首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bekker  Matthew F.  Taylor  Alan H. 《Plant Ecology》2001,155(1):15-28
Species distribution and abundance patterns in the southern Cascades are influenced by both environmental gradients and fire regimes. Little is known about fire regimes and variation in fire regimes may not be independent of environmental gradients or vegetation patterns. In this study, we analyze variation in fire regime parameters (i.e., return interval, season, size, severity, and rotation period) with respect to forest composition, elevation, and potential soil moisture in a 2042 ha area of montane forest in the southern Cascades in the Thousand Lakes Wilderness (TLW). Fire regime parameters varied with forest composition, elevation, and potential soil moisture. Median composite and point fire return intervals were shorter (4-9 yr, 14-24 yr) in low elevation and more xeric white fir (Abies concolor)-sugar pine (Pinus lambertiana) and white fir-Jeffrey pine (P. jeffreyi) and longest (20-37 yr, 20-47 yr) in mesic high elevation lodgepole pine (Pinus contorta) and red fir (Abies magnifica)-mountain hemlock (Tsuga mertensiana) forests. Values for mid-elevation red fir-white fir forests were intermediate. The pattern for fire rotation lengths across gradients was the same as for fire return intervals. The percentage of fires that occurred during the growing season was inversely related to elevation and potential soil moisture. Mean fire sizes were larger in lodgepole pine forests (405 ha) than in other forest groups (103-151 ha). In contrast to other parameters, fire severity did not vary across environmental and compositional gradients and >50% of all forests burned at high severity with most of the remainder burning at moderate severity. Since 1905, fire regimes have become similar at all gradient positions because of a policy of suppressing fire and fire regime modification will lead to shifts in landscape scale vegetation patterns.  相似文献   

2.
The Boundary Waters Canoe Area (BWCA) Wilderness of northern Minnesota, USA, ememplifies how fire management and natural disturbance determine forest composition and landscape structure at a broad scale. Historically, the BWCA (>400,000 ha) was subject to crown fires with a mean rotation period of 50–100 y. Fires often overlapped, creating a mosaic of differently aged stands with many stands burning frequently or, alternatively, escaping fire for several centuries. The BWCA may never have reached a steady-state (defined as a stable landscape age-class structure). In the early 1900s, a diminished fire regime began creating a more demographically diverse forest, characterized by increasingly uneven-aged stands. Shade-tolerant species typical of the region began replacing the shade-intolerant species that composed the fire-generated even-aged stands. Red pine (Pinus resinosa) stands are relatively uncommon in the BWCA today and are of special concern. The replacement of early-to-midsuccessional species is occurring at the scale of individual gaps, producing mixed-species multiaged forests. We used LANDIS, a spatially explicit forest landscape model, to investigate the long-term consequences of fire reintroduction or continuing fire absence on forest composition and landscape structure. Fire reintroduction was evaluated at three potential mean fire rotation periods (FRP): 50,100, and 300 y. Our model scenarios predict that if fire reintroduction mimics the natural fire regime (bracketed by FRP = 50 and 100 y), it will be most successful at preserving the original species composition and landscape structure, although jack pine (Pinus banksiana) may require special management. With limited fire reintroduction, all of the extant species are retained although species dominance and landscape structure will be substantially altered. If fire remains absent, many fire-dependent species will be lost as local dominants, including red pine. The landscape appears to be in a state of rapid change and a shift in management to promote fire may need to be implemented soon to prevent further deviation from historic, presettlement conditions.  相似文献   

3.
Abstract. To evaluate the respective contributions of habitat, fire regime and colonization-extinction processes to the distribution of northern Pinus species, we investigated the distribution of P. banksiana (jack pine), P. resinosa (red pine) and P. strobus (white pine) on 117 islands of Lake Duparquet in northwestern Québec. Stepwise logistic regressions indicated that the extent of xeric areas on the islands was the sole factor predicting jack pine distribution. The distribution of white pine was predicted primarily by the combined effects of distance to the shoreline and elevation, with a smaller effect of area of xeric habitat. The distribution of red pine was predicted by other populations of red pine nearby, with a slightly smaller effect of the combined effects of distance to shoreline and elevation. None of the species completely saturates all available islands nor is any restricted to specific, very exposed aspects. The results suggest that pine is more frequent on islands with characteristics that promote lightning strikes and thus higher fire occurrence. However, absence of pine in several islands may not be explained by abiotic characteristics or recent fire history. The presence of very small populations, together with low invasion potential, suggests that the observed distribution is mainly driven by the process of random extinction. A disequilibrium between present and past fire regimes may explain why northern pines have discontinuous distributions inside their range limits.  相似文献   

