首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The membrane-bound form of phosphatidylinositol-4-phosphate (PtdInsP) kinase was purified 4,300-fold from human red blood cells to a specific activity of 117 nmol min-1 mg-1. Although this enzyme copurified with red blood cell membranes, it was solubilized by high salt extraction in the absence of detergent indicating that it is a peripheral membrane protein. The major protein seen in the most purified preparation migrated at 53,000 daltons on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The major PtdInsP kinase activity in this preparation was also coincident with this 53,000-dalton band upon renaturation of activity from SDS-PAGE. To test further whether the 53,000-dalton protein contained PtdInsP kinase activity, antibodies were prepared against the gel-purified 53,000-dalton protein. This antiserum was able to precipitate both the 53,000-dalton peptide and PtdInsP kinase activity from red blood cell membranes. The apparent size of the native enzyme in the most purified preparation was determined to be 150,000 +/- 25,000 daltons by gel filtration. This PtdInsP kinase activity was at least 100-fold more active in phosphorylating PtdInsP than phosphatidylinositol and was easily separated from the red cell membrane phosphatidylinositol kinase by salt extraction. Analysis of the reaction product, phosphatidylinositol 4,5-bisphosphate, indicates that the enzyme phosphorylates phosphatidylinositol 4-phosphate specifically at the 5'-hydroxyl of the inositol ring. The apparent Km for ATP was 2 microM, and the concentrations of Mg2+ and Mn2+ giving half-maximal activity were 2 and 0.2 mM, respectively. Mg2+ supported 3-fold higher activity than Mn2+ at optimal concentrations. The enzymatic activity was inhibited by its product, phosphatidylinositol 4,5-bisphosphate and enhanced by phosphatidylserine.  相似文献   

2.
Phosphatidylinositol kinase was solubilized and purified from porcine liver microsomes to apparent homogeneity. The purification procedure includes: solubilization of microsomes by 2% Triton X-100, ammonium sulfate precipitation (20-35% saturation), Reactive blue agarose chromatography, DEAE-Sephacel chromatography and two consecutive hydroxyapatite chromatographies. A total of 4900-fold purification with 8% recovery of enzyme activity was achieved. The molecular weight of the enzyme as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 55000. The enzyme is stimulated in a decreasing order by Mg2+, Fe2+, Mn2+, Fe3+ and Co2+. Ca2+ inhibited Mg2+-stimulated activity with an I50 of 0.4 mM. Apparent Km values for phosphatidylinositol and ATP are 120 and 60 microM, respectively. The enzyme is inhibited by adenosine (I50 = 70 microM), ADP (I50 = 120 microM) and quercetin (I50 = 100 microM). The enzyme is also sensitive to sulfhydryl inhibitors. Using the purified enzyme as an immunogen, we have successfully prepared antibodies for phosphatidylinositol kinase in rabbits. The antibodies appear to recognize an antigen of Mr 55000 on SDS-polyacrylamide gel electrophoresis from various porcine tissues in Western blot analysis.  相似文献   

3.
An enzyme hydrolyzing sphingomyelin was purified from extracts of solid cultures of Aspergillus saitoi 7041 by fractionation with isopropanol followed by successive column chromatographies on DEAE-Sepharose CL-6B, butyl-Toyopearl 650 M, and phenyl-Sepharose CL-4B. The preparation of purified enzyme was homogeneous and had an activity increased 81-fold over that of the isopropanol fraction. The yield was about 65%. The molecular weight was estimated to be 54,000 by sodium dodecyl sulfate-gel electrophoresis. The enzyme solution had a violet color and contained iron atoms. The enzyme catalyzed the hydrolysis of sphingomyelin to N-acylsphingosine and phosphorylcholine. The optimum pH for hydrolytic activity was around 3.5. The Km values for sphingomyelin and 2-hexadecanoylamino-4-nitrophenylphosphorylcholine were 0.11 and 0.33 mM, respectively. The enzyme also catalyzed the hydrolysis of other phospholipids; the order of its hydrolytic activity at a substrate concentration of 2.5 mM was phosphatidylcholine greater than or equal to sphingomyelin = phosphatidylethanolamine = lysophosphatidylethanolamine greater than phosphatidyl DL-glycerol = phosphatidyl L-serine greater than phosphatidylinositol. From these results, this enzyme appears to be a new type of phospholipase C(phosphatidylcholine cholinephosphohydrolase, EC 3.1.4.3).  相似文献   

