首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 299 毫秒
1.
Infection of mammalian cells with Semliki Forest virus requires the endocytosis of the virus, its delivery to prelysosomal endosomes, and fusion of the viral envelope with the endosome membrane. Previous studies have indicated that the low endosomal pH triggers a conformational change in the viral spike glycoproteins rendering them fusogenic. In this paper, we demonstrate an additional factor(s) which regulates virus fusion in endosomes. We found that Semliki Forest virus is unable to penetrate or infect baby hamster kidney (BHK-21) cells grown in medium containing reduced Na+ concentrations. Virus endocytosis and degradation are nearly normal, the virus is transported to endosomes where a characteristic low pH-induced loss of trypsin-sensitivity of the E1 spike glycoprotein occurs. Nevertheless, the viral envelope fails to fuse with the endosomal membrane and the viral RNA is not released into the cytosol. As judged by the uptake of the voltage-sensitive probe [3H]triphenylmethyl phosphonium we observed a close correlation between conditions which inhibit virus infection and which cause depolarization of the cells. We propose that in intact cells, the fusion of Semliki Forest virus with the endosome membrane depends not only on acidic endosomal pH, but also on the maintenance of the potential.  相似文献   

2.
Dengue virus (DENV) is an enveloped RNA virus that causes the most common arthropod-borne infection worldwide. The mechanism by which DENV infects the host cell remains unclear. In this work, we used live-cell imaging and single-virus tracking to investigate the cell entry, endocytic trafficking, and fusion behavior of DENV. Simultaneous tracking of DENV particles and various endocytic markers revealed that DENV enters cells exclusively via clathrin-mediated endocytosis. The virus particles move along the cell surface in a diffusive manner before being captured by a pre-existing clathrin-coated pit. Upon clathrin-mediated entry, DENV particles are transported to Rab5-positive endosomes, which subsequently mature into late endosomes through acquisition of Rab7 and loss of Rab5. Fusion of the viral membrane with the endosomal membrane was primarily detected in late endosomal compartments.  相似文献   

3.
Infection by the coronavirus mouse hepatitis virus strain A59 (MHV-A59) requires the release of the viral genome by fusion with the respective target membrane of the host cell. Fusion is mediated by the viral S protein. Here, the entry pathway of MHV-A59 into murine fibroblast cells was studied by independent approaches. Infection of cells assessed by plaque reduction assay was strongly inhibited by lysosomotropic compounds and substances that interfere with clathrin-dependent endocytosis, suggesting that MHV-A59 is taken up via endocytosis and delivered to acidic endosomal compartments. Infection was only slightly reduced in the presence of substances inhibiting proteases of endosomal compartments, precluding that the endocytic uptake is required to activate the fusion potential of the S protein by its cleavage. Fluorescence confocal microscopy of labeled MHV-A59 confirmed that virus is taken up via endocytosis. Bright labeling of intracellular compartments suggests their fusion with the viral envelope. No fusion with the plasma membrane was observed at neutral pH conditions. However, when virus was bound to cells and the pH was lowered to 5.0, we observed a strong labeling of the plasma membrane. Electron microscopy revealed low pH triggered conformational alterations of the S ectodomain. Very likely, these alterations are irreversible because low-pH treatment of viruses in the absence of target membranes caused an irreversible loss of the fusion activity. The results imply that endocytosis plays a major role in MHV-A59 infection and the acidic pH of the endosomal compartment triggers a conformational change of the S protein mediating fusion.  相似文献   

4.
Macrophages represent viral reservoirs in HIV-1-infected patients and accumulate viral particles within an endosomal compartment where they remain infectious for long periods of time. To determine how HIV-1 survives in endocytic compartments that become highly acidic and proteolytic and to study the nature of these virus-containing compartments, we carried out an ultrastructural study on HIV-1-infected primary macrophages. The endosomal compartments contain newly formed virions rather than internalized ones. In contrast to endocytic compartments free of viral proteins within the same infected cells, the virus containing compartments do not acidify. The lack of acidification is associated with an inability to recruit the proton pump vacuolar ATPase into the viral assembly compartment. This may prevent its fusion with lysosomes, since acidification is required for the maturation of endosomes. Thus, HIV-1 has developed a strategy for survival within infected macrophages involving prevention of acidification within a devoted endocytic virus assembly compartment.  相似文献   

