首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intracellular ratio of 2-oxoglutarate to glutamine has been analyzed under nutritional conditions leading to different activity levels of nitrate-assimilating enzymes in Phormidium laminosum (Agardh) Gom. This non-N2-fixing cyanobacterium adapted to the available nitrogen source by modifying its nitrate reductase (NR; EC 1.7.7.2), nitrite reductase (NiR; EC 1.7.7.1) and glutamine synthetase (GS; EC 6.3.1.2) activities. The 2-oxoglutarate/glutamine ratio was similar in cells adapted to grow with nitrate or ammonium. However, metabolic conditions that increased this ratio [i.e., nitrogen starvation or l-methionine-d,l-sulfoximine (MSX) treatment] corresponded to high activity levels of NR, NiR, GS (except in MSX-treated cells) and glutamate synthase (GOGAT; EC 1.4.7.1). By contrast, metabolic conditions that diminished this ratio (i.e., addition of ammonium to nitrate-growing cells or addition of nitrate or ammonium to nitrogen-starved cells) resulted in low activity levels. The variation in the 2-oxoglutarate/glutamine ratio preceded the changes in enzyme activities. These results suggest that changes in the 2-oxoglutarate/glutamine ratio could be the signal that triggers the adaptation of P. laminosum cells to variations in the available nitrogen source, as occurs in enterobacteria.Abbreviations Chl chlorophyll - GOGAT ferredoxin-dependent glutamate synthase (EC 1.4.7.1) - GS glutamine synthetase (EC 6.3.1.2) - MSX l-methionine-d,l-sulfoximine - NiR nitrite reductase (EC 1.7.7.1) - NR nitrate reductase (EC 1.7.7.2) - TP total protein This work has been partially supported by grants from the Spanish Ministry of Education and Science (DGICYT PB88-0300 and PB92-0464) and the University of the Basque Country (042.310-EC203/94). M.I.T. was the recipient of a fellowship from the Basque Government.  相似文献   

2.
A spontaneous double mutant of Chlamydomonas reinhardtii, designated ARF3, was resistant to L-methionine-S-sulfoximine (MSX), lacked chloroplastic glutamine synthetase (GS2) activity, and grew very poorly in all media tested. In segregants obtained after genetic crosses, the poor-growth phenotype was always linked to the lack of GS2 and to a diminished rate of consumption of ammonium, even under conditions where photorespiration was minimized. The ammonium permeases in mutant ARF3, however, were not altered. This indicates that, unlike in higher plants, GS2 contributes substantially to the primary assimilation of ammonia in this alga, and that its function cannot be replaced by the cytosolic glutamine synthetase. In genetic crosses, the MSX resistance and the lack of GS2 segregated independently, indicating that resistance was not due to an altered form of GS2. Received: 5 June 1998 / Accepted: 10 September 1998  相似文献   

3.
Anti-glutamine synthetase serum was raised in rabbits by injecting purified glutamine synthetase (GS) of the phototrophic bacterium Rhodopseudomonas capsulata E1F1. The antibodies were purified to monospecificity by immunoaffinity chromatography in GS-sepharose gel. These anti-GS antibodies were used to measure the antigen levels in crude extracts from bacteria, grown phototrophically with dinitrogen, nitrate, nitrite, ammonia, glutamate, glutamine or alanine as nitrogen sources. The amount of GS detected by rocket immunoelectrophoresis was proportional to Mn2+-dependent transferase activity measured in the crude extracts. Addition of GS inhibitor l-methionine-d,l-sulfoximine (MSX) to the actively growing cells promoted increased antigen levels, that were not found in the presence of glutamine or chloramphenicol. The ammonia-induced decrease in GS relative levels was reverted by MSX. GS levels remained constant when phototrophically growing cells were kept in the dark.Abbreviations GS glutamine synthetase - MOPS 2-(N-morpholine) propane sulfonate - MSX l-methionine-d,l-sulfoximine  相似文献   