4.
Isolated rat kidney proximal tubule brush border membrane vesicles exhibit an increase in diacylglycerol levels (20- to 30-fold) and a concomitant decrease in phosphatidylinositol when incubated with [3H]arachidonate-labeled lipids, Ca2+, and deoxycholate. Levels of free arachidonate, triglyceride, and noninositol phospholipids are not altered. These results suggest phosphatidylinositol phosphodiesterase activity is associated with rat proximal tubule brush border membrane. Presence of both deoxycholate and certain divalent cations was necessary to demonstrate enzyme activity. Optimum pH ranged from 7.0 to 8.5. Ca2+, Mg2+, and Mn2+ stimulated diglyceride production while Ba2+, Zn2+, Hg2+, and K+ were ineffective. HgCl2 inhibited Ca2+-stimulated phosphatidylinositol phosphodiesterase. Mg2+ and deoxycholate-dependent enzyme activity was shown to be phosphatidylinositol specific. Sodium lauryl sulfate, tetradecyltrimethylammonium bromide, and Triton X-100 did not activate phosphatidylinositol phosphodiesterase in the presence of Ca2+. In combination with deoxycholate, diglyceride formation was not affected by sodium lauryl sulfate, partially inhibited by Triton X-100, and completely abolished by tetradecyltrimethylammonium bromide. Diglyceride kinase activity was not found associated with brush border membrane phosphatidylinositol phosphodiesterase. ATP (1-5 mM) inhibited Ca2+- or Mg2+-stimulated, deoxycholate-dependent phosphatidylinositol hydrolysis by chelating the required divalent cation.  相似文献   

5.
A membrane-associated diacylglycerol kinase of Drosophila heads was purified to near homogeneity from the KCl extract of Drosophila heads. The purification procedure involved chromatography on Q-Sepharose, ammonium sulfate fractionation, Superose 12, hydroxyapatite and ATP-agarose. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of fractions after the ATP-agarose column chromatography showed that only a 115 kDa protein correlated well with the enzyme activity. The apparent Km values of partially purified DG kinase were 220 microM for ATP and 540 microM for diolein, respectively. The activity of the DG kinase was inhibited by deoxycholate and was not activated by Ca2+.  相似文献   

6.
A membrane-bound phosphatidylinositol (PI) kinase was purified from rat brain. The enzyme was solubilized with Triton X-100 from salt-washed membrane and purified 11,183-fold, with a final specific activity of 150 nmol/min/mg of protein. Purification steps included several chromatography using Q-Sepharose Fast Flow, cellulose phosphate, Toyopearl HW 55 and Affi-Gel Blue. The purified PI kinase had an estimated molecular weight of 80,000 by gel filtration and 76,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified kinase phosphorylated only PI and did not phosphorylate phosphatidylinositol 4-phosphate or diacylglycerol. Km values for PI and ATP were found to be 115 and 150 microM, respectively. The enzyme required Mg2+ (5-20 mM) or Mn2+ (1-2 mM) for activity, was stimulated by 0.1-1.0% (w/v) Triton X-100, and completely inhibited by 0.05% sodium dodecyl sulfate. The enzyme activity showed a broad pH optimum at around 7.4. The enzyme utilized ATP and not GTP as phosphate donor. Nucleoside triphosphates other than ATP and diphosphates significantly inhibited the kinase activity. However, inhibitory effects of adenosine, cAMP, and quercetin were weak.  相似文献   