5.
Husain M  Moss B 《Journal of virology》2005,79(7):4080-4089
Infectious intracellular mature vaccinia virus particles are wrapped by cisternae, which may arise from trans-Golgi or early endosomal membranes, and are transported along microtubules to the plasma membrane where exocytosis occurs. We used EH21, a dominant-negative form of Eps15 that is an essential component of clathrin-coated pits, to investigate the extent and importance of endocytosis of viral envelope proteins from the cell surface. Several recombinant vaccinia viruses that inducibly or constitutively express an enhanced green fluorescent protein (GFP)-EH21 fusion protein were constructed. Expression of GFP-EH21 blocked uptake of transferrin, a marker for clathrin-mediated endocytosis, as well as association of adaptor protein-2 with clathrin-coated pits. When GFP-EH21 was expressed, there were increased amounts of viral envelope proteins, including A33, A36, B5, and F13, in the plasma membrane, and their internalization was inhibited. Wrapping of virions appeared to be qualitatively unaffected as judged by electron microscopy, a finding consistent with a primary trans-Golgi origin of the cisternae. However, GFP-EH21 expression caused a 50% reduction in released enveloped virions, decreased formation of satellite plaques, and delayed virus spread, indicating an important role for receptor-mediated endocytosis. Due to dynamic interconnection between endocytic and exocytic pathways, viral proteins recovered from the plasma membrane could be used by trans-Golgi or endosomal cisternae to form new viral envelopes. Adherence of enveloped virions to unrecycled viral proteins on the cell surface may also contribute to decreased virus release in the presence of GFP-EH21. In addition to a salvage function, the retrieval of viral proteins from the cell surface may reduce immune recognition.  相似文献   

6.
Human metapneumovirus (HMPV), a member of the Paramyxoviridae family, is a leading cause of lower respiratory illness. Although receptor binding is thought to initiate fusion at the plasma membrane for paramyxoviruses, the entry mechanism for HMPV is largely uncharacterized. Here we sought to determine whether HMPV initiates fusion at the plasma membrane or following internalization. To study the HMPV entry process in human bronchial epithelial (BEAS-2B) cells, we used fluorescence microscopy, an R18-dequenching fusion assay, and developed a quantitative, fluorescence microscopy assay to follow virus binding, internalization, membrane fusion, and visualize the cellular site of HMPV fusion. We found that HMPV particles are internalized into human bronchial epithelial cells before fusing with endosomes. Using chemical inhibitors and RNA interference, we determined that HMPV particles are internalized via clathrin-mediated endocytosis in a dynamin-dependent manner. HMPV fusion and productive infection are promoted by RGD-binding integrin engagement, internalization, actin polymerization, and dynamin. Further, HMPV fusion is pH-independent, although infection with rare strains is modestly inhibited by RNA interference or chemical inhibition of endosomal acidification. Thus, HMPV can enter via endocytosis, but the viral fusion machinery is not triggered by low pH. Together, our results indicate that HMPV is capable of entering host cells by multiple pathways, including membrane fusion from endosomal compartments.  相似文献   

7.
Influenza virus is pleiomorphic, producing both spherical (100-nm-diameter) and filamentous (100-nm by 20-μm) virions. While the spherical virions are known to enter host cells through exploitation of clathrin-mediated endocytosis, the entry pathway for filamentous virions has not been determined, though the existence of an alternative, non-clathrin-, non-caveolin-mediated entry pathway for influenza virus has been known for many years. In this study, we confirm recent results showing that influenza virus utilizes macropinocytosis as an alternate entry pathway. Furthermore, we find that filamentous influenza viruses use macropinocytosis as the primary entry mechanism. Virions enter cells as intact filaments within macropinosomes and are trafficked to the acidic late-endosomal compartment. Low pH triggers a conformational change in the M2 ion channel protein, altering membrane curvature and leading to a fragmentation of the filamentous virions. This fragmentation may enable more-efficient fusion between the viral and endosomal membranes.  相似文献   

