diel variation in the vertical and horizontal distribution of the crustacean plankton in Lake Vela, a shallow polymictic and eutrophic lake. Diel sampling was carried out on three consecutive days along a horizontal transect, including an open‐water station and a macrophyte (Nymphaea alba) bed. Since transparency is a key determinant of the predation risk posed by fish, the zooplankton sampling campaigns were conducted in both the turbid (autumn) and clear water (spring) phases. 2. In the turbid phase, most taxa were homogeneously distributed along the vertical and horizontal axes in the three consecutive days. The only exception was for copepod nauplii, which showed vertical heterogeneity, possibly as a response to invertebrate predators. 3. In the clear water phase, most zooplankton taxa displayed habitat selection. Vertically, the general response consisted of a daily vertical migration (DVM), despite the limited depth (1.6 m). Horizontally, zooplankters showed an overall preference for the pelagic zone, independent of the time of the day. Such evidence is contrary to the postulated role of macrophytes as an anti‐predator refuge for the zooplankton. 4. These vertical (DVM) and horizontal (macrophyte‐avoidance) patterns were particularly conspicuous for large Daphnia, suggesting that predation risk from size‐selective predators (fish) was the main factor behind the spatial heterogeneity of zooplankton in the spring. Thus, the difference in the zooplankton spatial distribution pattern and habitat selection among seasons (turbid and clear water phases) seems to be mediated the predation risk from fish, which is directly related to water transparency. 5. The zooplankton in Lake Vela have anti‐predator behaviour that minimises predation from fish. We hypothesise that, due to the distinct fish community of shallow Mediterranean lakes, aquatic macrophytes may not provide adequate refuge to zooplankters, as seen in northern temperate lakes.  相似文献   

7.
In the eutrophic L. Hiidenvesi, the spring biomass maximum of cladoceran zooplankton is missing and the highest biomass takes place in July–August. The factors behind the delayed biomass peak were studied in four different basins of the lake with concomitant data on cladocerans assemblages, density of the predatory cladoceran Leptodora kindti and food composition of fish. In all the basins, the abundance of Leptodora peaked in June, being highest (up to 800 ind. m–3) in the two most shallow basins (max depth < 4 m). The duration of the high population density was short and in July‐August Leptodora density stayed below 200 ind. m–3, although the water temperature was still favourable. The collapse of the Leptodora population coincided with the change in the feeding habits of fish. In early summer, fish predation was targeted mainly on copepods and zoobenthos, while in high summer Leptodora was one of the main preys of perch, white bream and bleak. The biomass of herbivorous cladocerans was below 10 μg C l–1 in June, and climbed to a maximum in August in the two most shallow basins (34 and 76 μg C l–1), in July in the deepest basin (27 μg C l–1), and in September in the intermediate basin (55 μg C l–1). In the two most shallow basins, the death rate of the dominating cladoceran, Daphnia cristata, closely followed the food consumption rate by the Leptodora population. In the deeper basins, the agreement was not so close, smelts (Osmerus eperlanus) and chaoborids being important predators of herbivores. The duration of the period of high Leptodora density thus depended on the predation pressure by fish, while the increased fish predation on Leptodora in July–August allowed the elevation of the biomass of herbivorous cladocerans.  相似文献   

