首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
CRM197, CRM176, and CRM228 are products of single or multiple missense mutations in the diphtheria toxin gene. CRM197 differs from wild-type toxin in 1 amino acid residue of the fragment A region, and also CRM176 and CRM228 have amino acid substitution(s) in fragment A. We compared the binding properties of CRM197 to toxin-sensitive Vero cells with those of diphtheria toxin and other CRMs. Nicked CRM197 is about 50 times more effective than intact CRM197 in inhibiting the action of diphtheria toxin on sensitive cells, as shown by inhibition of diphtheria toxin cytotoxicity or inhibition of binding of 125I-diphtheria toxin. The binding of native toxin or other CRMs was not significantly affected by nicking. Moreover, the binding of CRM197 to cells was unaffected by ATP, although ATP clearly inhibits binding of diphtheria toxin, CRM176, and CRM228. Two kinds of hybrid protein were formed using fragment B of CRM197: one with fragment A of diphtheria toxin and one with fragment A of CRM228. ATP inhibited the binding of these hybrid proteins. Furthermore, the affinities of these hybrid proteins for diphtheria toxin-sensitive cells were the same as that of native toxin. Thus, it was concluded that the altered binding properties of CRM197 were due to alteration of fragment A and what the interaction of diphtheria toxin with ATP involves both fragments. The results also suggest that fragment A plays a role in diphtheria toxin-receptor interaction.  相似文献   

2.
The membrane insertion of diphtheria toxin and of its B chain mutants crm 45, crm 228 and crm 1001 has been followed by hydrophobic photolabelling with photoactivatable phosphatidylcholine analogues. It was found that diphtheria toxin binds to the lipid bilayer surface at neutral pH while at low pH both its A and B chains also interact with the hydrocarbon chains of phospholipids. The pH dependence of photolabelling of the two protomers is different: the pKa of fragment B is around 5.9 while that of fragment A is around 5.2. The latter value correlates with the pH of half-maximal intoxication of cells incubated with the toxin in acidic mediums. These results suggest that fragment B penetrates into the bilayer first and assists the insertion of fragment A and that the lipid insertion of fragment B is not the rate-controlling step in the process of membrane translocation of diphtheria toxin. crm 45 behaves as diphtheria toxin in the photolabelling assay but, nonetheless, it is found to be three orders of magnitude less toxic than diphtheria toxin on acid-treated cells, suggesting that the 12-kDa COOH-terminal segment of diphtheria toxin is important not only for its binding to the cell receptor but also for the membrane translocation of the toxin. It is suggested that crm 1001 is non-toxic because of a defect in its membrane translocation which occurs at a lower extent and at a lower pH than that of the native toxin; as a consequence crm 1001 may be unable to escape from the endosome lumen into the cytoplasm before the fusion of the endosome with lysosomes.  相似文献   

3.
Monoclonal antibodies against fragment A of diphtheria toxin were isolated and characterized. Three antibodies with similar affinities for fragment A had different effects on the NAD:EF2-ADP ribose transferase activity of fragment A; i.e., antibody DA1 almost completely inhibited the enzymic activity at a molar ratio of one, whereas DA2 inhibited only partially and DA3 had no effect. However, when fragment A176 from the mutant toxin CRM176 (about 1/10 as active as wild type) was used, DA2 proved a more effective inhibitor than DA1. The affinities of these antibodies for the enzymically inactive mutant fragments, A197 and A228, were significantly less manifest than for wild-type fragment A. Binding of the antibodies to whole toxin and the chain termination mutant CRM45 was weak. When DA2 was introduced into Vero cells growing in monolayers, by using the red cell ghost fusion method, the cells became resistant to CRM176. The anti-fragment A antibodies may serve as the basis of a simple method for selection of cells into which other molecules have been co-introduced.  相似文献   