8.
The entry of inhaled virions into airway cells is presumably the initiating step of varicella-zoster infection. In order to characterize viral entry, we studied the relative roles played by lipid rafts and clathrin-mediated transport. Virus and target cells were pretreated with agents designed to perturb selected aspects of endocytosis and membrane composition, and the effects of these perturbations on infectious focus formation were monitored. Infectivity was exquisitely sensitive to methyl-beta-cyclodextrin (M beta CD) and nystatin, which disrupt lipid rafts by removing cholesterol. These agents inhibited infection by enveloped, but not cell-associated, varicella-zoster virus (VZV) in a dose-dependent manner and exerted these effects on both target cell and viral membranes. Inhibition by M beta CD, which could be reversed by cholesterol replenishment, rapidly declined as a function of time after exposure of target cells to VZV, suggesting that an early step in viral infection requires cholesterol. No effect of cholesterol depletion, however, was seen on viral binding; moreover, there was no reduction in the surface expression or internalization of mannose 6-phosphate receptors, which are required for VZV entry. Viral entry was energy dependent and showed concentration-dependent inhibition by chlorpromazine, which, among other actions, blocks clathrin-mediated endocytosis. These data suggest that both membrane lipid composition and clathrin-mediated transport are critical for VZV entry. Lipid rafts are likely to contribute directly to viral envelope integrity and, in the host membrane, may influence endocytosis, evoke downstream signaling, and/or facilitate membrane fusion.  相似文献   

9.
Infection of macrophages has been implicated as a critical event in the transmission and persistence of human immunodeficiency virus type 1 (HIV-1). Here, we explore whether primary X4 HIV-1 isolates can productively infect tissue macrophages that have terminally differentiated in vivo. Using immunohistochemistry, HIV-1 RNA in situ hybridization, and confocal immunofluorescence microscopy, we demonstrate that macrophages residing in human tonsil blocks can be productively infected ex vivo by primary X4 HIV-1 isolates. This challenges the model in which macrophage tropism is a key determinant of the selective transmission of R5 HIV-1 strains. Infection of tissue macrophages by X4 HIV-1 may be highly relevant in vivo and contribute to key events in HIV-1 pathogenesis.  相似文献   

10.
In human trophoblastic cells, a correlation between early endosomal trafficking of HIV-1 and virus infection was previously documented. However, if HIV-1 is massively internalized in these cells, the endocytic pathway(s) responsible for viral uptake is still undefined. Here we address this vital question. Amongst all the putative endocytic pathways present in polarized trophoblastic cells, we demonstrate that HIV-1 infection of these cells is independent of clathrin-mediated endocytosis and macropinocytosis. Importantly, treatment with the cholesterol-sequestering drug filipin severely impairs virus internalization, whereas the cholesterol-depleting compound methyl-beta-cyclodextrin has no impact on this pathway. Moreover, viral internalization is unaffected by overexpression of a mutant dynamin 2 or treatment with a kinase or tyrosine phosphatase inhibitor. Thus, HIV-1 infection in polarized trophoblastic cells occurs primarily via a clathrin, caveolae, and dynamin-independent pathway requiring free cholesterol. Notably, even though HIV-1 did not initially co-localize with transferrin, some virions migrate at later time points to transferrin-enriched endosomes, suggesting an unusual transit from the non-classical pathway to early endosomes. Finally, virus internalization in these cells does not involve the participation of microtubules but relies partly on actin filaments. Collectively these findings provide unprecedented information on the route of HIV-1 internalization in polarized human trophoblasts.  相似文献   