8.
1. Oligotrophic lakes are generally dominated by calanoid copepods because of their competitive advantage over cladocerans at low prey densities. Planktivory also can alter zooplankton community structure. We sought to understand the role of planktivory in driving recent changes to the zooplankton community of Lake Huron, a large oligotrophic lake on the border of Canada and the United States. We tested the hypothesis that excessive predation by fish (rainbow smelt Osmerus mordax, bloater Coregonus hoyi) and invertebrates (Mysis relicta, Bythotrephes longimanus) had driven observed declines in cladoceran and cyclopoid copepod biomass between 2002 and 2007. 2. We used a field sampling and bioenergetics modelling approach to generate estimates of daily consumption by planktivores at two 91‐m depth sites in northern Lake Huron, U.S.A., for each month, May–October 2007. Daily consumption was compared to daily zooplankton production. 3. Bythotrephes was the dominant planktivore and estimated to have eaten 78% of all zooplankton consumed. Bythotrephes consumption exceeded total zooplankton production between July and October. Mysis consumed 19% of all the zooplankton consumed and exceeded zooplankton production in October. Consumption by fish was relatively unimportant – eating only 3% of all zooplankton consumed. 4. Because Bythotrephes was so important, we explored other consumption estimation methods that predict lower Bythotrephes consumption. Under this scenario, Mysis was the most important planktivore, and Bythotrephes consumption exceeded zooplankton production only in August. 5. Our results provide no support for the hypothesis that excessive fish consumption directly contributed to the decline of cladocerans and cyclopoid copepods in Lake Huron. Rather, they highlight the importance of invertebrate planktivores in structuring zooplankton communities, especially for those foods webs that have both Bythotrephes and Mysis. Together, these species occupy the epi‐, meta‐ and hypolimnion, leaving limited refuge for zooplankton prey.  相似文献   

9.
Diel horizontal migration (DHM), where zooplankton moves towards macrophytes during daytime to avoid planktivorous fish, has been reported as a common migration pattern of zooplankton in shallow temperate freshwater lakes. However, in shallow eutrophic brackish lakes, macrophytes seem not to have the same refuge effect, as these lakes may remain turbid even at relatively high macrophyte abundances. To investigate the extent to which macrophytes serve as a refuge for zooplankton at different salinities, we introduced artificial plants mimicking submerged macrophytes in the littoral zone of four shallow lakes, with salinities ranging from almost freshwater (0.3) to oligohaline waters (3.8). Furthermore, we examined the effects of different salinities on the community structure. Diel samples of zooplankton were taken from artificial plants, from areas where macrophytes had been removed (intermediate areas) and, in two of the lakes, also in open water. Fish and macroinvertebrates were sampled amongst the artificial plants and in intermediate areas to investigate their influence on zooplankton migration. Our results indicated that diel vertical migration (DVM) was the most frequent migration pattern of zooplankton groups, suggesting that submerged macrophytes were a poor refuge against predation at all salinities under study. Presumably, this pattern was the result of the relatively high densities of small planktivorous fish and macroinvertebrate predators within the submerged plants. In addition, we found major differences in the composition of zooplankton, fish and macroinvertebrate communities at the different salinities and species richness and diversity of zooplankton decreased with increasing salinity. At low salinities both planktonic/free-swimming and benthic/plant-associated cladocerans occurred, whilst only benthic ones occurred at the highest salinity. The low zooplankton biomass and overall smaller-bodied zooplankton specimens may result in a lower grazing capacity on phytoplankton, and enhance the turbid state in nutrient rich shallow brackish lakes.  相似文献   