7.
A membrane-bound phosphatidylinositol (PtdIns) kinase has been purified approximately 9500-fold to apparent homogeneity from sheep brains. The purification procedure involves: solubilisation of the membrane fraction with Triton X-100, ammonium sulphate fractionation and a number of ion-exchange and gel-filtration chromatography steps. The purified enzyme exhibited a final specific activity of 1149 nmol.min-1.mg-1. The molecular mass of the enzyme was estimated to be 55 kDa by SDS/PAGE and 150 +/- 10 kDa by HPLC gel filtration in the presence of Triton X-100. Kinetic measurements have shown that the apparent Km value of PtdIns kinase for the utilisation of PtdIns is 22 microM and for ATP 67 microM. Mg2+ was the most effective divalent cation activator of PtdIns kinase, with maximal enzymatic activity reached at a concentration of 10 mM Mg2+. In addition to adenosine and ADP, the 2'(3')-O-(2,4,6-trinitrophenyl) derivative of ATP was found to be a strong competitive inhibitor of the enzyme, with a Ki of 32 microM. Enzymatic activity was found to be stimulated by Triton X-100 but inhibited by deoxycholate.  相似文献   

8.
Tyrosine 3-monooxygenase was purified to homogeneity, as judged by sodium dodecyl sulfate/polyacrylamide gel electrophoresis, from rat adrenal. The specific activity of the final preparation was approximately 1,600 nmol min-1 mg protein-1, which was much higher than the highest yet reported. The enzyme was markedly stabilized in the presence of glycerol, Tween 80 and EDTA. As judged by gel filtration on Ultrogel AcA 34, sodium dodecyl sulfate/polyacrylamide gel electrophoresis and cross-linking studies, the enzyme appeared to be composed of four identical subunits, each possessing a molecular weight of 59,000. The isoelectric point of the enzyme was estimated to be 6.7 in the presence of 8 M urea and 6.6 in its absence. Amino acid analysis of the enzyme revealed a fairly high content of serine residues in this protein. Purification of the enzyme caused changes in the kinetic properties of the enzyme. The Km for 2-amino-4-hydroxy-6-methyl-5,6,7,8-tetrahydropteridine decreased from 220 microM to 58 microM. The pH profile for the enzyme activity became more broad and the pH optimum was changed from an acid pH to a neutral pH. Although polyanions, such as heparin and dextran sulfate, markedly stimulated the activity of crude enzyme by increasing the V, they were much less effective in the activation of purified enzyme. A marked stimulation of the enzyme activity by phospholipids, such as phosphatidylserine, phosphatidylinositol, phosphatidylcholine and phosphatidylethanolamine, were not observed in both pure and crude preparations even at low concentrations of the pterin cofactor.  相似文献   

9.
Acid sphingomyelinase from human urine: purification and characterization   总被引:8,自引:0,他引:8  
Acid sphingomyelinase (sphingomyelin phosphodiesterase, EC 3.1.4.12) was purified from human urine in the presence of 0.1% Nonidet P-40. The activity could be enriched 23,000-fold by sequential chromatography on octyl-Sepharose, concanavalin A-Sepharose, blue Sepharose and DEAE-cellulose. The last purification step yielded an enzyme preparation with a specific activity of about 2.5 mmol sphingomyelin cleaved/h per mg protein and with a yield of about 3%. Purified sphingomyelinase appeared to be homogeneous in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a molecular mass of 70 kDa. In the presence of 0.08% (w/v) sodium taurodeoxycholate the preparation showed phosphodiesterase activity toward sphingomyelin, phosphatidylcholine and phosphatidylglycerol. These activities co-purified during the entire purification procedure, indicating that the acid sphingomyelinase hydrolyses not only sphingomyelin but also the other two phospholipids, phosphatidylcholine and phosphatidylglycerol. Addition of 100 microM tripalmitoylglycerol to the assay system (which contains 100 microM sphingomyelin) instead of detergent, stimulated the reaction about 20-fold compared to an assay which did not contain detergents, thus offering a very sensitive and efficient system for the assay of sphingomyelinase in a system free of detergents. Sphingomyelin degradation was strongly inhibited by phosphatidylinositol 4',5'-bisphosphate, adenosine 3',5'-diphosphate and adenine-9-beta-D-arabinofuranoside 5'-monophosphate (50% inhibition at inhibitor concentrations of 1-5 microM).  相似文献   