11.
The role of actin dynamics in clathrin-mediated endocytosis in mammalian cells is unclear. In this study, we define the role of actin cytoskeleton in Kaposi''s sarcoma-associated herpesvirus (KSHV) entry and trafficking in endothelial cells using an immunofluorescence-based assay to visualize viral capsids and the associated cellular components. In contrast to infectivity or reporter assays, this method does not rely on the expression of any viral and reporter genes, but instead directly tracks the accumulation of individual viral particles at the nuclear membrane as an indicator of successful viral entry and trafficking in cells. Inhibitors of endosomal acidification reduced both the percentage of nuclei with viral particles and the total number of viral particles docking at the perinuclear region, indicating endocytosis, rather than plasma membrane fusion, as the primary route for KSHV entry into endothelial cells. Accordingly, a viral envelope protein was only detected on internalized KSHV particles at the early but not late stage of infection. Inhibitors of clathrin- but not caveolae/lipid raft-mediated endocytosis blocked KSHV entry, indicating that clathrin-mediated endocytosis is the major route of KSHV entry into endothelial cells. KSHV particles were colocalized not only with markers of early and recycling endosomes, and lysosomes, but also with actin filaments at the early time points of infection. Consistent with these observations, transferrin, which enters cells by clathrin-mediated endocytosis, was found to be associated with actin filaments together with early and recycling endosomes, and to a lesser degree, with late endosomes and lysosomes. KSHV infection induced dynamic actin cytoskeleton rearrangements. Disruption of the actin cytoskeleton and inhibition of regulators of actin nucleation such as Rho GTPases and Arp2/3 complex profoundly blocked KSHV entry and trafficking. Together, these results indicate an important role for actin dynamics in the internalization and endosomal sorting/trafficking of KSHV and clathrin-mediated endocytosis in endothelial cells.  相似文献   

12.
Rhesus rhadinovirus (RRV) is a gammaherpesvirus closely related to Kaposi''s sarcoma-associated herpesvirus (KSHV), an oncogenic virus linked to the development of Kaposi''s sarcoma and several other lymphoproliferative diseases, including primary effusion lymphoma and multicentric Castleman''s disease. RRV naturally infects rhesus macaques and induces lymphoproliferative diseases under experimental conditions, making it an excellent model for the study of KSHV. Unlike KSHV, which grows poorly in cell culture, RRV replicates efficiently in rhesus fibroblasts (RFs). In this study, we have characterized the entry pathway of RRV in RFs. Using a luciferase-expressing recombinant RRV (RRV-luciferase), we show that the infectivity of RRV is reduced by inhibitors of endosomal acidification. RRV infectivity is also reduced by inhibitors of clathrin-mediated but not caveola-mediated endocytosis, indicating that RRV enters into RFs via clathrin-mediated endocytosis. Using a red fluorescent protein (RFP)-expressing recombinant RRV (RRV-RFP), we show that RRV particles are colocalized with markers of endocytosis (early endosome antigen 1) and clathrin-mediated endocytosis (clathrin heavy chain) during entry into RFs. RRV particles are also colocalized with transferrin, which enters cells by clathrin-mediated endocytosis, but not with cholera toxin B, which enters cells by caveola-mediated endocytosis. Inhibition of clathrin-mediated endocytosis with a dominant-negative construct of EPS15, an essential component of clathrin-coated pits, blocked the