10.
The aim of this study was to examine the combined effect of water transparency and narrow macrophyte belts on zooplankton assemblages in two oxbow lakes (Krapina River, Croatia). Samples were collected in open water and among helophytes in the littoral zone from April until September 2008. Rotifers were the most abundant group of zooplankton in both lakes, and dominated in the Krapina oxbow lake 1 (KO1). Lake KO1 had significantly lower transparency, lower percentage macrophyte cover and higher chlorophyll a concentration than Krapina oxbow lake 2 (KO2). In lake KO1, variation in the horizontal distribution of cladocerans and rotifers in terms of their abundance seemed to be determined by competition between Bosmina longirostris and Keratella cochlearis, initiated by oscillation in transparency and detritus availability. In lake KO2, with higher transparency and higher percentage macrophyte cover, the abundance of small‐ and large‐bodied cladocerans increased in the littoral zone simultaneously with higher transparency, suggesting fish predation. Results of this study indicated that small differences in transparencies between the two lakes caused significant differences in horizontal distribution of the zooplankton assemblage. Even narrow helophyte belts offered a refuge to zooplankton, although lower transparencies reduced the effectiveness of macrophytes as a refuge from predators. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
1. We describe the changes in trophic dynamics in Lake Maggiore from c. 1943 to 2002 using subfossil cladoceran data from a high resolution sediment record, long‐term contemporary data series and historical information. During this period the lake went through a eutrophication phase until 1980 followed by oligotrophication. 2. During the eutrophication period a major increase occurred in the abundance of Chydorus sphaericus, the proportion of planktonic cladocerans and total abundance of cladocerans in the sediment. Since 1980 the abundance declined again and subfossil Eubosmina mucro length and contemporary Daphnia body length increased, most probably as a result of higher abundance of invertebrate predators. 3. Changes in the fish stock composition caused by the introduction of exotic fish during the pre‐eutrophication period and a complete ban on fishing because of Dichloro‐diphenil‐ethanes (DDTs) pollution of the lake (during oligotrophication) could also be detected in the community assemblage and size structure of the sediment zooplankton. 4. We found good correspondence between trophic changes inferred from cladoceran subfossils (community composition, size and predation pressure) and contemporary data, suggesting that sediment samples can be used to infer past development in trophic dynamics, including predation by fish and pelagic invertebrates in lakes with scarce neolimnological data. 5. Furthermore, by combining palaeolimnological cladoceran data rarely obtained from contemporary samples (e.g. benthic and plant‐associated cladocerans, mucro length of bosminids) with contemporary data of organisms poorly represented in the sediment record (e.g. remains of Bythotrephes and fishes) a more complete understanding of changes in trophic dynamics was obtained. 6. The detection in the sediments of meteorological events whose effects on zooplankton had been recorded in the long‐term studies also provided evidence that eutrophication tends to override climate signals. 7. We conclude that a combined palaeo‐neolimnological approach can be a powerful tool for elucidating past changes in the trophic dynamics of lakes and the interaction with climate induced changes, not least when high resolution sediment records are available.  相似文献   

12.
1. The zooplankton often undergoes diel horizontal migration (DHM) from the open water to the littoral of shallow lakes, thus avoiding predators in the former. This behaviour has functional impacts within the lake, as it enhances zooplankton survival, increases their control of phytoplankton and tends to stabilise the clear water state. However, most of the evidence supporting this migration pattern comes from cold north temperate lakes, and more evidence from tropical and subtropical areas, as well as from southern temperate areas, is needed. 2. We conducted a field study of the diel horizontal and vertical migration of zooplankton, and the horizontal distribution of potential predatory macroinvertebrates and fish, over two consecutive days in the summer in a temperate lake in the southern hemisphere. We took zooplankton samples at two depths, at three sampling stations (inside beds of aquatic macrophytes, at their edge and in open water) along three transects running from the centre of a bed of Ceratophyllum demersum to open water. At each sampling station, we also took samples of macroinvertebrates and fish and measured physical and chemical environmental variables. 3. Zooplankton (pelagic cladocerans, calanoid copepods and rotifers) avoided the shore, probably because of the greater risk from predators there. Larger and more vulnerable cladocerans, such as Diaphanosoma brachyurum and Moina micrura, were two to four times more abundant in open water than at the edge of or inside beds of macrophytes, respectively, by both day and night. Less vulnerable zooplankton [i.e. of medium body size (Ceriodaphnia dubia) or with the ability to swim fast (calanoid copepods)] were distributed evenly between open water and the edge of the plant beds. Small zooplankton, Bosmina huaronensis and pelagic rotifers, showed an even distribution among the three sampling stations. Accordingly, no DHM of zooplankton occurred, although larger organisms migrated vertically inside C. demersum stands. 4. Macrophytes contained high densities of predatory macroinvertebrates and fish. The predator assemblage, composed of large‐bodied macroinvertebrates (including odonates and shrimps) and small littoral fish, was permanently associated with submerged macrophytes. None of these groups moved outside the plant beds or changed their population structure (fish) over the diel cycle. 5. Submerged macrophyte beds do not represent a refuge for zooplankton in lakes where predators are numerous among the plants, implying a weaker top‐down control of phytoplankton biomass by zooplankton and, consequently, a more turbid lake. The effectiveness of macrophytes as a refuge for zooplankton depends on the associated assemblage of predatory macroinvertebrates and fish among the plants.  相似文献   