4.
Question: What is the relative importance of low‐ and high‐severity fires in shaping forest structure across the range of Pinus ponderosa in northern Colorado? Location: Colorado Front Range, USA. Methods: To assess severities of historic fires, 24 sites were sampled across an elevation range of 1800 to 2800 m for fire scars, tree establishment dates, tree mortality, and changes in tree‐ring growth. Results: Below 1950 m, the high number of fire scars, scarcity of large post‐fire cohorts, and lack of synchronous tree mortality or growth releases, indicate that historic fires were of low severity. In contrast, above 2200 m, fire severity was greater but frequency of widespread fires was substantially less. At 18 sites above 1950 m, 34 to 80% of the live trees date from establishment associated with the last moderate‐ to high‐severity fire. In these 18 sites, only 2 to 52% of the living trees pre‐date these fires suggesting that fire severities prior to any effects of fire suppression were sufficient to kill many trees. Conclusions: These findings for the P. ponderosa zone above ca. 2200 m (i.e. most of the zone) contradict the widespread perception that fire exclusion, at least at the stand scale of tens to hundreds of hectares, has resulted in unnaturally high stand densities or in an atypical abundance of shade‐tolerant species. At relatively mesic sites (e.g. higher elevation, north‐facing), the historic fire regime consisted of a variable‐severity regime, but forest structure was shaped primarily by severe fires rather than by surface fires.  相似文献   

5.
Questions: Did fire regimes in old‐growth Pinus ponderosa forest change with Euro‐American settlement compared to the pre‐settlement period? Do tree age structures exhibit a pattern of continuous regeneration or is regeneration episodic and related to fire disturbance or fire‐free periods? Are the forests compositionally stable? Do trees have a clumped spatial pattern and are clumps even‐ or mixed‐age? How might information from this old‐growth forest inform current restoration and management practices? Location: A 235‐ha old‐growth forest in the Ishi Wilderness, southern Cascade Mountains, California. Methods: Age, size, and spatial pattern of trees were quantified in seven stands. Fire history was reconstructed using fire scar dendrochronology. The influence of fire on stand structure was assessed by comparing fire history with age, size, and spatial structure of trees and identifying and measuring trees killed by two recent fires. Results: Species composition in plots was similar but density and basal area of tree populations varied. Age structure for P. ponderosa and Quercus kelloggii showed periods of episodic recruitment that varied among plots. Fire disturbance was frequent before 1905, with a median period between fires of 12 years. Fire frequency declined after 1905 but two recent fires (1990, 1994) killed 36% and 41% of mostly smaller diameter P. ponderosa and Q. kelloggii. Clusters of similar age trees occurred at scales of 28‐1018 m2 but patches were not even‐aged. Interactions between tree regeneration and fire promoted development of uneven age groups of trees. Conclusions: Fire disturbance strongly influenced density, basal area, and spatial structure of tree populations. Fire exclusion over the last 100 years has caused compositional and structural changes. Two recent fires, however, thinned stands and created gaps favorable for Q. kelloggii and P. ponderosa regeneration. The effects of infrequent 20th century fire indicate that a low fire frequency can restore and sustain structural characteristics resembling those of the pre‐fire suppression period forest.  相似文献   

