首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
One of the most powerful techniques that are currently available to measure thermodynamic parameters such as enthalpy (ΔH), Gibbs free energy (ΔG), entropy changes (ΔS), and binding affinity in chemical reactions is isothermal titration calorimetry (ITC). Recent advances in instrumentation have facilitated the development of ITC as a very essential analytical tool in biology and chemistry. In this article, we will focus on a review of the literature on the application of ITC for the study of chiral systems and chiral interactions. We present studies in which the ITC technique is used to study chiral interactions, for instance in chiral solutions, chiral organometallic complexes, guest‐host chiral binding interactions, and biological macromolecules. Finally, we put strong emphasis on the most recent application of ITC for the study of chirality in nanosystems and at the nanoscale.  相似文献   

2.
This review gives an overview of chiral separation principles and their application in enantioselective nano/micro high performance liquid chromatography (n/μ‐HPLC) using chiral monolith. In particular, developments in silica and polymer chiral monolithic stationary phases are presented. The preparation and applications of chiral monoliths, the basic chiral separation principles and the mechanisms are discussed. Chirality 25:314–323, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
Forty different chiral molecules were studied by liquid chromatography with a Pirkle-type, (R)-N-(3,5-dinitrobenzoyl) phenylglycine (DNBPG), chiral stationary phase column. The dramatic effect of a small molecular change on chiral recognition was demonstrated using DL-amino acid derivatives. The inductive effect on chiral recognition was also studied using trifluoro-, trichloro-, dichloro-, monochloroacetyl, and acetyl derivatives of four different chiral amines. The study of the enantiomer separation of 11 different crown ethers of 2,2′-binaphthyldiyl showed that the rigidity of the chiral center can be an additional parameter in chiral recognition for the DNBPG phase but not for a β-cyclodextrin bonded chiral phase. It is apparent from this study that steric effects, inductive effects, and molecular rigidity play important roles in chiral recognition with DNBPG chiral stationary phases.  相似文献   

4.
The N-(n-butylamide) of (S)-2-(phenylcarbamoyloxy)propionic acid, easily prepared starting from the inexpensive L -ethyl lactate, can be used as convenient chiral solvating agent (CSA) to determine the enantiomeric composition of N-(3,5-dinitrobenzoyl)amino acid methyl esters.  相似文献   

5.
A strategy based on the use of homo bi- and multifunctional building blocks for the synthesis of a new class of network-polymeric chiral stationary phases has been evaluated. The key steps comprise acylation of N,N′-diallyl-L-tartardiamide (DATD) and reaction with a multifunctional hydrosilane, yielding a network polymer incorporating the bifunctional C2-symmetric chiral selector. Covalent bonding to a functionalized silica takes place during the latter process. Many of these chiral sorbents show interesting enantioselective properties toward a wide variety of racemic solutes under normal-phase (hexane-based) conditions. The retention is mainly caused by the hydrogen-bonding ability of the analyte, which is regulated by mobile phase additives like alcohol or ether cosolvents. The most interesting chiral stationary phases, in terms of broad enantioselectivity, were obtained from O,O′-diaryol-DATD-derivatives, particularly those containing the 3,5-dimethylbenzoyl and the 4-(tert-butyl)benzoyl moieties. Since high column efficiencies can be obtained with these chiral sorbents, an α-value of ca. 1.2 is usually sufficient to produce baseline separation. A large number of neutral as well as acidic or basic drug racemates are resolved without derivatization. © 1995 Wiley-Liss, Inc.  相似文献   

6.
Four chiral stationary phases (CSPs) derived from N-(3,5-dinitrobenzoyl)tyrosine have been synthesized. They differ by the substituent nature (methyl, ethyl, isopropyl, tert-butyl) of the aliphatic amide function. The enantiorecognition ability of these CSPs was evaluated with 10 racemates. For the majority of them, the stereoselectivity increases with the steric hindrance of the substituent. The chiral selector enantiomeric separation on the resulting CSPs has evidenced a reversal of elution order only for CS 4 on CSP 4 (tert-butyl substituent), suggesting a change in its conformation.  相似文献   

7.
Mirgane NA  Karnik AV 《Chirality》2011,23(5):404-407
(S)‐(−)‐2‐(α‐hydroxyethyl)‐benzimidazole and (S)‐(+)‐2‐(α‐hydroxybenzyl)‐benzimidazole work as chiral Brønsted bases (BBs) in Diels–Alder reaction between anthrone and maleimides under mild reaction condition. These chiral BBs cause asymmetric induction. Chirality, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