13.
Zooplankton grazing impact on algae, heterotrophic flagellates and bacteria, as well as invertebrate predation on herbivorous zooplankton, were investigated in two sub-Antarctic lakes with extremely simple food chains. The two species of herbivorous zooplankton present in the lakes (the copepods boeckella michaelseni and Pseudoboeckella poppei) exerted substantial grazing pressure on algae. However, the dominant algal species exhibited properties that enabled them to avoid (large size or extruding spines, e.g. Staurastrum sp., Tribonema sp.) or compensate (recruitment from the sediment, Mallomonas sp.) grazing. There are only two potential invertebrate predators on the herbivorous copepods in the two lakes: the copepod Parabroteas sarsi and the diving beetle Lancetes claussi. Vertebrate predators are entirely abscent from sub-Antarctic lakes. Based on our experiments, we estimated that the predators would remove at most about 0.4% of the herbivorous copepods per day, whereas planktivorous fish, if present in the lakes, would have removed 5–17% of the zooplankton each day. Consequently, the invertebrate predators in these high-latitude lakes had only a marginal predation impact compared to the predation pressure on zooplankton in the presence of vertebrate predators in temperate lakes. The study of these simple systems with only two quantitatively functionally important trophic links, suggests that high grazing pressure foreces the algal community towards forms with grazer resistant adaptations such as large size, recruitment from another habitat, and grazer avoidance spines. We propose that due to such adaptations, predictions from food web theory are only partly corroborated, i.e. algal biomass actually increases with increasing productivity, although the grazer community is released from predation. In more species-rich and complex systems, e.g temperate lakes with three functionally important links, such adaptations are likely to be even more important, and, consequently, the observable effects of trophic interactions from top predators on lower trophic levels even more obscured.  相似文献   

14.
Macrophytes in shallow lakes have the potential to alter fish–zooplankton interactions considerably. How far predation effects by newly hatched fish (0+ fish) on zooplankton are influenced by different types of aquatic vegetation, and how effects change during the first weeks of fish ontogeny remains, however, less clear. In order to address these issues, we examined the predation effects of 0+ fish on zooplankton in three different habitats during spring and summer in a shallow, eutrophic lake in Sweden. Zooplankton and fish samples were taken along the reed vegetation, in a shallow, unvegetated part of the lake and above dense, submersed vegetation to relate 0+ fish predation effects to vegetation complexity. All the size classes of zooplankton decreased when 0+ fish started to feed on them in all the different habitats. The magnitude of predation effects depended, however, on both the size of zooplankton and the complexity of the vegetation. While small cladocerans could maintain stable populations in the dense Chara vegetation after 0+ fish had started to feed on them, medium and large-sized zooplankton disappeared from all the habitats. Our results suggest that only small cladocerans can use dense vegetation as a refuge against 0+ fish predation, while medium and large zooplankton are not safe from 0+ fish predation in any habitat.  相似文献   

15.
SUMMARY. 1. We investigate the importance of a refuge from fish predation to the abundance, species composition and seasonal succession of zooplankton. Thirty lakes representing a range of depths were sampled twice in summer for physical/chemical parameters and zooplankton community structure.
2. We define the refuge from centrarchid predators to be that space between the thermocline and the zone of anoxia. As lakes vary in rate of oxygen depletion from the hypolimnion. the refuge size and lake depth are independent: refuge size decreases during the summer period.
3. Lake depth and refuge size independently explain variation among lakes in zooplankton species composition, but seasonal community change within lakes is best predicted by loss of refuge size.
4. Refuge size also explains the substantial variation in the relative dominance of the two major daphnid species. Lakes possessing a large refuge are dominated by D. pulicaria ; those with a small refuge are dominated by the smaller, D. galeata mendotae . We suggest that lakes of intermediate refuge size, which are characterized by high species diversity, represent a more equitable balance of predation and competition.  相似文献   