4.
Ehrlich ascites tumor cells were found to be very insensitive to diphtheria toxin. We formed 37 hybrids from Ehrlich tumor cells and diphtheria toxin-sensitive human fibroblasts. The effects of diphtheria toxin on protein synthesis in those hybrids were examined. The hybrids were divided into three groups on the basis of toxin sensitivity. Group A hybrids were as sensitive to diphtheria toxin as human fibroblasts, Group C were as resistant as Ehrlich tumor cells, and Group B had intermediate sensitivity. Group A hybrids had diphtheria toxin-binding sites but Group B and C had no detectable binding sites. Elongation factor-2 of all the hybrids was susceptible to ADP-ribosylation by fragment A of diphtheria toxin. Cells of Group A and B became more sensitive to CRM 45 (cross-reacting material 45 of diphtheria toxin) after they were exposed to low pH (pH = 4.5). The resistance of Group C to CRM 45 was not affected by the same treatment. Group A and B hybrids and human fibroblasts had similar sensitivities to a hybrid toxin composed of wheat germ agglutinin and fragment A of diphtheria toxin, but Group C and Ehrlich tumor cells were resistant to this hybrid toxin. All the hybrids and Ehrlich tumor cells were more sensitive to a hybrid toxin composed of wheat germ agglutinin and subunit A of ricin than were human fibroblasts. On subcloning of Group B hybrids, one Group C hybrid was obtained, but no Group A hybrid. These facts suggest that Ehrlich ascites tumor cells differ from human fibroblasts in the expression of a factor(s) that is involved in entry of fragment A of diphtheria toxin into the cytoplasm after the toxin binds to its surface receptors.  相似文献   

5.
The geometry of the channel formed by nontoxic derivative of diphtheria toxin CRM197 in lipid bilayer was determined using the dependence of single-channel conductance upon the hydrodynamic radii of different nonelectrolytes. It was found that the cis entrance of CRM197 channel on the side of membrane to which the toxoid was added at pH 4.8 and the trans entrance on the opposite side at pH 6.0 had effective radii of 3.90 and 3.48 Å, respectively. The 3-alkyloxycarbonylmethyl-5-(2-hydroxyethyl)-4-methyl-1,3-thiazolium salts reversibly reduced current via CRM197 channels. The potency of the blockers increased with increasing length of alkyl chain at symmetric pH 6.0 and remained high and stable at pH 4.8 on the cis side. Comparative analysis of CRM197 and amphotericin B pore size with the inhibitory action of thiazolium salts revealed a significant increase in CRM197 pore dimension at pH 6.0. Addition of thiazolium salt with nine carbons alkyl tail increased by ~30% the viability of human carcinoma cells A431 treated with diphtheria toxin.  相似文献   

6.
The role of specific receptors in the translocation of diphtheria toxin A fragment to the cytosol and for the insertion of the B fragment into the cell membrane was studied. To induce nonspecific binding to cells, toxin was either added at low pH, or biotinylated toxin was added at neutral pH to cells that had been treated with avidin. In both cases large amounts of diphtheria toxin became associated with the cells, but there was no increase in the toxic effect. There was also no increase in the amount of A fragment that was translocated to the cytosol, as estimated from protection against externally added Pronase E. In cells where specific binding was abolished by treatment with 12-O-tetradecanoyl-phorbol 13-acetate, trypsin, or 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid, unspecific binding did not induce intoxication or protection against protease. This was also the case in untreated L cells, which showed no specific binding of the toxin. When Vero cells with diphtheria toxin bound to specific receptors were exposed to low pH, the cells were permeabilized to K+, whereas this was not the case when the toxin was bound nonspecifically at low pH or via avidin-biotin. The data indicate that the cell-surface receptor for diphtheria toxin facilitates both insertion of the B fragment into the cell membrane and translocation of the A fragment to the cytosol.  相似文献   

7.
CRM197, a mutated diphtheria toxin (DT), has long been recognized to be a non-toxic protein. Based on its non-toxic feature, this protein has been utilized for various purposes, including as an inhibitor of heparin-binding EGF-like growth factor (HB-EGF) and as an immunological adjuvant for vaccination. Here we show evidence that CRM197 has a weak toxicity. This toxicity was observed in cells over-expressing the DT receptor/proHB-EGF, but not in parental cells, indicating that the toxicity was mediated through DT receptor. CRM197 did not show any toxicity toward DT-resistant cells, which have a mutation in elongation factor 2, and a cell-free assay revealed the existence of weak EF-2-ADP ribosylation activity in fragment A of CRM197. Thus, the present study indicates a requirement for specific care in the use of CRM197 at a high dosage, although the toxicity of CRM197 is about 10(6) times less than that of wild-type DT. We found that a monoclonal antibody to DT inhibited CRM197 toxicity, but did not affect the inhibitory activity of CRM197 toward HB-EGF-induced mitogenic activity. CRM197 strongly inhibits tumour growth in nude mice. The anti-DT monoclonal antibody administered with CRM197 reduced the anti- tumourigenic effect of CRM197, indicating that the toxicity of CRM197 potentiates its anti- tumourigenic effect.  相似文献   