6.
Abstract. From 1980–1989, fires burned 32 440 km2 of boreal forest, 200 km south of the forest-tundra border in northern Québec, Canada. An assessment of the impact of fire on tree population densities was carried out by comparing the number of Pinus banksiana and Picea mariana in 83 sites before and after the sites burned in 1981, 1983, 1988 or 1989. Age structure analysis of post-fire populations burned in 1972, 1976 and 1983, along with the rapid exhaustion of the seed bank from burned trees, suggest that the majority of seedlings were established within 3 to 10 yr after fire. Consequently, given the absence of nearby living seed bearers, little (if any) further recruitment can be expected in the even-aged, regenerating populations. According to the tree density comparison (pre-fire vs post-fire), a shift from Picea- to Pinus-dominated communities occurred in most of the sites burned in 1981 or 1983, and in some of the sites burned in 1988 or 1989. The 1988 fire reduced the tree population density by 95% in 10 of the 15 sites; total tree density decreased by at least 75% in 28 out of 40 sites burned in 1989. This suggests that the areas burned in 1988 and 1989 will mainly regenerate as very open forests or lichen-heath communities that are more commonly found in the forest-tundra zone, north of the study area. Fire intensity, short fire interval, and unfavorable climate during and after fires are three plausible mechanisms associated with these post-fire vegetation changes.  相似文献   

7.
We examined the composition and structure of forest communities in a 3700 ha watershed in relation to environmental gradients and changes in land management practices. We identified four mixed-conifer forest types dominated by different combinations of Abies concolor, Picea pungens, Pinus ponderosa, Populus tremuloides, and Pseudotsuga menziesii, and a spruce-fir type dominated by Picea engelmannii and Abies lasiocarpa. The forest types occur in a complex pattern related to elevation and topographicmoisture gradients and variations in past fire regimes. However, widespread regeneration of A. concolor following possible changes in the fire regime in the late 19th century and continuing with institution of a fire suppression policy early in the 20th century is producing a more homogenous mixed-conifer forest with greater horizontal and vertical continuity of fuel. This shift toward landscape homogeneity not only may adversely affect biodiversity, but also may be perpetuated as the probability of large, high-severity fires increases with continued fire suppression.  相似文献   

8.
Fire recurrently affects Mediterranean-type climate (MTC) regions causing major implications on the structure and dynamics of vegetation. In these regions, it is important to know the fire regime for which reliable fire records are needed. Dendroecology offers the possibility of obtaining fire occurrence data from woody species and has been widely used in forest ecosystems for fire research. Grasslands are regions with no trees where shrubs can provide dendroecological evidence for reconstructing fire history at landscape scale. We studied the dendroecological potential of the shrub Fabiana imbricata to reconstruct fire history at landscape scale in MTC grasslands of northwestern Patagonia. In order to accomplish this, we combined spatio-temporal information of recorded fires from the study area with the age structure of F. imbricata shrublands obtained from dendroecological methods. Shrubland age structure correctly described how often fires occurred in the past. In rocky outcrops, where fires cannot reach, individuals are long-lived and heterogeneous in age; while downhill, individuals are young and shrublands are even-aged. Five pulses of massive recruitment were found: three of these coincided with three known fires; the remaining two had not been recorded before. A bi-variated analysis showed that F. imbricata recruited mainly during two years after fire, and the spatial distribution of pulses coincided with the fire map. Information derived from shrubland age structure could be used to estimate fire regime parameters such as fire return interval at landscape or community scale. For instance, we estimated a fire return interval of nine years at landscape scale and ranging from 11 to 24 years at community scale (shrubland). Our results in northwestern Patagonia grasslands showed that the F. imbricata chronology can be used to complement other information sources such as remote sensing and operational databases improving the knowledge about fire regime. The present study demonstrates that is possible to utilize shrubs as a dendroecological data source to study fire history in regions where tree cover is absent.  相似文献   

9.
Size and age structures of stand populations of numerous tree species exhibit uneven or reverse J-distributions that can persist after non-catastrophic disturbance, especially windstorms. Among disjunct populations of conspecific trees, alternative distributions are also possible and may be attributed to more localized variation in disturbance. Regional differences in structure and demography among disjunct populations of sand pine (Pinus clausa (Chapm. ex Engelm.) Vasey ex Sarg.) in the Florida panhandle and peninsula may result from variation in hurricane regimes associated with each of these populations. We measured size, age, and growth rates of trees from panhandle and peninsula populations and then compiled size and age class distributions. We also characterized hurricanes in both regions over the past century. Size and age structures of panhandle populations were unevenly distributed and exhibited continuous recruitment; peninsula populations were evenly sized and aged and exhibited only periodic recruitment. Since hurricane regimes were similar between regions, historical fire regimes may have been responsible for regional differences in structure of sand pine populations. We hypothesize that fires were locally nonexistent in coastal panhandle populations, while periodic high intensity fires occurred in peninsula populations over the past century. Such differences in local fire regimes could have resulted in the absence of hurricane effects in the peninsula. Increased intensity of hurricanes in the panhandle and current fire suppression patterns in the peninsula may shift characteristics of sand pine stands in both regions.  相似文献   