8.
Aydogan C  Denizli A 《Chirality》2012,24(8):606-609
This article describes the development of a polybutylmethacrylate‐based monolithic capillary column as a chiral stationary phase. The chiral monolithic column was prepared by polymerization of butyl methacrylate (BMA), ethylene dimethacrylate (EDMA), and N‐methacryloyl‐l ‐glutamic acid (MAGA) in the presence of porogens. The porogen mixture included N,N‐dimethyl formamide and phosphate buffer. MAGA was used as a chiral selector. The effect of MAGA content was investigated on electrochromatographic enantioseparation of d,l ‐histidine, d,l ‐tyrosine, d,l ‐phenyl alanine, and d,l ‐glutamic acid. The effect of acetonitrile (ACN) content in mobile phase on electro‐osmotic flow was also investigated. It was demonstrated that the poly(BMA‐EDMA‐MAGA) monolithic chiral column can be used for the electrochromatographic enantioseparation of amino acids by capillary electrochromatography (CEC). The mobile phase was ACN/10 mM phosphate buffer (45:55%) adjusted to pH 2.7. It was observed that l ‐enantiomers of the amino acids migrated before d ‐enantiomers. The separation mechanism of electrochromatographic enantioseparation of amino acids in CEC is discussed. Chirality 24:606–609, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
The resolution of seven enantiomeric pairs of chiral derivatives of xanthones (CDXs) on (S,S)‐Whelk‐O1 and l ‐phenylglycine chiral stationary phases (CSPs) was systematically investigated using multimodal elution conditions (normal‐phase, polar‐organic, and reversed‐phase). The (S,S)‐Whelk‐O1 CSP, under polar‐organic conditions, demonstrated a very good power of resolution for the CDXs possessing an aromatic moiety linked to the stereogenic center with separation factor and resolution factor ranging from 1.91 to 7.55 and from 6.71 to 24.16, respectively. The chiral recognition mechanisms were also investigated for (S,S)‐Whelk‐O1 CSP by molecular docking technique. Data regarding the CSP–CDX molecular conformations and interactions were retrieved. These results were in accordance with the experimental chromatographic parameters regarding enantioselectivity and enantiomer elution order. The results of the present study fulfilled the initial objectives of enantioselective studies of CDXs and elucidation of intermolecular CSP–CDX interactions. Chirality 25:89–100, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
Twelve chiral compounds were enantiomerically resolved on bovine serum albumin chiral stationary phase (BSA‐CSP) by high‐performance liquid chromatography (HPLC) in reversed‐phase modes. Chromatographic conditions such as mobile phase pH, the percentage of organic modifier, and concentration of analyte were optimized for separation of enantiomers. For N‐(2, 4‐dinitrophenyl)‐serine (DNP‐ser), the retention factors (k) greatly increase from 0.81 to 6.23 as the pH decreasing from 7.21 to 5.14, and the resolution factor (Rs) exhibited a similar increasing trend (from 0 to 1.34). More interestingly, the retention factors for N‐(2, 4‐dinitrophenyl)‐proline (DNP‐pro) decrease along with increasing 1‐propanol in mobile phase (3%, 5%, 7% and 9% by volume), whereas the resolution factor shows an upward trend (from 0.96 to 2.04). Moreover, chiral recognition mechanisms for chiral analytes were further investigated through thermodynamic methods. Chirality 25:487–492, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
The aim of the paper is to describe a new synthesis route to obtain synthetic optically active clausenamidone and neoclausenamidone and then use high‐performance liquid chromatography (HPLC) to determine the optical purities of these isomers. In the process, we investigated the different chromatographic conditions so as to provide the best separation method. At the same time, a thermodynamic study and molecular simulations were also carried out to validate the experimental results; a brief probe into the separation mechanism was also performed. Two chiral stationary phases (CSPs) were compared with separate the enantiomers. Elution was conducted in the organic mode with n‐hexane and iso‐propanol (IPA) (80/20 v/v) as the mobile phases; the enantiomeric excess (ee) values of the synthetic R‐clausenamidone and S‐clausenamidone and R‐neoclausenamidone and S‐ neoclausenamidone were higher than 99.9%, and the enantiomeric ratio (er) values of these isomers were 100:0. Enantioselectivity and resolution (α and Rs, respectively) levels with values ranging from 1.03 to 1.99 and from 1.54 to 17.51, respectively, were achieved. The limits of detection and quantitation were 3.6 to 12.0 and 12.0 to 40.0 ug/mL, respectively. In addition, the thermodynamics study showed that the result of the mechanism of chiral separation was enthalpically controlled at a temperature ranging from 288.15 to 308.15 K. Furthermore, docking modeling showed that the hydrogen bonds and π‐π interactions were the major forces for chiral separation. The present chiral HPLC method will be used for the enantiomeric resolution of the clausenamidone derivatives.  相似文献   