8.
目的构建白喉毒素(Diphtheria toxin)无毒突变体CRM197(Cross-reacting materials 197)的原核表达载体,并在大肠杆菌中表达重组蛋白。方法以白喉杆菌(ATCC39255)基因组DNA为模版,采用聚合酶链式反应(Polymerase chain reaction,PCR)扩增CRM197基因,插入表达载体pET11b中,构建重组原核表达质粒pET11b-CRM197。经双酶切及测序鉴定正确后,重组质粒被转化入大肠杆菌Rosetta 2(DE3)pLysS,IPTG诱导表达,表达产物经SDS-PAGE和Western blot进行鉴定。结果重组表达质粒经双酶切及测序鉴定,结果表明与预期一致;表达的重组蛋白相对分子质量约58 000,并可与鼠抗CRM197单克隆抗体特异性结合。结论已成功构建了重组原核表达载体pET11b-CRM197,重组的CRM197蛋白在大肠杆菌中得到了表达,为以该重组突变体作蛋白载体制备结合疫苗奠定了基础。  相似文献   

9.
A genetic approach is described for exploring the mechanism by which diphtheria toxin undergoes pH-dependent membrane insertion and transfer of its enzymic A fragment into the cytoplasm of mammalian cells. The cloned toxin expressed inEscherichia coli is secreted to the periplasmic space, where it is processed normally and folds into a native structure. When bacteria synthesizing the toxin are exposed to pH 5, they die rapidly. The toxin undergoes a conformational change that is believed to allow it to be inserted into the bacterial inner membrane and form channels, which proves lethal for the cell. The membrane insertion event mimics the process by which the toxin inserts into the endosomal membrane of mammalian cells, leading to release of the enzymic A fragment into the cytoplasm. The observation of pH-dependent bacterial lethality provides the basis for a positive genetic selection method for mutant forms of the toxin that are altered in ability to undergo membrane insertion or pore formation.  相似文献   

10.
Diphtheria toxin interaction with membranes has been studied by following the release of a fluorescent dye (calcein) encapsulated within large unilamellar vesicles. Results showed that diphtheria toxin induced temperature- as well as pH-dependent permeability changes in these model membranes. Interestingly, insertion of the "channel-forming" B domain was not sufficient for calcein release, since dye release from vesicles composed of dimyristoyllecithin:cholesterol:dicetylphosphate 4:3:0.8) was completely inhibited at low temperatures which permitted B insertion. Rather, the temperature dependence of calcein release from and A domain insertion into dimyristoyllecithin:cholesterol:dicetyl phosphate vesicles suggest some relationship between "channel formation" and fragment A translocation across membranes. However, the nature of the toxin channel is called into question by our observations that channel size, in addition to activity, was pH-dependent. On the basis of these experiments, it is proposed that the toxin "channel" is the result of localized perturbations in the lipid bilayer at the interface between lipids and inserted toxin molecules that are sufficiently large in fluid membranes at low pH to allow the translocation of fragment A across the bilayer.  相似文献   

11.
Monoclonal antibodies (Mab) were raised against CRM197, a non-toxic mutant of diphtheria toxin (DT). The ability of four Mabs to bind DT and the six functional mutants CRM197, CRM176, CRM228, CRM1001, CRM45 and CRM30 was assessed by immunoblotting and by a radioimmunoassay in which the protein antigen in solution competes with labeled CRM197 for the Mab binding site. The results show that the peptides recognized by Mab11.3, Mab53 and Mab23 are accessible in the mutant molecules in solution but not when they are part of the native DT structure, which could therefore be described for this purpose as 'closed' in contrast with an 'open' conformation of CRM197, CRM176 and CRM228. In particular, the behaviour of Mab53 indicates that the single amino acid substitutions in the A fragments of CRM197 and CRM176 also affect the conformation of their B fragments.  相似文献   