10.
Abstract. At ca. 40° S in northern Patagonia, Andean rain forests are replaced eastwards by woodlands and shrublands and eventually by steppe. Along this gradient we examined stand dynamics by analyzing tree population age structures and tree growth patterns. We also examined spatial and temporal characteristics of disturbance regimes by dating disturbances and mapping stands of differing disturbance history. From west to east, the ecological importance of earthquake-related disturbance decreases, whereas that of fire, logging, and livestock increases. Abrupt changes in rates of tree growth correspond with earthquakes in 1837, 1939 and 1960. In the mesic western forests earthquakes can result in massive new tree establishment on landslide-affected sites and increased rates of treefall. Fire, however, is the more pervasive disturbance over most of the gradient and creates extensive even-aged patches dominated by the regionally dominant trees, Nothofagus and Austrocedrus. Although some lightning-ignited and aboriginal-set fires occurred in these forests prior to European settlement, much of the present forest structure may be attributed to the massive burning associated with European settlement of this area near the turn of the present century. In contrast to the settlement-related increase in fire frequency in the western forested district, at the woodland/steppe ecotone the demise of the native American population resulted in a decrease in fire frequency. Heavy browsing and grazing following fire can seriously impede post-fire tree regeneration. These preliminary results document the important influences of varying disturbance regimes along a major environmental gradient in creating landscape-scale vegetation patterns.  相似文献   

11.
Frequent fire is an integral component of longleaf pine ecosystems, creating environmental conditions favoring survival and growth of juvenile pines. This study examined stand structure, species composition, and longleaf pine regeneration in an old-growth tract of longleaf pine forest (Boyd Tract) experiencing long-term (>80 yr) fire exclusion in the Sandhills of North Carolina. Sampling of woody stems (i.e., 2.5 cm diameter at breast height) and tallies of longleaf pine seedlings were carried out in plots established randomly on upland, mesic areas and lowland, xeric areas within the Boyd Tract. Dominant woody species in mesic plots were black oak, hickories, and large, sparse longleaf pines. Xeric plots had high densities of turkey oak with the large longleaf pines, as well as higher frequencies of smaller longleaf stems. These differences between areas were associated with higher clay content of upland soils and higher sand content of lowland soils. Age-class frequency distributions for fire-suppressed longleaf pine following the last wildfire at the Boyd Tract approximately 80 yr ago contrasted sharply with data from an old-growth longleaf tract in southern Georgia (Wade Tract) that has been under a long-term frequent fire regime. Post-burn recruitment for the Boyd Tract wildfire appears to have been initially high on both site types. Longleaf pine recruitment diminished sharply on the mesic site, but remained high for 60 yr on the xeric site. Currently, longleaf pine regeneration is minimal on both site types; several plots contained no seedlings. Sharp contrasts in longleaf pine dominance and stand structure between the Boyd and Wade Tracts demonstrate the importance of large-scale disturbance, especially hurricanes and fire, in shaping the structure and function of longleaf pine ecosystems of the southeastern United States. In particular, long-term exclusion of fire on the Boyd Tract has altered stand structure dramatically by permitting hardwoods to occupy at high densities the characteristically large gaps between longleaf stems that are maintained by fire and other disturbances.  相似文献   