16.
1. It is well accepted that fish, if abundant, can have a major impact on the zooplankton community structure during summer, which, particularly in eutrophic lakes, may cascade to phytoplankton and ultimately influence water clarity. Fish predation affects mean size of cladocerans and the zooplankton grazing pressure on phytoplankton. Little is, however, known about the role of fish during winter. 2. We analysed data from 34 lakes studied for 8–9 years divided into three seasons: summer, autumn/spring and winter, and four lake classes: all lakes, shallow lakes without submerged plants, shallow lakes with submerged plants and deep lakes. We recorded how body weight of Daphnia and then cladocerans varied among the three seasons. For all lake types there was a significant positive correlation in the mean body weight of Daphnia and all cladocerans between the different seasons, and only in lakes with macrophytes did the slope differ significantly from one (winter versus summer for Daphnia). 3. These results suggest that the fish predation pressure during autumn/spring and winter is as high as during summer, and maybe even higher during winter in macrophyte‐rich lakes. It could be argued that the winter zooplankton community structure resembles that of the summer community because of low specimen turnover during winter mediated by low fecundity, which, in turn, reflects food shortage, low temperatures and low winter hatching from resting eggs. However, we found frequent major changes in mean body weight of Daphnia and cladocerans in three fish‐biomanipulated lakes during the winter season. 4. The seasonal pattern of zooplankton : phytoplankton biomass ratio showed no correlation between summer and winter for shallow lakes with abundant vegetation or for deep lakes. For the shallow lakes, the ratio was substantially higher during summer than in winter and autumn/spring, suggesting a higher zooplankton grazing potential during summer, while the ratio was often higher in winter in deep lakes. Direct and indirect effects of macrophytes, and internal P loading and mixing, all varying over the season, might weaken the fish signal on this ratio. 5. Overall, our data indicate that release of fish predation may have strong cascading effects on zooplankton grazing on phytoplankton and water clarity in temperate, coastal situated eutrophic lakes, not only during summer but also during winter.  相似文献   

17.
Our observations indicate the vertical distribution of zooplankton and its seasonal changes in Dubník II reservoir (Slovakia) are determined mainly by the thermal regime of the reservoir, by transparency, and by fish and invertebrate predation. During periods of circulation, zooplankton vertical distribution in the whole water column was more homogeneous, whilst during summer temperature stratification zooplankton concentrated in the epilimnion — rotifers in higher layers than crustaceans. During summer stagnation a steep thermal gradient occurred at the boundary of the epi-and hypolimnion and low temperature and low dissolved oxygen in hypolimnion offered a refuge for Chaoborus flavicans larvae against fish, enabling coexistence of vertebrate and invertebrate predation. This evidence supports our previous findings concerning dominance of rotifers in zooplankton and representation of crustaceans by small-bodied species in the study reservoir. Steep thermal gradient and the presence of Chaoborus larvae caused very low zooplankton abundance in the lower part of the water column and a reduction of cladocerans refuges against fish to layers of thermocline or closely under thermocline where Daphnia cucullata and Daphnia parvula were found. Our previous assumptions about the high density of zooplanktivorous fish in Dubník II reservoir are supported by the fact that these small cladocerans are represented by smaller individuals in the upper layers and bigger individuals in deeper layers.  相似文献   

18.
The mean body size of limnetic cladocerans decreases from cold temperate to tropical regions, in both the northern and the southern hemisphere. This size shift has been attributed to both direct (e.g. physiological) or indirect (especially increased predation) impacts. To provide further information on the role of predation, we compiled results from several studies of subtropical Uruguayan lakes using three different approaches: (i) field observations from two lakes with contrasting fish abundance, Lakes Rivera and Rodó, (ii) fish exclusion experiments conducted in in-lake mesocosms in three lakes, and (iii) analyses of the Daphnia egg bank in the surface sediment of eighteen lakes. When fish predation pressure was low due to fish kills in Lake Rivera, large-bodied Daphnia appeared. In contrast, small-sized cladocerans were abundant in Lake Rodó, which exhibited a typical high abundance of fish. Likewise, relatively large cladocerans (e.g. Daphnia and Simocephalus) appeared in fishless mesocosms after only 2 weeks, most likely hatched from resting egg banks stored in the surface sediment, but their abundance declined again after fish stocking. Moreover, field studies showed that 9 out of 18 Uruguayan shallow lakes had resting eggs of Daphnia in their surface sediment despite that this genus was only recorded in three of the lakes in summer water samples, indicating that Daphnia might be able to build up populations at low risk of predation. Our results show that medium and large-sized zooplankton can occur in subtropical lakes when fish predation is removed. The evidence provided here collectively confirms the hypothesis that predation, rather than high-temperature induced physiological constraints, is the key factor determining the dominance of small-sized zooplankton in warm lakes.  相似文献   