12.
A novel nickel(II) hexaaza macrocyclic complex, [Ni(LR,R)](ClO4)2 ( 1 ), containing chiral pendant groups was synthesized by an efficient one‐pot template condensation and characterized (LR,R═1,8‐di((R)‐α‐methylnaphthyl)‐1,3,6,8,10,13‐hexaazacyclotetradecane). The crystal structure of compound 1 was determined by single‐crystal X‐ray analysis. The complex was found to have a square‐planar coordination environment for the nickel(II) ion. Open framework [Ni(LR,R)]3[C6H3(COO)3]2 ( 2 ) was constructed from the self‐assembly of compound 1 with deprotonated 1,3,5‐benzenetricarboxylic acid, BTC3?. Chiral discrimination of rac‐1,1′‐bi‐2‐naphthol and rac‐2,2,2‐trifluoro‐1‐(9‐anthryl)ethanol was performed to determine the chiral recognition ability of the chiral complex ( 1 ) and its self‐assembled framework ( 2 ). Binaphthol showed a good chiral discrimination on the framework ( 2 ). The optimum experimental conditions for the chiral discrimination were examined by changing the weight ratio between the macrocyclic complex 1 or self‐assembled framework 2 and racemates. The detailed synthetic procedures, spectroscopic data including single‐crystal X‐ray analysis, and the results of the chiral recognition for the compounds are described. Chirality, 25:54‐58, 2013 © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Esters of 1-(1-naphthly)ethylurea derivatives of L-valine, L-leucine, L-tert-leucine, and L-proline are examined as organic-soluble chiral nuclear magnetic resonance (NMR) resolving agents. The reagents are useful for resolving the spectra of chiral sulfoxides, amines, alcohols, and carboxylic acids. Enantiomeric resolution is caused by a combination of diastereomeric effects and the different association constants of the substrates with the resolving agents. Organic-soluble lanthanide species are added to resolving agent-substrate mixtures and often enhance the enantiomeric resolution. The enhancement occurs because the substrate that exhibits weaker binding with the resolving agent is more available to bond to the lanthanide. Broadening in the spectra with lanthanides is reduced at 50°C. Enantiomeric resolution is still observed at elevated temperatures. Chirality 9:1–9, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
A new type of planar chiral (Rp)‐ and (Sp)‐4,7,12,15‐tetrasubstituted [2.2]paracyclophanes was prepared from racemic 4,7,12,15‐tetrabromo[2.2]paracyclophane as the starting substrate. Regioselective lithiation and transformations afforded racemic bis‐(para)‐pseudo‐meta‐type [2.2]paracyclophane (4,15‐dibromo‐7,12‐dihydroxy[2.2]paracyclophane). Its optical resolution was performed by the diastereomer method using a chiral camphanoyl group as the chiral auxiliary. The diastereoisomers were readily isolated by simple silica gel column chromatography, and the successive hydrolysis afforded (Rp)‐ and (Sp)‐bis‐(para)‐pseudo‐meta‐type [2.2]paracyclophanes ((Rp)‐ and (Sp)‐4,15‐dibromo‐7,12‐dihydroxy[2.2]paracyclophanes). They can be used as pseudo‐meta‐substituted chiral building blocks.  相似文献   