12.
Population age structure and succession were investigated in subalpine forests in the Colorado Front Range dominated by Pinus flexilis (limber pine). Age, size, and spatial data were collected from three recent burns (<100 yr old), six ca. 240 year-old post-fire stands, and two old-growth stands (individuals > 400 yr old). The sequence of colonization of now extant trees on these post-fire sites appeared to be consistent: first Pinus flexilis, then Picea engelmannii (Engelmann spruce), and later Abies lasiocarpa (subalpine fir) with a delay between the first Pinus flexilis and Abies of as long as 140 yr. The advantage of Pinus flexilis on post-burn sites can be attributed to avian seed dispersal and the exceptional drought tolerance of its seedlings. The three recent burns were not extensive, and the delay in establishment of Picea and Abies appeared to be limited by harsh site conditions rather than lack of seed dispersal. Spatial analysis indicated a consistent, although sometimes weak, attraction between Pinus flexilis and Picea and Pinus flexilis and Abies at a scale of 1–4 m, suggesting that Pinus flexilis may facilitate establishment of Picea and Abies seedlings by providing shade or protection from wind. On xeric to slightly xeric sites, Pinus flexilis appeared to form broadly even-aged, non-regenerating populations that were gradually being replaced by Picea and Abies. Replacement is proceeding at a faster rate on the least xeric sites (north aspects, valley bottoms) compared to the most xeric sites (south aspects). On the most extreme sites, Pinus flexilis formed all-aged, self-maintaining populations with no evidence of replacement by Picea and Abies. In these old-growth forests with occasional trees aged at > 1300 yr, recruitment is continuous or episodic.  相似文献   

13.
Abstract. Question: The decline of the Pinus palustris ecosystems has resulted from anthropogenic influences, such as conversion to pine plantation forestry, agriculture and land development, all of which are closely related to increases in human populations. Other effects, however, have arisen from alterations in disturbance regimes that maintain the structure and function of these ecosystems. How have alterations of the disturbance regime altered the physiognomy of ‘old‐growth’ stands, and what are the implications for ecosystem conservation and restoration? Methods: In contrast to models that emphasize close interactions among the vertically complex strata, we develop a conceptual phenomenological model for the physiognomic structure of Pinus palustris stands. We relate two natural disturbances (tropical storms and fire) that affect different stages of the life cycle to different aspects of the physiognomic structure. We then compare overstorey stand structure and ground cover composition of two old‐growth longleaf stands near the extremes of different composite disturbance regimes: the Wade Tract (frequent hurricanes and fire) and the Boyd Tract (infrequent hurricanes and long‐term fire exclusion). Results: We predict that tropical storms and fires have different effects on stand physiognomy. Tropical storms are periodic, and sometimes intense, whereas fires are more frequent and less intense. Hurricanes directly influence the overstorey via wind‐caused damage and mortality, and indirectly influence the herb layer by altering the spatial distribution of shading and litter accumulation. Fire exerts direct effects on juvenile stages and indirect effects on the herb layer via fine fuel consumption and selective mortality of potential competitors of P. palustris juveniles. These differences in effects of disturbances can result in widely different physiognomies for P. palustris stands. Finally, some global climate change scenarios have suggested that changes may occur in tropical storm and fire regimes, altering frequency and severity. Such changes may greatly affect pine stands, and ultimately entire pine savanna ecosystems. Conclusions: Our phenomenological model of disturbance regimes in Pinus palustris old‐growth produces very different physiognomies for different disturbances regimes that reflect natural process and human management actions. This model can be used to derive restoration strategies for pine savannas that are linked to reinstitution of important ecological processes rather than specific physiognomic states.  相似文献   

14.
According to contemporary ecological theory, the mechanisms governing tree cover in savannas vary by precipitation level. In tropical areas with mesic rainfall levels, savannas are unstable systems in which disturbances, such as fire, determine the ratio of trees to grasses. Precipitation in these so-called “disturbance-driven savannas” is sufficient to support forest but frequent disturbances prevent transition to a closed canopy state. Building on a savanna buffering model we argue that a consistent fire regime is required to maintain savannas in mesic areas. We hypothesize that the spatiotemporal pattern of fires is highly regular and stable in these areas. Furthermore, because tree growth rates in savannas are a function of precipitation, we hypothesize that savannas with the highest rainfall levels will have the most consistent fire pattern and the most intense fires—thus the strongest buffering mechanisms. We analyzed the spatiotemporal pattern of burning over 11 years for a large subset of the West African savanna using a moderate resolution imaging spectroradiometer active fire product to document the fire regime for three savanna belts with different precipitation levels. We used LISA analysis to quantify the spatiotemporal patterns of fires, coefficient of variance to quantify differences in peak fire dates, and center or gravity pathways to characterize the spatiotemporal patterns of the fires for each area. Our analysis confirms that spatiotemporal regularity of the fire regime is greater for mesic areas that for areas where precipitation is lower and that areas with more precipitation have more regular fire regimes.  相似文献   

