首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A gas chromatographic—mass spectrometric (GC—MS) method is described which quantitates 5-fluorouracil (5-FU) plasma levels ranging from 0.5 to 50 ng/ml. The analysis uses two internal standards, 1,3-[15N2]-5-fluorouracil and 5-chlorouracil. Extraction and derivatization of the pyrimidine bases were accomplished in a single step using acetonitrile. Compounds were analyzed as their 1,3-dipentafluorobenzyl derivatives by electron-impact MS, and the GC—MS analysis was automated with respect to sample injection and data reduction. Stability of the analysis was demonstrated by continuous unattended analysis of 5-FU in human plasma for periods of up to three days with no deterioration of the quantitative results. The method is applicable to quantitating 5-FU plasma levels in patients receiving protracted infusions of the drug for colorectal cancer or other malignancies.  相似文献   

2.
A method was developed for the routine screening, confirmation and quantitation of corticosteroids in human urine using bench top capillary gas chromatography (GC)—mass-selective detection. The free and conjugated corticosteroid fractions were isolated by liquid—liquid partition. After evaporation to dryness under vacuum the corticosteroid residues were derivatized to form the methyloxime trimethylsilyl ether derivatives. Both GC retention data and characteristic spectral data based on authentic reference standards were used for the identification and quantitation of cortisol, cortisone, tetrahydrocortisol and tetrahydrocortisone in the ppb (ng/ml) concentration range. The method is simpler and more efficient than the other GC—mass spectrometric (MS) techniques. It is also more sensitive than the liquid chromatographic—MS method.  相似文献   

3.
High-performance liquid chromatography with electrochemical detection (HPLC—ED) and combined gas chromatograph—mass spectrometry in the single-ion monitoring mode (GC—MS-SIM) have been used for the determination of salsolinol, dopamine, 3,4-dihydroxyphenylacetic acid, 3,4-dihydorxyphenylethanol and norepinephrine in a selection of food and beverage samples. The unique specificity of the SIM mode allows a simple one-step extraction to be used even for complex sample matrices. We have been able to demonstrate the quantitative and qualitative advantages offered by GC—MS over HPLC—ED by direct comparison of the chromatographic data obtained. We demostrate that the specificity of SIM and the benefits offered by the incorporation of deuterated internal standards make GC—MS-SIM the method of choice for valid identification and precise quantitation of salsolinol, dopamine and dopamine metabolites in a complex sample matrix.  相似文献   

4.
A method for the qualitative and quantitative simultaneous analysis of dioxyanthraquinone, desacetyl-Bisacodyl, phenolphthalein and Oxyphenisatin in human urine using gas chromatography—mass spectrometry (GC—MS) has been developed. The compounds were extracted from urine at pH 7.5 with diethyl ether using Extrelut extraction columns, followed by evaporation and trimethylsilylation.The method used electron beam ionization GC—MS employing a computer-controlled multiple-ion detector (mass fragmentography). The recovery from urine for the various compounds was between 80% and 100%. The detection limit for these compounds was in the range 0.01–0.05 μg/ml of urine.The method proved to be suitable for measuring urine concentrations for at least four days after administration of a single oral low therapeutic dose of the laxatives to sixteen healthy volunteers.  相似文献   

5.
A chromatographic method was developed to detect and confirm the presence of chlorpropamide (I) in horse plasma samples, for antidoping control. The plasma sample (1 ml) was extracted with dichloromethane and screened by high-performance liquid chromatography, and confirmation of the drug's presence was accomplished by using gas chromatography–mass spectrometry (GC–MS). The limit of detection was found to be 3.5 ng/ml at a signal-to-noise ratio of three. Derivatization of I with N,O-bis-(trimethylsilyl)trifluoroacetamide with 1% trimethylchlorosilane allowed for highly stable, accurate and sensitive GC–MS analysis. Plasma samples collected after the administration of diabinese were positive for I (one–five days) in all samples analysed.  相似文献   

6.
A flunixin metabolite, a hydroxylated product, has been identified in camel urine and plasma samples using gas chromatography–mass spectrometry (GC–MS) and GC–MS–MS in the electron impact and chemical ionization modes. Its major fragmentation pattern has been verified by GC–MS–MS in daughter ion and parent ion scan modes. The method could detect flunixin and its metabolite in camel urine after a single intravenous dose of 2.2 mg of flunixin/kg body weight for 96 and 48 h, respectively, which increases the reliability of antidoping control analysis.  相似文献   