12.
Entry of prebound diphtheria toxin at low pH occurred rapidly in the presence of isotonic NaCl, NaBr, NaSCN, NaI, and NaNO3, but not in the presence of Na2SO4, 2-(N-morpholino)ethanesulfonic acid neutralized with Tris, or in buffer osmotically balanced with mannitol. SCN- was the most efficient anion to facilitate entry. Uptake studies with radioactively labeled anions showed that SCN- was transported into cells 3 times faster than Cl-, while the entry of SO2-4 occurred much more slowly. The anion transport inhibitors 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid and piretanide inhibited entry at low pH even in the presence of permeant anions. When cells with bound toxin were exposed to low pH in the absence of permeant anions, then briefly exposed to neutral pH and subsequently exposed to pH 4.5 in the presence of isotonic NaCl, toxin entry was induced. The data indicate that efficient anion transport at the time of exposure to low pH is required for entry of surface-bound diphtheria toxin into the cytosol. Since insertion of diphtheria toxin into the membrane occurs even in the absence of permeant anions, the results indicate that low pH is required not only for insertion of fragment B into the membrane, but also for the subsequent entry of fragment A into the cytosol.  相似文献   

13.
为了获得有活性的白喉毒素突变体蛋白 (Cross-reacting material 197,CRM197),本研究利用分子伴侣pG-KJE8与重组质粒pET28a-CRM197在大肠杆菌原核表达系统中进行共表达,来促进目的蛋白的正确折叠,进而提高CRM197蛋白的可溶性表达。将质粒转化至大肠杆菌后并诱导其表达目的蛋白,再通过SDS-PAGE胶染色、Western blotting等技术对所得蛋白进行检测分析。结果发现:利用体外重组技术成功得到了pET28a-CRM197重组蛋白原核表达质粒,且CRM197重组蛋白在原核表达系统中主要以包涵体形式表达;通过探索和优化,确定了诱导蛋白的最佳浓度和温度,当加入终浓度为1.0 mmol/L IPTG、0.5 mg/mL L-阿拉伯糖、5.0 ng/mL四环素,在20 ℃条件下诱导16 h时,目的蛋白的可溶性表达得到显著提高;可溶性表达的CRM197重组蛋白可以与CRM197一抗发生特异性结合,免疫反应性良好。因此,研究发现分子伴侣pG-KJE8可以促进CRM197重组蛋白在大肠杆菌中以可溶性形式表达,且能很好地与CRM197一抗发生特异性结合,证实CRM197重组蛋白具有良好的免疫反应性,为CRM197蛋白的工业化生产及应用奠定了一定的基础。  相似文献   

14.
Fragment A of diphtheria toxin has been shown to insert into lipid bilayers at low pH (Montecucco, C., Schiavo, G., and Tomasi, M. (1985) Biochem. J. 231, 123-128; Zhao, J.-M., and London, E. (1988) J. Biol. Chem. 263, 15369-15377). In this report, evidence is provided which demonstrates that fragment A, like diphtheria toxin, can also cause the release of a fluorescent dye (calcein) from vesicles under acidic conditions and that this release parallels fragment A insertion into the membrane. Although the permeability changes are not as large as those obtained with whole toxin (Jiang, G.-S., Solow, R., and Hu, V. W. (1989) J. Biol. Chem. 264, 13424-13429), molecular sieving experiments indicate that the lesion induced by fragment A increases in size with decreasing pH and reaches an upper limit of 30 A at pH 4.0. In addition to size differences, the lesion induced by fragment A releases calcein in a graded manner, whereas diphtheria toxin causes an all-or-none release. One possible interpretation of this result is that the fragment A lesion is transient in comparison to that induced by whole toxin. Although the molecular bases for the observed differences are not understood, these data suggest that fragment A interaction with the lipid bilayer may play a significant role in mediating its own translocation across membranes and that fragment B may aid this process by initiating, enlarging, and stabilizing the lesion formed.  相似文献   

15.
The amino-acid sequences of two diphtheria toxin-related, non-toxic proteins, CRM45 and CRM197 , were deduced from the complete sequence of their genes: tox 45 and tox 197. CRM45 lacks the last 149 C-terminal amino-acid residues, but is otherwise identical to diphtheria toxin: a single C----T transition introduces an "ochre" (TAA) termination signal in tox 45, after the codon for threonine-386. A single G----A transition was also found in tox 197, leading to the substitution of glycine-52, present in the wild-type toxin, with glutamic acid in CRM197 . This aminoacid change is responsible for the loss of the NAD:EF2 ADP-ribosyltransferase activity in CRM197 , due most probably to an alteration of the NAD+ binding site.  相似文献   