entry of RRV into RFs. Together, these results indicate that RRV entry into RFs is mediated by clathrin-mediated endocytosis.Kaposi''s sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8 (HHV8), is a gammaherpesvirus associated with the development of Kaposi''s sarcoma, a malignancy commonly found in AIDS patients (13). KSHV is also associated with the development of multicentric Castleman''s disease (MCD) and primary effusion lymphoma (PEL), two rare lymphoproliferative diseases. KSHV has a restricted host range, making it difficult to study KSHV and its related malignances directly in an animal model (25). Rhesus rhadinovirus (RRV) is closely related to KSHV. RRV infects its natural host and induces lymphoproliferative diseases resembling MCD and PEL; thus, it has been proposed as an animal model for the study of KSHV (19, 26, 39). Two isolates of RRV (26-95 and 17577) have been independently isolated and sequenced so far (3, 7, 32).To establish a successful infection, a virus needs to enter the target cells and release its genome (20). Thus, defining the entry and trafficking pathway of RRV can help us understand its mechanism of infection and replication in vitro and in vivo. Herpesviruses bind to the cell surface through complex interactions between viral glycoproteins and receptor molecules, leading to either plasma membrane fusion or endocytosis (35). Plasma membrane fusion is a pH-independent event between the viral envelope and the host cell plasma membrane (23). Enveloped viruses also take advantage of cellular endocytosis pathways for their internalization (34). Endocytosis leads to fusion between the membrane of the internalized vesicle and the viral envelope at low pHs and to the release of the viral particle into the cytoplasm. Following membrane fusion, the nucleocapsid traffics to the perinuclear space and delivers the viral genome to the nucleus. Thus, endocytosis offers a convenient and fast transit system enabling the virus to enter and traffic across the plasma membrane and cytoplasm of the infected cell.In mammalian cells, there are several endocytic pathways, including clathrin-mediated endocytosis, caveola-mediated endocytosis, clathrin- and caveola-independent endocytosis, and macropinocytosis (34). These endocytic pathways differ in the nature and size of the cargo. The clathrin-mediated pathway is the most commonly observed uptake pathway for viruses (30). A viral particle is internalized into a clathrin-coated vesicle, which then loses the clathrin-coated subunits before fusing with the early endosome. An activation step occurs in the endosome, leading to the fusion of the viral envelope with the endosomal membrane and the delivery of the viral capsid to the cytosol. The acidic pH in the endosome is thought to play an essential role in triggering the fusion event. Therefore, pH sensitivity is often considered an indication that a virus enters the cell by endocytosis (30).KSHV has been shown to use clathrin-mediated endocytosis to enter human foreskin fibroblasts, activated primary human B cells, and primary human umbilical vein endothelial cells (1, 12, 29); however, the macropinocytic pathway and plasma membrane fusion pathway have also been implicated (17, 28). The mechanism of RRV entry into cells has not been defined. In this study, using two recombinant RRVs expressing luciferase (RRV-luciferase) and red fluorescent protein (RRV-RFP), respectively, we have characterized the entry pathway of RRV in rhesus fibroblasts (RFs), a cell type that RRV can infect efficiently and in which it can replicate. The results show that RRV entry into RFs occurs primarily via clathrin-mediated endocytosis.  相似文献   