7.
The detection and quantitation of slight increases of plasma homocysteine levels is of growing interest. This has prompted us to develop a highly sensitive and accurate capillary gas chromatography–mass spectrometry (GC–MS) method. The method proved to be highly sensitive (DL=0.17 μmol/l) with between- and within-run precision less than 6% and 7%, respectively. Reference values of plasma total homocysteine have been determined for men (n=39) and women (n=36), showing a significant difference (P=0.003) between gender. Preliminary results in cerebrovascular accidents and in venous thrombosis are presented.  相似文献   

8.
Gas chromatography–mass spectrometry (GC–MS) of nitrite as its pentafluorobenzyl derivative in the negative-ion chemical ionization mode is a useful analytical tool to quantify accurately and sensitively nitrite and nitrate after its reduction to nitrite in various biological fluids. In the present study we demonstrate the utility of GC–tandem MS to quantify nitrate in human plasma and urine. Our present results verify human plasma and urine levels of nitrite and nitrate measured previously by GC–MS.  相似文献   

9.
A simple procedure based upon capillary column gas chromatography-mass spectrometry (GC—MS) is described for the detection and determination of isatin (indole-2,3-dione) in body fluids and tissues. After addition of 5-methylisatin as internal standard to urine or tissue homogenates, organic extracts are dried and derivatized successively with hydroxylamine hydrochloride and the reagent N-tert.-butyldimethylsilyl-N-methyltrifluoroacetamide (MTBSTFA). The tert.-butyldimethylsilyl derivatives obtained show good GC—MS properties and allow quantification by selected-ion monitoring of m/z 333 (isatin) and m/z 347 (internal standard). Adult and newborn human urine output values lie in the ranges 0.4–3.2 mg/mmol of creatinine (5–30 mg per 24 h) and 0.002–0.518 mg/mmol of creatinine, respectively. There is a discontinuous regional distribution in rat tissues. The GC—MS properties of a number of derivatives formed by successive reaction of isatin with hydroxylamine hydrochloride (or methoxyaminehydrochloride or ethoxyamine hydrochloride) and MTBSTFA, bis(trimethylsilyl)trifluoroacetamide, pentafluoropropionic anhydride or pentafluorobenzyl bromide are also described.  相似文献   

10.
Endogenous prostacyclin production is best assessed by the measurement of its excreted metabolites, of which a major one is 2,3-dinor-6-ketoprostaglandin F (2,3-dinor-6-keto-PGF). Gas chromatographic—mass spectrometric (GC—MS) assays have been developed for this compound but are cumbersome and time-consuming. We now report a modified assay for the measurement of 2,3-dinor-6-keto-PGF employing GC—MS in which sample preparation time is markedly shortened by replacing a number of extraction steps with reversed-phase column extraction and by modifying derivatization procedures. Precision of the assay is ± 5% and the accuracy is 98%. The lower limit of detection in urine is approximately 15 pg/mg creatinine. Normal urinary levels of this metabolite were found to be 141 ± 54 pg/mg creatinine (mean ± S.D.). Urinary excretion of 2,3-dinor-6-keto-PGF is markedly altered in situations associated with abnormalities of prostacyclin generation when quantified using this assay. Thus, this assay provides a sensitive and accurate method to assess endogenous prostacyclin production and to further explore the role of this compound in human health and disease.  相似文献   

11.
A sample preparation method for mass chromatographic detection of doping drugs from horse plasma is described. Bond Elut Certify (1 g/6 ml) is used for the extraction of 4 ml of horse plasma. Fractionation is performed with 6 ml of CHCl3–Me2CO (8:2) and 5 ml of 1% TEA–MeOH according to its property. Simple and effective clean-up based on non-aqueous partitioning is adopted to remove co-eluted contaminants in both acid and basic fractions. Two kinds of 1-(N,N-diisopropylamino)-n-alkanes are co-injected with the sample into the GC–MS system for the calculation of the retention index. Total recoveries of 107 drugs are examined. Some data of post administration plasma are presented. This procedure achieves sufficient recoveries and clean extracts for GC–MS analysis. The method is able to detect ng/ml drug levels in horse plasma.  相似文献   

12.
A gas chromatographic—mass spectrometric (GC—MS) method is presented for the analysis of azacyclonol (AZA), a metabolite of terfenadine in serum and urine specimens. Following an alkaline extraction, AZA and an internal standard were derivatized using heptafluorobutyric anhydride. Fourier transform infrared spectrometry suggested that two sites on the AZA molecule were derivatized. GC—MS of the extracts had a limit of quantitation (LOQ) of 1 ng/ml and linear range of 1–1000 ng/ml in urine. Four volunteers were administered a therapeutic regimen of terfenadine followed by urine and serum specimen collection(s) during the next seven days. The results indicated that following a 60-mg dose of terfenadine each 12 h for five days, (1) AZA appears in urine within 2 h, (2) urine AZA concentrations were above the LOQ 72 h following the last dose, (3) peak urine concentrations were as high as 19 000 ng/ml, and (4) mean serum concentration following the ninth dose was 59 ng/ml.  相似文献   