10.
Purification and characterization of phosphoinositide 3-kinase from rat liver   总被引:64,自引:0,他引:64  
Phosphoinositide 3-kinase was purified 27,000-fold from rat liver. The enzyme was purified by acid precipitation of the cytosol followed by chromatography on DEAE-Sepharose, S-Sepharose, hydroxylapatite, Mono-Q, and Mono-S columns. When analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified phosphoinositide 3-kinase preparation contained an 85-kDa protein and a protein doublet of approximately 110 kDa. The 85- and 110-kDa proteins focus together on native isoelectric focusing gels and are cross-linked by dithiobis(succinylamide propionate), showing that the 110- and 85-kDa proteins are a complex. The apparent size of the native enzyme, as determined by gel filtration, is 190 kDa. The 85-kDa subunit is the same protein previously shown to associate with polyoma virus middle T antigen and the platelet-derived growth factor receptor (Kaplan, D. R., Whitman, M., Schaffhausen, B., Pallas, D. C., White, M., Cantley, L., and Roberts, T. M. (1987) Cell 50, 1021-1029). The two proteins co-migrate on two-dimensional gels; and, using a Western blotting procedure, 32P-labeled middle T antigen specifically blots the 85-kDa protein. The purified enzyme phosphorylates phosphatidylinositol, phosphatidylinositol 4-phosphate, and phosphatidylinositol 4,5-bisphosphate. The apparent Km values for ATP were found to be 60 microM with phosphatidylinositol 4-phosphate or phosphatidylinositol 4,5-bisphosphate as the substrate. The apparent Km for phosphatidyinositol is 60 microM, for phosphatidylinositol 4-phosphate is 9 microM, and for phosphatidylinositol 4,5-bisphosphate is 4 microM. The maximum specific activity using phosphatidylinositol as the substrate is 0.8 mumol/mg/min. The enzyme requires Mg2+ with an optimum of 5 mM. Substitution of Mn2+ for Mg2+ results in only approximately 10% of the Mg2(+)-dependent activity. Physiological calcium concentrations have no effect on the enzyme activity. Phosphoinositide 3-kinase has a broad pH optimum around 7.  相似文献   

11.
Phospholipase C (phosphatidylcholine cholinephosphohydrolase, EC 3.1.4.3) from Pseudomonas aureofaciens was purified 3600-fold from the culture filtrate with a recovery of 1.6%. Purification was performed with the useof (NH4)2SO4 precipitation, Sephadex G-100 gel filtration and by ion-exchange chromatography on DEAE-Sephadex A-50 and CM-Sephadex C-50. The purified enzyme appeared to be homogeneous as revealed by polyacrylamide disc gel electrophoresis at pH 9.3. The molecular weight was estimated to be 35 000 by gel filtration on Sephadex G-75. Under our experimental conditions, phosphatidylethanolamine was more rapidly hydrolysed than phosphatidylcholine. Lyso forms of these two phosphatides were poor substrates. Phosphatidylserine, phosphatidylglycerol, phosphatidylinositol, cardiolipin and sphingomyelin were not hydrolysed. The enzyme activity with phosphatidylcholine as substrate was slightly stimulated by Ca2+, Mg2+, and Mn2+. However, these cations inhibited the activity with phosphatidylethanolamine as substrate. An anionic detergent, sodium deoxycholate, slightly enhanced the activity when phosphatidylcholine and phosphatidylethanolamine were used as substrates. A cationic detergent, cetyltrimethylammonium bromide, inhibited enzyme activity. EDTA and o-henanthroline inhibited the activity of the enzyme to a marked degree.  相似文献   

12.
The sesquiterpene cyclase, trichodiene synthetase, has been purified from a supernatant fraction of Fusarium sporotrichioides by hydrophobic interaction, anion exchange, and gel filtration chromatography. Purified enzyme had a specific activity 15-fold higher than that previously reported for preparations of terpene cyclases. Molecular weight determinations by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration chromatography indicated the enzyme to be a dimer with a subunit of Mr 45,000. The requirement of Mg2+ (Km 0.1 mM) for activity could be partially substituted with Mn2+ at a concentration of 0.01 mM, but higher concentrations of Mn2+ were inhibitory. Maximum activity was observed between pH 6.75 and pH 7.75. The Km for farnesyl pyrophosphate was 0.065 microM.  相似文献   