4.
Summary Ethylenediamine (EDA) is toxic to the cyanobacterium Anabaena variabilis and inhibits nitrogenase activity. The inhibition of nitrogenase was prevented by pretreatment of cells with l-methionine-d,l-sulphoximine (MSX). Mutant strains of Anabaena variabilis (ED81, ED92), resistant to EDA, had low levels of glutamine synthetase (GS) biosynthetic activity compared with the wild type strain. ED92 had a low level of GS protein whereas ED81 had a similar level to that of the parent strain as estimated using antibodies against GS. Both strains fixed N2 and liberated NH4 + into the media. Following immobilization of the mutant strains, sustained photoproduction of NH4 + was obtained in air-lift reactors at rates of up to 50 mol NH4 + mg chl a–1 h–1, which were comparable to the rates obtained when immobilized cyanobacteria were treated with MSX.Abbreviations EDA 1,2-diaminoethane (ethylenediamine) - GS glutamine synthetase - MSX l-methionine-d,l-sulphoximine  相似文献   

5.
We have demonstrated that Penicillium chrysogenum possesses the l-cysteine biosynthetic enzyme O-acetyl-l-serine sulphhydrylase (EC 4.2.99.8) of the direct sulphhydrylation pathway. The finding of this enzyme, and thus the presence of the direct sulphhydrylation pathway in P. chrysogenum, creates the potential for increasing the overall yield in penicillin production by enhancing the enzymatic activity of this microorganism. Only O-acetyl-l-serine sulphhydrylase and O-acetyl-l-homoserine sulphhydrylase (EC 4.2.99.10) have been demonstrated to use O-acetyl-l-serine as substrate for the formation of l-cysteine. The purified␣enzyme did not catalyse the formation of l-homocysteine from O-acetyl-l-homoserine and sulphide, excluding the possibility that the purified enzyme was O-acetyl-l-homoserine sulphhydrylase with multiple substrate specificity. The purification enhanced the enzymatic specific activity 93-fold in relation to the cell-free extract. Two bands, showing exactly the same intensity, were present on a sodium dodecyl sulphate/polyacrylamide gel, and the molecular masses of these were estimated to be 59 kDa and 68 kDa respectively. The K m value for O-acetyl-l-serine and V max of O-acetyl-l-serine sulphhydrylase were estimated to be 1.3 mM and 14.9 μmol/mg protein−1 h−1 respectively. The activity of the purified enzyme had a temperature optimum of approximately 45 °C, which is much higher than the actual temperature for penicillin synthesis. Furthermore, O-acetyl-l-serine sulphhydrylase activity was to have a maximum in the range of pH 7.0–7.4. Received: 20 March 1998 / Received revision: 27 July 1998 / Accepted: 12 August 1998  相似文献   

6.
Glutamine auxotrophic (Gln -) and l-methionine d,l-sulfoximine (MSX) resistant (MSX r) mutants of N. muscorum were isolated and characterized for nitrogen nutrition, nitrogenase activity, glutamine synthetase (GS) activity and glutamine amide, -keto-glutarate amido transferase (GOGAT) activity. The glutamine auxotroph was found to the GOGAT-containing GS-defective, incapable of growth with N2 or NH 4 + but capable of growth with glutamine as nitrogen source, thus, suggesting GS to be the primary enzyme of both ammonia assimilation and glutamine formation in the cyanobacterium. The results of transformation and reversion studies suggests that glutamine auxotrophy is the result of a mutation in the gln A gene and that gln A gene can be transferred from one strain to another by transformation.  相似文献   

7.
Rhodobacter capsulatus strains E1F1 and B10 and Rhodobacter sphaeroides DSM 158 did not use hydroxylamine as nitrogen source for growth but metabolized it mainly through the glutamine synthetase reaction. Hydroxylamine had a high toxicity for cells growing either under phototrophic or dark-aerobic conditions. l-methionine-d,l-sulfoximine partially inhibited hydroxylamine uptake and increased the inhibition time of nitrogenase activity by this nitrogen compound. Nitric oxide was also a powerful inhibitor of nitrogenase in intact cells of R. capsulatus. Since low amounts of NO were produced from hydroxylamine, short-term inhibition of nitrogenase in the presence of this compound could be mediated in vivo by nitric oxide.Abbreviations GS glutamine synthetase - MSX l-methionine-d,l-sulfoximine - MTA mixed alkyltrimethylammonium bromide  相似文献   