16.
Erythrocyte ghosts containing a known number of molecules of purified fragment A of diphtheria toxin with a constant amount of FITC-BSA as a fluorescence marker were prepared by dialyzing a mixture of erythrocytes and these substances against hypotonic solution. These substances were then introduced into diphtheria toxin-resistant mouse L cells by virus-mediated cell fusion of the cells with the ghosts, and mononuclear recipients that had fused with only one erythrocyte ghost were separated in a fluorescence-activated cell sorter (FACS) on the basis of their cell size and fluorescence intensity. After separation, the viability of cells containing known numbers of fragment A was examined by measuring colony-forming ability. The results demonstrated that a single molecule of fragment A was sufficient to kill a cell.This fact was confirmed by introduction into cells of fragment A from an immunologically related mutant toxin, CRM 176 (fragment A-176); this has a completely functional fragment B region, but in cell extracts, the enzymic activity of its fragment A is about 10 fold less than that of wild toxin. The cytotoxicity of CRM 176 is about two hundredths of that of the wild-type (Uchida, Pappenheimer and Greany, 1973). As expected, about 100–200 fold excess of fragment A-176 was needed to kill the cells.  相似文献   

17.
M Yamaizumi  T Uchida  E Mekada  Y Okada 《Cell》1979,18(4):1009-1014
The function and fate of antibodies introduced into living cells by red cell ghosts were studied using CRM 176 (a mutant diphtheria toxin having lower toxicity than the wild-type) and antibody against fragment A of diphtheria toxin. IgG labeled with iodine and FITC was found in the cytoplasm of the recipient cells. When about 1500 molecules of anti-fragment A antibody (rabbit IgG) were introduced into diphtheria toxin-sensitive Vero cells or FL cells, these cells became resistant to the toxin and formed normal colonies. It was calculated from the survival of cells without anti-fragment A IgG under these conditions that about 300 molecules of fragment A-176 were transferred to the cells. These results showed that the antigen-antibody reaction took place in living cells as effectively as in a cell-free system. The functional stability of antibody IgG in cells was examined by exposing Vero cells containing a subminimal amount of anti-fragment A IgG (about 1000 molecules) to the toxin for 2 hr at various times after the introduction of anti-fragment A IgG. More than 50% of the initial activity of the antibody to neutralize toxin still remained even after incubation of the cells at 37°C for 20 hr. The same degree of stability was also demonstrated using iodine-labeled specific anti-fragment A IgG. The IgG recovered from the recipient cells after various times of incubation at 37°C retained its full ability to bind to fragment A-conjugated Sepharose 4B, although the total amount of IgG associated with the cells decreased about 50% in 24 hr.  相似文献   

18.
The pH and temperature stabilities of diphtheria toxin and its fragments have been studied by high-sensitivity differential scanning calorimetry. These studies demonstrate that the pH-induced conformational transition associated with the mechanism of membrane insertion and translocation of the toxin involves a massive unfolding of the toxin molecule. At physiological temperatures (37 degrees C), this process is centered at pH 4.7 at low ionic strength and at pH 5.4 in the presence of 0.2 M NaCl. At pH 8, the thermal unfolding of the nucleotide-bound toxin is centered at 58.2 degrees C whereas that of the nucleotide-free toxin is centered at 51.8 degrees C, indicating that nucleotide binding (ApUp) stabilizes the native conformation of the toxin. The unfolding profile of the toxin is consistent with two transitions most likely corresponding to the A fragment (Tm = 54.5 degrees C) and the B fragment (Tm = 58.4 degrees C), as inferred from experiments using the isolated A fragment. These two transitions are not independent, judging from the fact that the isolated A fragment unfolds at much lower temperatures (Tm = 44.2 degrees C) and that the B fragment is insoluble in aqueous solutions when separated from the A fragment. Interfragment association contributes an extra -2.6 kcal/mol to the free energy of stabilization of the A fragment. Whereas the unfolding of the entire toxin is irreversible, the unfolding of the A fragment is a reversible process. These findings provide a thermodynamic basis for the refolding of the A fragment after reexposure to neutral pH immediately following translocation across the lysosomal membrane.  相似文献   

19.
Two restriction fragments from corynebacteriophage beta vir tox+ that encode peptides similar to diphtheria toxin fragment A and the chain termination fragment, CRM45, have been cloned into Escherichia coli in plasmid pBR322. Clones containing the recombinant plasmids produced gene products that were active in catalyzing the ADP ribosylation of elongation factor 2 and were reactive with diphtheria toxin antiserum. Toxin-related peptides were found primarily in the periplasmic compartment and were degraded to nonimmunoreactive forms within 1 to 2 h of synthesis. The expression of both gene fragments appears to have originated from the diphtheria toxin promoter.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号