13.
The membrane-associated phospholipid biosynthetic enzyme phosphatidylinositol kinase (ATP:phosphatidylinositol 4-phosphotransferase, EC 2.7.1.67) was purified 8,000-fold from Saccharomyces cerevisiae. The purification procedure included Triton X-100 solubilization of microsomal membranes, DE-52 chromatography, hydroxylapatite chromatography, octyl-Sepharose chromatography, and two consecutive Mono Q chromatographies. The procedure resulted in the isolation of a protein with a subunit molecular weight of 35,000 that was 96% of homogeneity as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Phosphatidylinositol kinase activity was associated with the purified Mr 35,000 subunit. Maximum phosphatidylinositol kinase activity was dependent on magnesium ions and Triton X-100 at pH 8. The true Km values for phosphatidylinositol and MgATP were 70 microM and 0.3 mM, and the true Vmax was 4,750 nmol/min/mg. The turnover number for the enzyme was 166 min-1. Results of kinetic and isotopic exchange reactions indicated that phosphatidylinositol kinase catalyzed a sequential Bi Bi reaction mechanism. The enzyme bound to phosphatidylinositol prior to ATP and phosphatidylinositol 4-phosphate was the first product released in the reaction. The equilibrium constant for the reaction indicated that the reverse reaction was favored in vitro. The activation energy for the reaction was 31.5 kcal/mol, and the enzyme was thermally labile above 30 degrees C. Phosphatidylinositol kinase activity was inhibited by calcium ions and thioreactive agents. Various nucleotides including adenosine and S-adenosylhomocysteine did not affect phosphatidylinositol kinase activity.  相似文献   

14.
Phospholipase C was purified from human melanoma grown as solid tumors in nude mice. The specific activity of the pure enzyme was approx. 100 mumol/min per mg; its apparent molecular mass was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis to be 150 kDa. The enzyme required calcium for activity and was activated by deoxycholate in the presence of the substrate phosphatidylinositol. The melanoma phospholipase C has a distinctly different substrate preference than those identified from normal tissues; it prefers phosphatidylinositol to phosphatidylinositol bisphosphate. The tumor enzyme was approx. 4-5-fold more active using phosphatidylinositol than phosphatidylinositol bisphosphate as the substrate.  相似文献   

15.
A phosphatidylinositol-specific phospholipase C (PI-PLC) has been isolated from bovine brain (purification factor of 5.6 x 10(4)). By sodium dodecyl sulfate-polyacrylamide gel electrophoresis, it had a Mr of 57,000. Neither amino nor neutral sugars were detected in the purified enzyme. The pH optimum was 7.0-7.5, and the activity decreased only slightly at pH 8.0. When phosphatidylinositol was used as a substrate, the optimum Ca2+ requirement was 4 mM, and Km was 260 microM. When phosphatidylinositol 4,5-bisphosphate was used, the optimum Ca2+ requirement was 10(-7) M, and the Km was reduced to 90 microM. Lipid specificity studies showed that equal amounts of inositol phosphate and diacylglycerol were released from phosphatidylinositol but 4 times as much inositol 1,4,5-trisphosphate was released from phosphatidylinositol 4,5-bisphosphate. Other lipids, phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin, were not substrates. Failure to detect phosphatidic acid confirmed the absence of a phospholipase D activity in the purified enzyme. Myelin basic protein (MBP) stimulated the PI-PLC activity between 2- and 3-fold. Histone had a small effect only, whereas bovine serum albumin and cytochrome C had no effect. Phosphorylation of MBP reduced the stimulatory effect. Protein-protein interactions between MBP and PI-PLC have been demonstrated both immunologically and by sucrose density gradients. A stoichiometry of 1:1 has been suggested by the latter method. A number of peptides have been prepared by chemical, enzymatic, and synthetic methods. Peptides containing the MBP sequences consisting of residues 24-33 and 114-122 stimulated the PI-PLC but were less effective than the intact protein.  相似文献   