8.
The phototrophic bacterium Rhodobacter capsulatus E1F1 assimilates ammonia and other forms of reduced nitrogen either through the GS/GOGAT pathway or by the concerted action of l-alanine dehydrogenase and aminotransferases. These routes are light-independent and very responsive to the carbon and nitrogen sources used for cell growth. GS was most active in cells grown on nitrate or l-glutamate as nitrogen sources, whereas it was heavily adenylylated and siginificantly repressed by ammonium, glycine, l-alanine, l-aspartate, l-asparagine and l-glutamine, under which conditions specific aminotransferases were induced. GOGAT activity was kept at constitutive levels in cells grown on l-amino acids as nitrogen sources except on l-glutamine where it was significantly induced during the early phase of growth. In vitro, GOGAT activity was strongly inhibited by l-tyrosine and NADPH. In cells using l-asparagine or l-aspartate as nitrogen source, a concerted induction of l-aspartate aminotransferase and l-asparaginase was observed. Enzyme level enhancements in response to nitrogen source variation involved de novo protein synthesis and strongly correlated with the cell growth phase.Abbreviations ADH l-alanine dehydrogenase - AOAT l-alanine:2-oxoglutarate aminotransferase - Asnase l-asparaginase - GOAT Glycine: oxaloacetate aminotransferase - GOGAT Glutamate synthase - GOT l-aspartate: 2-oxoglutarate aminotransferase - GS Glutamine synthetase - HPLC High-Pressure Liquid Chromatography - MOPS 2-(N-morpholino)propanesulfonic acid - MSX l-methionine-d,l-sulfoximine  相似文献   

9.
Glutamine-synthetase (GS; EC 6.3.1.2) activity and protein levels were measured in crude extracts from Monoraphidium braunii Näegeli, strain 202-7d, cultures grown under different nitrogen sources. Only ammonium and l-glutamine promoted a partial enzyme inactivation, which, in the case of l-glutamine, was accompanied by a significant repression of GS. Methionine sulfoximine (MSX), a strong inhibitor of GS, produced a drastic inactivation of GS which was concomitant with a marked increase in GS protein as measured by rocket immunoelectrophoresis. Such an increase was prevented in the presence of cycloheximide. The effect of the l-glutamine analog on GS activity and protein was partially inhibited if l-glutamine was also added to cell cultures, possibly indicating competition in the transport of these two substances. In addition, the effects of MSX were reversed after longer times when cultures were treated with smaller concentrations of inhibitor. Treatment of cell cultures with azaserine, a specific inhibitor of glutamate synthase, the second enzyme acting in the ammonium assimilation pathway, promoted a strong GS inactivation and a partial repression of this enzyme, which paralleled a specific increase in the intracellular pools of glutamine High-performance liquid chromatography measurements of intracellular amino-acid concentrations showed that glutamine levels correlated negatively with GS concentration. A role for glutamine as a negative effector of GS synthesis is proposed.Abbreviations GS l-glutamine synthetase - GOGAT l-glu-tamine:2-oxoglutarate amidotransferase - MSX methionine sulfoximine During the course of this work, J.A. was supported by a fellowship from Junta de Andalucía, and J.M. G-F. by a fellowship from the Spanish Ministerio de Educatión y Ciencia. This work was supported by the Junta de Andalucía.  相似文献   

10.
A gram-negative, rod-shaped bacterium capable of utilizing l-asparagine as its sole source of carbon and nitrogen was isolated from soil and identified as Enterobacter cloacae. An intracellularly expressed l-asparaginase was detected and it deaminated l-asparagine to aspartic acid and ammonia. High-pressure liquid chromatography analysis of a cell-free asparaginase reaction mixture indicated that 2.8 mM l-asparagine was hydrolyzed to 2.2 and 2.8 mM aspartic acid and ammonia, respectively, within 20 min of incubation. High asparaginase activity was found in cells cultured on l-fructose, d-galactose, saccharose, or maltose, and in cells cultured on l-asparagine as the sole nitrogen source. The pH and temperature optimum of l-asparaginase was 8.5 and 37–42 °C, respectively. The half-life of the enzyme at 30 °C and 37 °C was 10 and 8 h, respectively. Received: 19 February 1998 / Received last revision: 4 June 1998 / Accepted: 10 July 1998  相似文献   