13.
Huang C  Chang SC  Yu IC  Tsay YG  Chang MF 《Journal of virology》2007,81(11):5985-5994
Clathrin-mediated endocytosis is a common pathway for viral entry, but little is known about the direct association of viral protein with clathrin in the cytoplasm. In this study, a putative clathrin box known to be conserved in clathrin adaptors was identified at the C terminus of the large hepatitis delta antigen (HDAg-L). Similar to clathrin adaptors, HDAg-L directly interacted with the N terminus of the clathrin heavy chain through the clathrin box. HDAg-L is a nucleocytoplasmic shuttle protein important for the assembly of hepatitis delta virus (HDV). Here, we demonstrated that brefeldin A and wortmannin, inhibitors of clathrin-mediated exocytosis and endosomal trafficking, respectively, specifically blocked HDV assembly but had no effect on the assembly of the small surface antigen of hepatitis B virus. In addition, cytoplasm-localized HDAg-L inhibited the clathrin-mediated endocytosis of transferrin and the degradation of epidermal growth factor receptor. These results indicate that HDAg-L is a new clathrin adaptor-like protein, and it may be involved in the maturation and pathogenesis of HDV coinfection or superinfection with hepatitis B virus through interaction with clathrin.  相似文献   

14.
15.
The specific cell pathways involved in bovine ephemeral fever virus (BEFV) cell entry have not been determined. In this work, colocalization of the M protein of BEFV with clathrin or dynamin 2 was observed under a fluorescence microscope. To better understand BEFV entry, we carried out internalization studies with a fluorescently labeled BEFV by using a lipophilic dye, 3,30-dilinoleyloxacarbocyanine perchlorate (DiO), further suggesting that BEFV uses a clathrin-mediated endocytosis pathway. Our results suggest that clathrin-mediated and dynamin 2-dependent endocytosis is an important avenue of BEFV entry. Suppression of Rab5 or Rab7a through the use of a Rab5 dominant negative mutant and Rab7a short hairpin RNA (shRNA) demonstrated that BEFV requires both early and late endosomes for endocytosis and subsequent infection in MDBK and Vero cells. Treatment of BEFV-infected cells with nocodazole significantly decreased the M protein synthesis and viral yield, indicating that microtubules play an important role in BEFV productive infection, likely by mediating trafficking of BEFV-containing endosomes. Furthermore, BEFV infection was strongly blocked by different inhibitors of endosomal acidification, suggesting that virus enters host cells by clathrin-mediated and dynamin 2-dependent endocytosis in a pH-dependent manner.  相似文献   

16.
Influenza virus has been described to enter host cells via clathrin-mediated endocytosis. However, it has also been suggested that other endocytic routes may provide additional entry pathways. Here we show that influenza virus may enter and infect HeLa cells that are unable to take up ligands by clathrin-mediated endocytosis. By overexpressing a dominant-negative form of the Eps15 protein to inhibit clathrin-mediated endocytosis, we demonstrate that while transferrin uptake and Semliki Forest virus infection were prevented, influenza virus could enter and infect cells expressing Eps15Delta95/295. This finding is supported by the successful infection of cells with influenza virus in the presence of chemical treatments that block endocytosis, namely, chlorpromazine and potassium depletion. We show also that influenza virus may infect cells incapable of uptake by caveolae. Treatment with the inhibitors nystatin, methyl-beta-cyclodextrin, and genistein, as well as transfection of cells with dominant-negative caveolin-1, had no effect on influenza virus infection. By combining inhibitory methods to block both clathrin-mediated endocytosis and uptake by caveolae in the same cell, we demonstrate that influenza virus may infect cells by an additional non-clathrin-dependent, non-caveola-dependent endocytic pathway. We believe this to be the first conclusive analysis of virus entry via such a non-clathrin-dependent pathway, in addition to the traditional clathrin-dependent route.  相似文献   

17.
It has been demonstrated that foot-and-mouth disease virus (FMDV) can utilize at least four members of the alpha(V) subgroup of the integrin family of receptors in vitro. The virus interacts with these receptors via a highly conserved arginine-glycine-aspartic acid amino acid sequence motif located within the betaG-betaH loop of VP1. While there have been extensive studies of virus-receptor interactions at the cell surface, our understanding of the events during viral entry into the infected cell is still not clear. We have utilized confocal microscopy to analyze the entry of two FMDV serotypes (types A and O) after interaction with integrin receptors at the cell surface. In cell cultures expressing both the alphaVbeta3 and alphaVbeta6 integrins, virus adsorbed to the cells at 4 degrees C appears to colocalize almost exclusively with the alphaVbeta6 integrin. Upon shifting the infected cells to 37 degrees C, FMDV capsid proteins were detected within 15 min after the temperature shift, in association with the integrin in vesicular structures that were positive for a marker of clathrin-mediated endocytosis. In contrast, virus did not colocalize with a marker for caveola-mediated endocytosis. Virus remained associated with the integrin until about 1 h after the temperature shift, when viral proteins appeared around the perinuclear region of the cell. By 15 min after the temperature shift, viral proteins were seen colocalizing with a marker for early endosomes, while no colocalization with late endosomal markers was observed. In the presence of monensin, which raises the pH of endocytic vesicles and has been shown to inhibit FMDV replication, viral proteins were not released from the recycling endosome structures. Viral proteins were not observed associated with the endoplasmic reticulum or the Golgi. These data indicate that FMDV utilizes the clathrin-mediated endocytosis pathway to infect the cells and that viral replication begins due to acidification of endocytic vesicles, causing the breakdown of the viral capsid structure and release of the genome by an as-yet-unidentified mechanism.  相似文献   