16.
Stimulation of glycogen phosphorylase kinase by phospholipids   总被引:1,自引:0,他引:1  
The acidic phospholipids phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidylinositol 4-phosphate (PIP), phosphatidylinositol 4,5-biphosphate (PIP2) and the neutral phospholipid lysophosphatidylcholine (LPC) were found to stimulate (3 to 8-fold) the activity of nonactivated rabbit skeletal muscle phosphorylase kinase at pH 6.8, without significantly affecting the activity at pH 8.2. In this respect, phosphatidylcholine and phosphatidylethanolamine were ineffective, while the anionic detergent sodium dodecyl sulfate (SDS) and the anionic steroid dehydroisoandrosterone sulfate (DIAS) were able to mimic the action of phospholipids. SDS was also found to be a very efficient activator of the autophosphorylation of phosphorylase kinase (20-fold activation at 200 microM). The activating effect of phospholipids largely depends on the size of lipid vesicles, which is connected with the procedure of their preparation. These results suggest that phosphorylase kinase belongs to the class of Ca2+-dependent enzymes, which are sensitive to stimulation by calmodulin, limited proteolysis and anionic amphiphiles.  相似文献   

17.
GTP hydrolysis by guinea pig liver transglutaminase   总被引:4,自引:0,他引:4  
Homogeneous guinea pig liver transglutaminase was purified from a commercially available enzyme preparation by affinity chromatography on GTP-agarose. The purified transglutaminase exhibited a single band of apparent Mr = 80,000 on sodium dodecyl sulfate polyacrylamide gel and Western blotting and had enzyme activity of both transglutaminase and GTPase. The guinea pig liver transglutaminase has an apparent Km value of 4.4 microM for GTPase activity. GTPase activity was inhibited by guanine nucleotides in order GTP-gamma-S greater than GDP, but not by GMP. These results demonstrate that purified guinea pig liver transglutaminase catalyzes GTP hydrolysis.  相似文献   

18.
Cyclic GMP-stimulated cyclic nucleotide phosphodiesterase purified greater than 13,000-fold to apparent homogeneity from calf liver exhibited a single protein band (Mr approximately 102,000) on polyacrylamide gel electrophoresis under denaturing conditions. Enzyme activity comigrated with the single protein peak on analytical polyacrylamide gel electrophoresis, sucrose density gradient centrifugation, and gel filtration. From the sedimentation coefficient of 6.9 S and Stokes radius of 67 A, an Mr of 201,000 and frictional ratio (f/fo) of 1.7 were calculated, suggesting that the native enzyme is a nonspherical dimer of similar, if not identical, peptides. The effectiveness of Mg2+, Mn2+, and Co2+ in supporting catalytic activity depended on the concentration of cGMP and cAMP present as substrate or effector. Over a wide range of substrate concentrations, optimal concentrations for Mg2+, Mn2+, and Co2+ were about 10, 1, and 0.2 mM, respectively. At concentrations higher than optimal, Mg2+ inhibited activity somewhat; inhibition by Co2+ (and in some instances by Mn2+) was virtually complete. At low substrate concentrations, activity with optimal Mn2+ was equal to or greater than that with Co2+ and always greater than that with Mg2+. With greater than or equal to 0.5 microM cGMP or 20 to 300 microM cAMP and for cAMP-stimulated cGMP or cGMP-stimulated cAMP hydrolysis, activity with Mg2+ greater than Mn2+ greater than Co2+. In the presence of Mg2+, the purified enzyme hydrolyzed cGMP and cAMP with kinetics suggestive of positive cooperativity. Apparent Km values were 15 and 33 microM, and maximal velocities were 200 and 170 mumol/min/mg of protein, respectively. Substitution of Mn2+ for Mg2+ increased apparent Km and reduced Vmax for cGMP with little effect on Km or Vmax for cAMP. Co2+ increased Km and reduced Vmax for both. cGMP stimulated cAMP hydrolysis approximately 32-fold in the presence of Mg2+, much less with Mn2+ or Co2+. In the presence of Mg2+, Mn2+ and Co2+ at concentrations that increased activity when present singly inhibited cGMP-stimulated cAMP hydrolysis. It appears that divalent cations as well as cyclic nucleotides affect cooperative interactions of this enzyme. Whereas Co2+ effects were observed in the presence of either cyclic nucleotide, Mn2+ effects were especially prominent when cGMP was present (either as substrate or effector).  相似文献   