15.
We examined forest structure and regeneration in a 350‐ha forest dominated by Pinus sylvestris 31 yr after a wildfire in the Vienansalo wilderness, Russian Karelia. In most parts of the area, the 1969 fire was not stand replacing but had left larger trees alive so that the area generally remained forest covered. In some localities, however, all trees apparently died and distinct gaps were formed, suggesting that the fire severity varied considerably, contributing to increased variation in stand structure. Living and dead wood volumes were similar, 112 and 96 m3.ha‐1, respectively. The tree species proportions of dead vs living wood indicated that prior to fire disturbance Picea was more common in the area. Regeneration was abundant (saplings, ca. 14 000 ind.ha‐1, height 20 ‐200 cm) and tree seedling recruitment had occurred over a long period of time. Regeneration density was highest on the mesic Vaccinium‐Myrtillus forest site type, decreasing towards nutrient‐poor site types. The most common regeneration microsites were level ground (56% of saplings), immediate surroundings of decayed wood (23%) and depressions (11%). The high proportion of saplings on level ground suggests that after the fire regeneration conditions have been favourable across the whole forest floor. Nevertheless, the areas in the vicinity of decayed wood have been particularly important microsites for seedling establishment. The results provide an example of the effects of wildfire on forest structure in a natural Pinus sylvestris dominated forest, demonstrating the non stand replacing character of fire, high variability in stand structure and the abundance of post‐fire regeneration.  相似文献   

16.
Monterey pine (Pinus radiata D. Don) has only five extant native populations: three disjunct populations along the coast of California, USA and two on Mexican islands. All populations have been influenced by human activity, but the island populations in particular have been affected by introduced biota. On Guadalupe Island, the pine population has suffered drastically from overgrazing by introduced goats. We visited both island populations and described their status, took measurements, and made seed collections. We counted approximately 200 mature pine trees and virtually no seedlings on Guadalupe Island: a reduction of approximately half the population in the last 50 years. The trees are all large (mean diameter of 144 cm) –considerably larger than trees from the other four populations – and arguably near the end of their natural lifespan. The population on Cedros Island is much more robust, with thousands of trees. None sampled were as large as those on Guadalupe Island (mean diameter of 20 cm) and many groves were young and even-aged – presumably the consequence of natural regeneration after a recent fire. Tissue samples from trees on both islands did not show evidence of infection from the pitch canker pathogen, Fusarium circinatum, that has caused significant mortality in the three mainland populations. Caution is recommended in any restoration activity for the Guadalupe Island pines. Inbreeding levels could indicate the need for some planting or seeding intervention but there are also risks associated with this. Natural regeneration – after goat removal – is preferred.  相似文献   

17.
Aim Spatial and temporal variation in fire regime parameters and forest structure were assessed. Location A 2630‐ha area of mid‐ and upper montane forest in Lassen Volcanic National Park (LVNP). Methods Two hypotheses were tested concerned with fire‐vegetation relationships in southern Cascades forests: (1) fire regime parameters (return interval, season of burn, fire size, rotation period) vary by forest dominant, elevation and slope aspect; and (2) fire exclusion since 1905 has caused forest structural and compositional changes in both mid‐ and upper montane forests. The implications of the study for national park management are also discussed. Results Fire regime parameters varied by forest compositional group and elevation in LVNP. Median composite and point fire return intervals were shorter in low elevation Jeffrey pine (Pinus jeffreyi) (JP) (4–6 years, 16 years) and Jeffrey pine–white fir (Abies concolor) (JP‐WF) (5–10 years, 22 years) and longer in high elevation red fir (Abies magnifica)— western white pine (Pinus monticola) (RF‐WWP) forests (9–27 years, 70 years). Median fire return intervals were also shorter on east‐facing (6–9 years, 16.3 years) and longer on south‐ (11 years, 32.5 years) and west‐facing slopes (22–28 years, 54‐years) in all forests and in each forest composition group. Spatial patterns in fire rotation length were the same as those for fire return intervals. More growing season fires also occurred in JP (33.1%) and JP‐WF (17.5%) than in RF‐WWP (1.1%) forests. A dramatic decline in fire frequency occurred in all forests after 1905. Conclusions Changes in forest structure and composition occurred in both mid‐ and upper montane forests due to twentieth‐century fire exclusion. Forest density increased in JP and JP‐WF forests and white fir increased in JP‐WF forests and is now replacing Jeffrey pine. Forest density only increased in some RF‐WWP stands, but not others. Resource managers restoring fire to these now denser forests need to burn larger areas if fire is going to play its pre‐settlement role in montane forest dynamics.  相似文献   