13.
Certain naturally occurring isoflavonoids have been shown to inhibit protein-tyrosine kinases, and this has led to investigations of ring-modified structural analogs. Most recently, 2-(3-methyl-4-aminophenyl)-benzothiazole (MAB: NSC 674495) was shown to possess significant activity against certain breast cell cancer lines in vitro and in vivo. Our efforts thus focussed on developing a simple and sensitive method for quantitating MAB in plasma using GC–MS. The GC–MS assay was found to be linear over the range of 0.050 to 5.0 μg/ml, and was applied to monitor the plasma concentration of MAB in a rat dosed with 25 mg/kg as a 1 min intravenous infusion. Plasma was collected at intervals from 3 through 180 min, and concentrations of MAB were determined. Non-linear regression analysis of the plasma concentration-time data revealed that levels declined from a maximum at 3 min of 18 μg/ml to 1 μg/ml at 3 h in a biphasic manner. In another investigation, significant plasma concentrations of a major metabolite was detected and determined to be mono-N-acetylated MAB.  相似文献   

14.
An analytical protocol has been developed for the analysis of urinary 4-pyridoxic acid (4-PA) by gas chromatography—mass spectrometry (GC—MS) for use in metabolic studies. Aliquots of urine were deproteinised and fractionated by isocratic reversed-phase high-performance liquid chromatography. The eluent fraction containing the 4-PA was collected, freeze-dried and silylated using N-methyl-N-(tert.-butyldimethylsilyl)trifluoroacetamide. Derivatisation produced the mono-tert.-butyldimethylsilyl derivative of 4-PA lactone. This derivative was readily amenable to GC—MS analysis in the electron ionisation (70 eV) mode, yielding a prominent fragment ion at m/z 222 ([M — 57]+; base peak). A heavy isotope-labelled derivative of pyridoxine [dideuteriated pyridoxine; 3-hydroxy-4-(hydroxymethyl)-5-[hydroxymethyl-2H2]-2-methylpyridine] has been synthesised and is being employed to determine the kinetics of labelling of the body pools of vitamin B6. Kinetic measurements are based on the determination of the relative proportions of metabolically produced deuterium-labelled and non-labelled 4-PA in urine, obtained from stable isotope ratios determined by low-resolution selected ion monitoring using a bench-top quadrupole GC—MS system.  相似文献   

15.
A selective gas–liquid chromatographic method with mass spectrometry (GC–MS) for the simultaneous confirmation and quantification of ephedrine, pseudo-ephedrine, nor-ephedrine, nor-pseudoephedrine, which are pairs of diastereoisomeric sympathomimetic amines, and methyl-ephedrine was developed for doping control analysis in urine samples. O-Trimethylsilylated and N-mono-trifluoroacetylated derivatives of ephedrines — one derivative was formed for each ephedrine — were prepared and analyzed by GC–MS, after alkaline extraction of urine and evaporation of the organic phase, using d3-ephedrine as internal standard. Calibration curves, with r2>0.98, ranged from 3.0 to 50 μg/ml depending on the analyte. Validation data (specificity, % RSD, accuracy, and recovery) are also presented.  相似文献   

16.
A GC method using a novel derivatization reagent, 2′,2′,2-trifluoroethyl chloroformate (TFECF), for the derivatization of primary and secondary aliphatic amines with the formation of carbamate esters is presented. The method is based on a derivatization procedure in a two-phase system, where the carbamate ester is formed. The method is applied to the determination of 1,6-hexamethylene diamine (HDA) in aqueous solutions and human urine, using capillary GC. Detection was performed using thermionic specific detection (TSD) and mass spectrometry (MS)—selective-ion monitoring (SIM) using electron-impact (EI) and chemical ionization (CI) with ammonia monitoring both positive (CI)+ and negative ions (CI). Quantitative measurements were made in the chemical ionization mode monitoring both positive and negative ions. Tetra-deuterium-labelled HDA (TDHDA; H2NC2H2(CH2)4C2H2NH2) was used as the internal standard for the GC—MS analysis. In CI+ the m/z 386 and the m/z 390 ions corresponding to the [M + 18]+ ions (M = molecular ion) of HDA—TFECF and TDHDA—TFECF were measured; in CI the m/z 267 and the m/z 271 ions corresponding to the [M — 101] ions. The overall recovery was found to be 97 ± 5% for a HDA concentration of 1000 μg/l in urine. The minimal detectable concentration in urine was found to be less than 20 μg/l using GC—TSD and 0.5 μg/l using GC—SIM. The overall precision for the work-up procedure and GC analysis was ca. 3% (n = 5) for 1000 μg/l HDA-spiked urine, and ca. 4% (n = 5) for 100 μg/l. The precision using GC—SIM for urine samples spiked to a concentration of 5 μg/l was found to be 6.3% (n = 10).  相似文献   