11.
Streptomyces albulus NBRC14147 produces ɛ-poly-l-lysine (ɛ-PL), which is an amino acid homopolymer antibiotic. Despite the commercial importance of ɛ-PL, limited information is available regarding its biosynthesis; the l-lysine molecule is directly utilized for ɛ-PL biosynthesis. In most bacteria, l-lysine is biosynthesized by an aspartate pathway. Aspartokinase (Ask), which is the first enzyme in this pathway, is subject to complex regulation such as through feedback inhibition by the end-product amino acids such as l-lysine and/or l-threonine. S. albulus NBRC14147 can produce a large amount of ɛ-PL (1–3 g/l). We therefore suspected that Ask(s) of S. albulus could be resistant to feedback inhibition to provide sufficient l-lysine for ɛ-PL biosynthesis. To address this hypothesis, in this study, we cloned the ask gene from S. albulus and investigated the feedback inhibition of its gene product. As predicted, we revealed the feedback resistance of the Ask; more than 20% relative activity of Ask was detected in the assay mixture even with extremely high concentrations of l-lysine and l-threonine (100 mM each). We further constructed a mutated ask gene for which the gene product Ask (M68V) is almost fully resistant to feedback inhibition. The homologous expression of Ask (M68V) further demonstrated the increase in ɛ-PL productivity.  相似文献   

12.
l-Methionine-dl-sulfoximine (MSX) stimulated nitrate uptake but inhibited14CO2 fixation and O2 evolution inAnabaena doliolum. Nitrate uptake was inhibited by ammonium (NH 4 + ) in the absence of MSX, but not in the presence of MSX. Glutamine or a derivative of it appears to be the actual negative effector of nitrate utilization. In presence of nitrate, MSX-treated cells ofA. doliolum evolve more O2 than do untreated cells. Our results suggest a close relation between photoassimilation of carbon and utilization of nitrogen.  相似文献   

13.
A new enzymatic resolution process was established for the production of l-threo-3-[4-(methylthio)phenylserine] (MTPS), an intermediate for synthesis of antibiotics, florfenicol and thiamphenicol, using the recombinant low-specificity d-threonine aldolase from Arthrobacter sp. DK-38. Chemically synthesized dl-threo-MTPS was efficiently resolved with either the purified enzyme or the intact recombinant Escherichiacoli cells overproducing the enzyme. Under the optimized experimental conditions, 100 mM (22.8 g l−1) l-threo-MTPS was obtained from 200 mM (45.5 g l−1) dl-threo-MTPS, with a molar yield of 50% and a 99.6% enantiomeric excess. Received: 2 September 1998 / Received revision: 27 October 1998 / Accepted: 29 November 1998  相似文献   

14.
The D- and L-specific nicotine oxidases are flavoproteins involved in the oxidative degradation of nicotine by the Gram-positive soil bacterium Arthrobacter nicotinovorans. Their structural genes are located on a 160-kbp plasmid together with those of other nicotine-degrading enzymes. They are structurally unrelated at the DNA as well as at the protein level. Each of these oxidases possesses a high degree of substrate specificity; their catalytic stereoselectivity is absolute, although they are able to bind both enantiomeric substrates with a similar affinity. It appears that the existence of these enzymes is the result of convergent evolution. The amino acid sequence of 6-hydroxy-l-nicotine oxidase (EC 1.5.3.6) as derived from the respective structural gene shows considerable structural similarity with eukaryotic monoamine oxidases (EC 1.4.3.4) but not with monoamine oxidases from prokaryotic bacteria including those of the genus Arthrobacter. These similarities are not confined to the nucleotide-binding sites. A 100-amino acid stretch at the N-terminal regions of 6-hydroxy-l-nicotine oxidase and human monoamine oxidases A possess a 35% homology. Overall, 27.0, 26.9, and 25.8% of the amino acid positions of the monoamine oxidases of Aspergillus niger (N), humans (A), and rainbow trout (Salmo gairdneri) are identical to those of 6-hydroxy-l-nicotine oxidase (Smith–Waterman algorithm). In addition, the G+C content of the latter enzyme is in the range of that of eukaryotic monoamine oxidases and definitely lower than that of the A. nicotinovorans DNA and even that of the pAO1 DNA. The primary structure of 6-hydroxy-d-nicotine oxidase (EC 1.5.3.5) does not reveal its evolutionary history as easily. Significant similarities are found with a mitomycin radical oxidase from Streptomyces lavendulae (23.3%) and a ``hypothetical protein' from Mycobacterium tuberculosis (26.0%). It is proposed that the plasmid-encoded gene of 6-hydroxy-l-nicotine oxidase evolved after horizontal transfer from an eukaryotic source. Received: 6 March 1998 / Accepted: 15 July 1998  相似文献   