19.
Plankton data from 1997 to 2005 were used to examine impacts of a managed draw-down, subsequent drought and resulting historic low water levels (during 2000 and 2001) on the zooplankton of Lake Okeechobee, Florida. Prior to the drought the lake supported less than 150 ha of submerged vegetation. Following the drought, over 15,000 ha of submerged vegetation developed around the lake shore and conditions favored greater survival of age 0 fish. The zooplankton changed significantly from the pre- to post-drought period, including: (a) a near-complete loss of all dominant species of cladocerans and rotifers; and (b) an abrupt transition to a community with over 80% of total biomass comprised of Arctodiaptomus dorsalis, a calanoid copepod previously described as being resistant to fish predation. These changes persisted over a 5 year post-drought sampling period. In contrast, there were no systematic changes in biomass of bacteria, phytoplankton, inedible cyanobacteria, algal cell size, suspended solids, or any other physical or chemical attributes known to affect zooplankton in shallow lakes. Evidence points towards increased predation by fish, and perhaps invertebrates, as factors responsible for loss of cladocerans and rotifers following the drought, and indicates a need for future research to link changes in water level to shifts in predation pressure in this and other shallow lakes. Handling editor: S.I. Dodson  相似文献   

20.
1. The impact of changes in submerged macrophyte abundance on fish-zooplankton-phytoplankton interactions was studied in eighteen large-scale (100 m2) enclosures in a shallow eutrophic take. The submerged macrophytes comprised Potamategon pectinatus L., P. pusillus L. and Callitriche hermaphroditica L. while the fish fry stock comprised three-spined sticklebacks, Gasterosteus acuteatus L., and roach, Rutilus rutilus L. 2. In the absence of macrophytes zooplankton biomass was low and dominated by cyclopoid copepods regardless of fish density, while the phytoplankton biovolume was high (up to 38 mm31) and dominated by small pennate diatoms and chlorococcales. When the lake volume infested by submerged macrophytes (PVI) exceeded 15–20% and the fish density was below a catch per unit effort (CPUE) of 10 (approx. 2 fry m?2), planktonic cladoceran biomass was high and dominated by relatively large-sized specimens, while the phytoplankton biovolume was low and dominated by small fast-growing flagellates. At higher fish densities, zooplankton biomass and average biomass of cladocerans decreased and a shift to cyclopoids occurred, while phytoplankton biovolume increased markedly and became dominated by cyanophytes and dinoflagellates. 3. Stepwise multiple linear regressions on log-transformed data revealed that the biomass of Daphnia, Bosmina, Ceriodaphmia and Chydorus were all significantly positively related to PVI and negatively to the abundance of fish or PVI x fish. The average individual biomass of cladocerans was negatively related to fish, but unrelated to PVI. Calculated zooplankton grazing pressure on phytoplankton was positively related to PVI and negatively to PVI x fish. Accordingly the phytoplankton biovolume was negatively related to PVI and to PVI x zooplankton biomass. Cyanophytes and chryptophytes (% of biomass) were positively and Chlorococcales and diatoms negatively related to PVI, while cyanophytes and Chlorococcales were negatively related to PVI x zooplankton biomass. In contrast diatoms and cryptophytes were positively related to the zooplankton biomass or PVI x zooplankton. 4. The results suggest that fish predation has less impact on the zooplankton community in the more structured environment of macrophyte beds, particularly when the PVI exceeds 15–20%. They further suggest that the refuge capacity of macrophytes decreases markedly with increasing fish density (in our study above approximately 10 CPUE). Provided that the density of planktivorous fish is not high, even small improvements in submerged macrophyte abundance may have a substantial positive impact on the zooplankton, leading to a lower phytoplankton biovolume and higher water transparency. However, at high fish densities the refuge effect seems low and no major zooplankton mediated effects of enhanced growth of macrophytes are to be expected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号