15.
A novel method was developed for the simultaneous determination of guaifenesin (GUA) and ketorolac tromethamine (KET) enantiomers in plasma samples. Since GUA probably increases the absorption of coadministered drugs (e.g., KET), it would be extremely important to monitor KET plasma levels for the purpose of dose adjustment with a subsequent decrease in the side effects. Enantiomeric resolution was achieved on a polysaccharide‐based chiral stationary phase, amylose‐2, as a chiral selector under the normal phase (NP) mode and using ornidazole (ORN) as internal standard. This innovative method has the advantage of the ease and reliability of sample preparation for plasma samples. Sample clean‐up was based on simply using methanol for protein precipitation followed by direct extraction of drug residues using ethanol. Both GUA and KET enantiomers were separated using an isocratic mobile phase composed of hexane/isopropanol/trifluoroacetic acid, 85:15:0.05 v/v/v. Peak area ratios were linear over the range 0.05–20 µg/mL for the four enantiomers S (+) GUA, R (–) GUA, R (+) KET, and S (–) KET. The method was fully validated according to the International Conference on Harmonization (ICH) guidelines in terms of system suitability, specificity, accuracy, precision, robustness, and solution stability. Finally, this procedure was innovative to apply the rationale of developing a chiral high‐performance liquid chromatography (HPLC) procedure for the simultaneous quantitative analysis of drug isomers in clinical samples. Chirality 26:629–639, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
Aroma (volatile) compounds play important ecological functions in plants, and also contribute to the quality of plant-derived foods. Moreover, chiral aroma compounds affect their functions in plants and lead to different flavor quality properties. Formations of chiral aroma compounds are due to the presence of enzymes producing these compounds in plants, which are generally involved in the final biosynthetic step of the aroma compounds. Here, we review recent progress in research on the plant-derived enzymes producing chiral aroma compounds, and their changes in response to environmental factors. The chiral aroma enzymes that have been reported produce (R)-linalool, (S)-linalool, (R)-limonene, and (S)-limonene, etc., and these enzymes are found in various plant species. We also discuss the origins of enantioselectivity in the plant-derived enzymes producing chiral aroma compounds and summarize the potential use of plants containing enzymes producing chiral aroma compounds for producing chiral flavors/fragrances.  相似文献   

17.
Assignment of absolute configuration to a recently developed chiral selector useful in the separation of the underivatized enantiomers of naproxen and other nonsteroidal anti-inflammatory drugs (NSAIDs) is described. Circular dichroism, 1H NMR, and X-ray diffraction have been used to confirm the original assignment which was based solely upon elution orders from HPLC chiral stationary phases. All of these techniques agree in the assignment of the (S,S) absolute configuration to the enantiomer of the chiral selector which associates preferentially with (S)-naproxen. © 1994 Wiley-Liss, Inc.  相似文献   

18.
A new chiral stationary phase (CSP) based on macrocyclic amide receptor was prepared starting from (1R,2R)‐1,2‐diphenylethylenediamine. The new CSP was successfully applied to the resolution of various N‐(substituted benzoyl)‐α‐amino amides with reasonably good separation factors and resolutions (α = 1.75 ~ 2.97 and RS = 2.89 ~ 6.82 for 16 analytes). The new CSP was also applied to the resolution of 3‐substituted 1,4‐benzodiazepin‐2‐ones and some diuretic chiral drugs including bendroflumethiazide and methylchlothiazide and metolazone. The resolution results for 3‐substituted 1,4‐benzodiazepin‐2‐ones and some diuretic chiral drugs were also reasonably good. Chirality 28:253–258, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

19.
An overall view on some new chiral stationary phases based on (trans)-1,2-diaminocyclohexane is illustrated. The selected chiral moiety, derivatized with different aroyl groups, has been linked to a silica matrix in order to give chiral stationary phases (CSPs) enabling them to be used efficiently in the normal and reverse phase, both for analytical and preparative purposes. In addition new polymeric CSPs have been prepared by using the same selector, suitably modified, as monomer. The new chiral stationary phases have been characterised by physicochemical methods and used for the resolution of various racemic compounds classes such as α-aryloxyacetic acids, alcohols, sulfoxides, selenoxides, phosphinates, tertiaryphosphine oxides, benzodiazepines etc. without prederivatization or as amines, amino acids, amino alcohols, nonsteroidal antiinflammatory agents in a derivatized form. The separated solutes structural variety suggests that multiple interaction sites are involved in the recognition process: some thermodynamic data relative to the CSPs—selectands interactions are also illustrated. © 1992 Wiley-Liss, Inc.  相似文献   

20.
Metal–organic frameworks (MOFs) are excellent porous materials with nanoscale cavities and high surface areas, which make them promising as novel adsorbents in solid‐phase extraction (SPE). In this article we report a new application of the chiral MOF [Zn2(D‐Cam)2(4,4′‐bpy)]n in SPE used for the measurement of the enantiomeric excess (ee) of (±)‐1,1′‐bi‐2‐naphthol. Several important experimental parameters that may influence the extraction efficiency were investigated and optimized. Under the optimum conditions, a good linearity (R2 > 0.999) was found between the ee value and the reciprocal of the peak areas. When compared with the actual ee measured using chiral HPLC, the SPE‐based assay also showed good accuracy and precision. The results showed that SPE based on chiral MOFs as adsorbents is a simple and effective method for the determination of the ee values of chiral compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号