15.
The incubation of the cyanobacteriumAnacystis nidulans withL-Arg,L-Lys orL-Orn, but neither with the correspondingD-isomers nor with other twentyL-amino acids, resulted in the production of large amounts of ammonium which accumulated in the outer medium. Relevant properties of thisin vivo ammonium production activity have been studied in cell suspensions treated with the glutamine synthetase inactivatorL-methionine-D,l-sulfoximine (MSX) to prevent assimilation by the cells of the resulting ammonium. In addition to its specificity for the basicL-amino acids, the system exhibited a set of properties (K m value for substrates, requirement of oxygen which is taken up stoichiometrically with the production of ammonium, inhibition by o-phenanthroline and divalent cations) all of which are shared by a peculiarL-amino acid oxidase recently isolated fromA. nidulans. The data strongly suggest the participation of this enzyme in the production of ammonium from basic amino acids byA. nidulans, an activity that could account for the ability of this cyanobacterium to use arginine as a nitrogen source.Abbreviations DCCD N,N-dicyclohexylcarbodiimide - FCCP carbonyl cyanide p-trifluoromethoxy-phenylhydrazone - MSX L-methionine-D,l-sulfoximine  相似文献   

16.
Two high-palmitic acid sunflower (Helianthus annuus L.) mutants, CAS-5 and CAS-12, have been biochemically characterised. The enzymatic activities found to be responsible for the mutant characteristics are β-keto-acyl-acyl carrier protein synthetase II (KASII; EC 2.3.1.41) and acyl-acyl carrier protein thioesterase (EC 3.1.2.14). Our data suggest that the high-palmitic acid phenotype observed in both mutant lines is due to the combined effect of a lower KASII activity and a higher thioesterase activity with respect to palmitoyl-acyl carrier protein (16:0-ACP). The level of the latter enzyme appeared to be insufficient to hydrolyse the produced 16:0-ACP completely. As a consequence of this, three new fatty acids appear: palmitoleic acid (16:1 Δ9), asclepic acid (18:1 Δ11), and palmitolinoleic acid (16:2 Δ9 Δ12). These fatty acids should be synthesised from palmitoyl-ACP or a derivative by the action of the stearoyl-ACP desaturase, fatty acid synthetase II and oleoyl-phosphatidylcholine desaturase, respectively. Received: 11 July 1998 / Accepted: 10 October 1998  相似文献   

17.
A cell suspension culture, prepared fromPerilla frutescens var.crispa callus induced by Murashige and Skoog (1962) medium containing 2,4-dichlorophenoxyacetic acid (2,4-D, 1.0 ml/l) and kinetin (0.1 mg/l), contained caffeic acid derivatives as the phenolic components. Fresh and dry weights of the cells increased exponentially for about 11 days after transfer to a fresh medium. The contents of caffeic acid and protein also reached a maximum on the 11th day, but α-amino nitrogen phenylalanine and tyrosine continued to increase in amount until the 20th to 23rd day. Caffeic acid formation in the cells was increased by lowering the concentration of 2,4-D. The administration ofl-2-aminooxy-3-phenylpropionic acid (l-AOPP), 2-aminooxyacetic acid (AOA) andN-(phosphonomethyl)glycine (glyphosate) to the cells inhibited caffeic acid formation to a large extent. An 80% inhibition of caffeic acid formation was caused by 10−4Ml-AOPP whereas phenylalanine and tyrosine contents of the cells became 7.5 and 2.3 times higher at thisl-AOPP concentration than those in the control. An 85% inhibition of caffeic acid formation was achieved at 10−3M glyphosate concentration, while 10−3M AOA inhibited caffeic acid formation by 95% and also growth rate by 80%. The influence of inhibitors on caffeic acid formation is discussed in relation to the level of α-amino nitrogen, particularly aromatic amino acids, in the cell suspension cultures.  相似文献   