19.
Three isozymes of diacylglycerol kinase (DGK), DGK-I, DGK-II, and DGK-III, were purified from the cytosol of human platelets by successive chromatography on DEAE-cellulose, Ultrogel AcA34, heparin-Sepharose, ATP-agarose, Mono Q, phenyl-Superose, HCA-hydroxyapatite, Wakopak G40, and TSK-3000SW columns. Two DGK species (DGK-I and DGK-III) were purified to apparent homogeneity, and upon SDS-polyacrylamide gel electrophoresis, they showed a single band of apparent molecular mass of 152 kDa (DGK-I) or 58 kDa (DGK-III). The peptide mapping analysis showed that DGK-I and DGK-III are structurally different. DGK-II was only partially purified, and its apparent Mr was estimated to be 75,000 by gel filtration. The specific enzyme activities of the three isozymes were increased 1,480-fold (DGK-I), 690-fold (DGK-II) and 2,100-fold (DGK-III) over original platelet cytosol. The activities of DGK-II and DGK-III were markedly enhanced by the presence of deoxycholate or phosphatidylserine, whereas DGK-I activity was not much affected by the anionic compounds. All of the three activities were strongly suppressed by phosphatidylcholine. Triton X-100 and octyl glucoside were strongly inhibitory to all of the enzymes, although to different extents. The DGK inhibitor, R59022, inhibited DGK-II and to a lesser extent DGK-III, but little affected DGK-I activity. DGK-I was much more heat-stable than DGK-II and DGK-III. The Km values for ATP were 150 microM for DGK-I, 245 microM for DGK-II, and 450 microM for DGK-III. The apparent Km values for suspended diolein were not much different among the DGKs and were in the range of 50-80 microM. These observations indicate that human platelet cytosol contains DGK isozymes with different enzymological properties. Furthermore, the three DGKs isolated from human platelets were found not to cross-react with the antibody raised against porcine brain 80-kDa DGK, thus indicating that human platelets contain novel species of DGK.  相似文献   

20.
Purification and characterization of the beta-adrenergic receptor kinase   总被引:12,自引:0,他引:12  
The beta-adrenergic receptor kinase (beta-ARK) is a recently discovered enzyme which specifically phosphorylates the agonist-occupied form of the beta-adrenergic receptor (beta-AR) as well as the light-bleached form of rhodopsin. beta-ARK is present in a wide variety of mammalian tissues. The kinase can be purified from bovine cerebral cortex to greater than 90% homogeneity by sequential chromatography on Ultrogel AcA34, DEAE-Sephacel, CM-Fractogel, and hydroxylapatite. This results in an approximately 20,000-fold purification with an overall recovery of 12%. The purified kinase has an Mr approximately 80,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Several findings indicate that this peptide contains the beta-ARK activity. First, on hydroxylapatite chromatography the enzyme activity coelutes with the Mr approximately 80,000 protein as revealed by Coomassie-Blue staining. Second, under phosphorylating conditions the Mr approximately 80,000 protein is phosphorylated. Finally, the Mr approximately 80,000 protein specifically interacts with reconstituted agonist-occupied beta-AR. Kinetic parameters of the enzyme for beta-AR are Km = 0.25 microM and Vmax = 78 nmol/min/mg whereas for rhodopsin the values are Km = 6 microM and Vmax = 72 nmol/min/mg. The Km value of the enzyme for ATP is approximately 35 microM using either beta-AR or rhodopsin as substrate. Receptor phosphorylation by beta-ARK is effectively inhibited by Zn2+, digitonin and a variety of salts. The availability of purified beta-ARK should greatly facilitate studies of its role in receptor desensitization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号