18.
19.
Aim The historical variability of fire regimes must be understood in the context of drivers of the occurrence of fire operating at a range of spatial scales from local site conditions to broad‐scale climatic variation. In the present study we examine fire history and variations in the fire regime at multiple spatial and temporal scales for subalpine forests of Engelmann spruce–subalpine fir (Picea engelmannii, Abies lasiocarpa) and lodgepole pine (Pinus contorta) of the southern Rocky Mountains. Location The study area is the subalpine zone of spruce–fir and lodgepole pine forests in the southern sector of Rocky Mountain National Park (ROMO), Colorado, USA, which straddles the continental divide of the northern Colorado Front Range (40°20′ N and 105°40′ W). Methods We used a combination of dendroecological and Geographic Information System methods to reconstruct fire history, including fire year, severity and extent at the forest patch level, for c. 30,000 ha of subalpine forest. We aggregated fire history information at appropriate spatial scales to test for drivers of the fire regime at local, meso, and regional scales. Results The fire histories covered c. 30,000 ha of forest and were based on a total of 676 partial cross‐sections of fire‐scarred trees and 6152 tree‐core age samples. The subalpine forest fire regime of ROMO is dominated by infrequent, extensive, stand‐replacing fire events, whereas surface fires affected only 1–3% of the forested area. Main conclusions Local‐scale influences on fire regimes are reflected by differences in the relative proportions of stands of different ages between the lodgepole pine and spruce–fir forest types. Lodgepole pine stands all originated following fires in the last 400 years; in contrast, large areas of spruce–fir forests consisted of stands not affected by fire in the past 400 years. Meso‐scale influences on fire regimes are reflected by fewer but larger fires on the west vs. east side of the continental divide. These differences appear to be explained by less frequent and severe drought on the west side, and by the spread of fires from lower‐elevation mixed‐conifer montane forests on the east side. Regional‐scale climatic variation is the primary driver of infrequent, large fire events, but its effects are modulated by local‐ and meso‐scale abiotic and biotic factors. The low incidence of fire during the period of fire‐suppression policy in the twentieth century is not unique in comparison with the previous 300 years of fire history. There is no evidence that fire suppression has resulted in either the fire regime or current forest conditions being outside their historic ranges of variability during the past 400 years. Furthermore, in the context of fuel treatments to reduce fire hazard, regardless of restoration goals, the association of extremely large and severe fires with infrequent and exceptional drought calls into question the future effectiveness of tree thinning to mitigate fire hazard in the subalpine zone.  相似文献   

20.
《Acta Oecologica》2002,23(6):405-411
This study analyzes the factors affecting the current variability in density and age and size structure of mixed pine–oak forests of Pinus nigra and Quercus faginea in Central Catalonia (NE Spain), 37 years after a wildfire. The objective is to determine whether different post-disturbance responses may be obtained from the same pre-fire community and which factors can determine these different potential responses. The two factors analyzed were the distance to the unburned forest and site conditions (represented in this case by different aspects). The response of pines and oaks was different to the pattern expected for the Mediterranean Basin. Oaks resprouted immediately from stools already present before the fire and dominated during the first years, independent of both disturbance and site conditions. Pines established later, and their response depended on both factors: pine density decreased sharply from the forest edge to the burned area, and the number of pines was also higher in the more mesic than in the more xeric conditions. The age structure analysis for pines and oaks in the different aspects also revealed site-dependent rates of succession manifested by initial differences in post-fire establishment. In mesic plots, the establishment of pines occurred quite early, while in xeric plots, pine recruitment was delayed several years. These different patterns of post-fire recovery have led to pine dominance in more mesic sites and codominance of pines and oaks in more xeric ones, suggesting that different mid-term post-fire patterns can be identified for the same pre-fire forest type, depending on variations in environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号