18.
Summary Nitrate uptake and reductase activities of the cyanobacterium Anabaena cycadeae and its mutant, lacking glutamine synthetase, (the glutamine auxotroph) were measured. The levels of both these enzymes were up to 25-fold higher in the mutant than in the parent (Anabaena cycadeae). the data indicate operation of a common genetic regulatory mechanism controlling the loss of the primary ammonia assimilating enzyme, glutamine synthetase, and derepression of the nitrate uptake and reductase systems.Abbreviations Chl Chlorophyll - GS Glutamine Synthetase - HEPES 4-(2-hydroxyethyl)-1-piperazine ethanesulphonic acid - MSX l-methionine-dl-sulphoximine - SDS sodium dodecyl sulphate - Tricine N-tris(hydroxymethyl) methyl glycine - Tris Tris(hydroxymethyl) aminomethane  相似文献   

19.
We derived l-methionine-analogue-resistant mutants from Escherichia coli JM109 strain by mutagenesis with N-methyl-N′-nitro-N-nitrosoguanidine and selected the potent l-methionine-overproducing strains by microbioassay using lactic acid bacteria. One of the mutants, strain TN1, produced approximately 910 mg l-methionine/l following the addition of 0.1% yeast extract to fundamental medium containing glucose and ammonium sulfate. The l-methionine biosynthetic enzymes, cystathionine γ-synthase and cystathionine β-lyase, of the l-methionine-overproducing mutants were little repressed by l-methionine. To analyse the mechanism of l-methionine overproduction in the mutant strains, the metJ gene coding for the E. colimet repressor, MetJ protein, was cloned and sequenced by the polymerase chain reaction. The same single-amino-acid subsitution (wild-type Ser → Asn) at position 54 was observed in four independent l-methionine-producing mutants. When the wild-type metJ gene was then introduced into strain TN1 having the mutant metJ gene, the level of enzyme synthesis and the l-methionine productivity in the transformants were found to revert to those of the wild-type. It was therefore considered that only one point mutation in the metJ gene occurred in the l-methionine-producing mutants. These results demonstrate the important role of residue 54 of the MetJ protein in l-methionine overproduction, probably because of the derepression of l-methionine biosynthetic enzymes. Received: 6 January 1999 / Received last revision: 19 February 1999 / Accepted: 26 February 1999  相似文献   

20.
We present evidence, for the first time, of the occurrence of a transport system common for amino acid methionine, and methionine/glutamate analogues l-methionine-dl-sulfoximine (MSX) and phosphinothricin (PPT) in cyanobacterium Nostoc muscorum. Methionine, which is toxic to cyanobacterium, enhanced its nitrogenase activity at lower concentrations. The cyanobacterium showed a biphasic pattern of methionine uptake activity that was competitively inhibited by the amino acids alanine, isoleucine, leucine, phenylalanine, proline, valine, glutamine, and asparagine. The methionine/glutamate analogue-resistant N. muscorum strains (MSX-R and PPT-R strains) also showed methionine-resistant phenotype accompanied by a drastic decrease in 35S methionine uptake activity. Treatment of protein extracts from these mutant strains with MSX and PPT reduced biosynthetic glutamine synthetase (GS) activity only in vitro and not in vivo. This finding implicated that MSX- and PPT-R phenotypes may have arisen due to a defect in their MSX and PPT transport activity. The simultaneous decrease in methionine uptake activity and in vitro sensitivity toward MSX and PPT of GS protein in MSX- and PPT-R strains indicated that methionine, MSX, and PPT have a common transport system that is shared by other amino acids as well in N. muscorum. Such information can become useful for isolation of methionine-producing cyanobacterial strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号