18.
Husain M  Moss B 《Journal of virology》2003,77(16):9008-9019
The F13L protein of vaccinia virus, an essential and abundant palmitoylated peripheral membrane component of intra- and extracellular enveloped virions, associates with Golgi, endosomal, and plasma membranes in the presence or absence of other viral proteins. In the present study, the trafficking of a fully functional F13L-green fluorescent protein (GFP) chimera in transfected and productively infected cells was analyzed using specific markers and inhibitors. We found that Sar1(H79G), a trans-dominant-negative protein inhibitor of cargo transport from the endoplasmic reticulum, had no apparent effect on the intracellular distribution of F13L-GFP, suggesting that the initial membrane localization occurs at a downstream compartment of the secretory pathway. Recycling of F13L-GFP from the plasma membrane was demonstrated by partial colocalization with FM4-64, a fluorescent membrane marker of endocytosis. Punctate F13L-GFP fluorescence overlapped with clathrin and Texas red-conjugated transferrin, suggesting that endocytosis occurred via clathrin-coated pits. The inhibitory effects of chlorpromazine and trans-dominant-negative forms of dynamin and Eps15 protein on the recycling of F13L-GFP provided further evidence for clathrin-mediated endocytosis. In addition, the F13L protein was specifically coimmunoprecipitated with alpha-adaptin, a component of the AP-2 complex that interacts with Eps15. Nocodazole and wortmannin perturbed the intracellular trafficking of F13L-GFP, consistent with its entry into late and early endosomes through the secretory and endocytic pathways, respectively. The recycling pathway described here provides a mechanism for the reutilization of the F13L protein following its deposition in the plasma membrane during the exocytosis of enveloped virions.  相似文献   

19.
Enveloped viruses enter target cells by membrane fusion or endocytosis. In the latter case, fusion of the viral envelope is induced by the acidic pH of the endocytic vesicle [1]. As with most other retroviruses, entry of the human immunodeficiency virus (HIV) is thought to be exclusively by pH-independent membrane fusion after interaction of its envelope with CD4 and a chemokine co-receptor on the target cell [2,3]. Expression of CD4 on the virus-producing cell impairs the release and infectivity of HIV-1(NL4-3) particles [4-6]. In sharp contrast, we found that the infectivity of another HIV isolate, HIV-1SF2, was enhanced by expression of CD4 on the producer cells, which correlated with significantly increased amounts of viral proteins in the vesicular fraction of target cells. Endocytic inhibitors decreased infectivity of HIV-1SF2 but enhanced that of HIV-1 NL4-3. Expression of CD4 in the producer cell did not remove gp41 from HIV-1SF2 virions. With these cells, the formation of syncytia could be induced by acidic medium. Thus, HIV-1SF2 can enter the cytoplasm by an endocytic route after activation of gp41 by the acidic pH of endocytic vesicles. Endocytic entry might expand the range of cells that HIV could infect and should be considered in antiviral strategies against AIDS.  相似文献   

20.
Productive entry of human immunodeficiency virus type 1 (HIV-1) into a host cell is believed to proceed via fusion of the viral envelope with the host cell's plasma membrane. Interestingly, the majority of HIV-1 particles that bind to the cell surface are taken up by the host cell via endocytosis; however, this mode of internalization generally does not result in infection. Presumably, virus particles remain trapped in the endocytic pathway and are eventually degraded. Here, we demonstrate that treatment of cells with various pharmacological agents known to elevate the pH of endosomes and lysosomes allows HIV-1 to efficiently enter and infect the host cell. Pretreatment of cells with bafilomycin A1 results in up to a 50-fold increase in the infectivity of HIV-1(SF2). Similarly, pretreatment of target cells with amantadine, concanamycin A, concanamycin B, chloroquine, and ammonium chloride resulted in increases in HIV-1 infectivity ranging between 2- and 15-fold. Analysis of receptor and coreceptor expression, HIV-long terminal repeat (LTR) transactivation, and transduction with amphotropic-pseudotyped murine leukemia virus (MLV)-based vectors suggests that the increase in infectivity is not artifactual. The increased infectivity under these conditions appears to be due to the ability of HIV-1 and MLV particles to enter via the endocytic pathway when spared from degradation in the late endosomes and lysosomes. These results could have significant implications for the administration of current and future lysosmotropic agents to patients with HIV disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号