17.
The characteristics of the mass spectra of vitamin D3 related compounds were investigated by GC–MS and LC–MS using 22-oxacalcitriol (OCT), an analog of 1,25-dihydroxyvitamin D3, and related compounds. Fragmentation during GC–MS (electron impact ionization) of TMS-derivatives of OCT and the postulated metabolites gave useful structural information concerning the vitamin D3-skeleton and its side-chain, especially with respect to the oxidation positions of metabolites. In contrast, few fragment ions were observed in LC–MS (atmospheric pressure chemical ionization), showing that LC–MS gave poor structural information, except for molecular mass. However, when comparing the signal-to-noise ratio (S/N) observed during GC–MS and LC–MS analysis for OCT in plasma extracts, the S/N in LC–MS was over ten-times greater than in GC–MS, possibly due to the low recovery on derivatization and thermal-isomerization in GC–MS. Furthermore, both the GC–MS and the LC–MS allowed the analysis of many postulated metabolites in a single injection without any prior isolation of target metabolites from biological fluids by LC. These results suggest that GC–MS and LC–MS analysis for vitamin D3 related compounds such as OCT each have unique and distinct advantages. Therefore, the complementary use of both techniques enables the rapid and detailed characterization of vitamin D3 related compounds.  相似文献   

18.
In an isotope dilution assay, prostaglandin (PG) E2, 6-keto-PGF, thromboxane (Tx) B2 and their metabolites PGE-M (11α-hydroxy-9,15-dioxo-2,3,4,5,20-pentanor-19-carboxyprostanoic acid), 2,3-dinor-6-keto-PGF, 2,3-dinor-TxB2 and 11-dehydro-TxB2 were determined in urine by gas chromatography—triple stage quadrupole mass spectrometry (GC—MS—MS). After addition of deuterated internal standards, the prostaglandins were derivatized to their methoximes and extracted with ethyl acetate—hexane. The sample was further derivatized to the pentafluorobenzylesters and purified by thin-layer chromatography (TLC). Three zones were scraped from the TLC plate. The prostanoid derivatives were converted to their trimethylsilyl ethers and the products were quantified by GC—MS—MS. In each run, two or three prostanoids were determined.  相似文献   

19.
Semi-automated 96-well plate solid-phase extraction (SPE) was used for sample preparation of fluprostenol, a prostaglandin analog, in rat plasma prior to detection by gas chromatography–negative chemical ionization tandem mass spectrometry (GC–NCI-MS–MS). A liquid handling system was utilized for all aspects of sample handling prior to SPE including transferring of samples into a 96-well format, preparation of standards as well as addition of internal standard to standards, quality control samples and study samples. SPE was performed in a 96-well plate format using octadecylsilane packing and the effluent from the SPE was dried in a custom-made 96-well apparatus. The sample residue was derivatized sequentially with pentafluorobenzylbromide followed by N-methyl-N-trimethylsilyltrifluoroacetamide. The derivatized sample was then analyzed using GC–NCI-MS–MS. The dynamic range for the method was from 7 to 5800 pg/ml with a 0.1-ml plasma sample. The methodology was evaluated over a 4-day period and demonstrated an accuracy of 90–106% with a precision of 2.4–12.9%.  相似文献   

20.
A specific method for the determination of erythromycin 2'-ethylsuccinate (EM-ES) in plasma is described. The method involves a liquid—liquid extraction procedure followed by the analysis of extracts using phase-system switching (PSS) continuous-flow fast atom bombardment (CF-FAB) liquid chromatography—mass spectrometry (LC—MS). In PSS EM-ES is enriched after analytical separation on a short trapping column, from which it is desorbed to the LC—MS interface. In this way, favourable mobile phases can be used for the LC separation and for the MS detection. Using the PSS approach a flow-rate reduction from 1.0 ml/min in the LC system to 15 μl/min going into the mass spectrometer was achieved without splitting. The determination limit for EM-ES was 0.1 μg/ml.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号