首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The equilibrium of bile salt between aqueous phase and mixed micelle was studied in solutions of pure bile salt and lecithin comparing taurocholate and taurochenodeoxycholate. The relationship between bile salt concentration in the aqueous phase and the ratio of bile salt/lecithin in the mixed micelle was determined by equilibrium dialysis on serial dilutions of these solutions. Extrapolation of this relationship to zero mixed-micellar bile salt permitted calculation of the critical micelle concentration (CMC) of the mixed micelle. For taurocholate, taurochenodeoxycholate, and an equimolar mix of these two bile salts, the mixed micelle CMC's were 3.1 mM, 0.47 mM, and 0.89 mM respectively. In the most concentrated solutions, aqueous phase bile salt concentration surpassed the CMC of the simple bile salt micelle by more than four-fold indicating the presence of simple micelles as well as mixed micelles. At all dilutions taurochenodeoxycholate had a much greater affinity for the mixed micelle than did taurocholate. This last finding may be the reason for the superior cholesterol solubilizing capacity of taurochenodeoxycholate-lecithin solutions compared to taurocholate-lecithin solutions.  相似文献   

2.
The maximal equilibrium solubility of cholesterol in mixtures of phosphatidylcholine (PC)1 and bile salts depends on the cholesterol/PC ratio (Rc) and on the effective ratio (Re) between nonmonomeric bile salts and the sum (CT) of PC and cholesterol concentrations (Carey and Small, 1978; Lichtenberg et al., 1984). By contrast, the concentration of bile salts required for solubilization of liposomes made of PC and cholesterol does not depend on Rc (Lichtenberg et al., 1984 and 1988). Thus, for Rc greater than 0.4, solubilization of the PC-cholesterol liposomes yields PC-cholesterol-bile salts mixed micellar systems which are supersaturated with cholesterol. In these metastable systems, the mixed micelles spontaneously undergo partial revesiculation followed by crystallization of cholesterol. The rate of the latter processes depends upon Rc, Re, and CT. For any given Rc and Re, the rate of revesiculation increases dramatically with increasing the lipid concentration CT, reflecting the involvement of many mixed micelles in the formation of each vesicle. The rate also increases, for any given CT and Re, upon increasing the cholesterol to PC ratio, Rc, probably due to the increasing degree of supersaturation. Increasing the cholate to lipid effective ratio, Re, by elevation of cholate concentration at constant Rc and CT has a complex effect on the rate of the revesiculation process. As expected, cholate concentration higher than that required for complete solubilization at equilibrium yields stable mixed micellar systems which do not undergo revesiculation, but for lower cholate concentrations decreasing the degree of supersaturation (by increasing [cholate]) results in faster revesiculation. We interpret these results in terms of the structure of the mixed micelles; micelles with two or more PC molecules per one molecule of cholesterol are relatively stable but increasing the bile salt concentration may cause dissociation of such 1:2 cholesterol:PC complexes, hence reducing the stability of the mixed micellar dispersions. The instability of PC-cholesterol-cholate mixed systems with intermediary range of cholate to lipids ratio may be significant to gallbladder stone formation as: (a) biliary bile contains PC-cholesterol vesicles which may be, at least partially, solubilized by bile salts during the process of bile concentration in the gallbladder, resulting in mixtures similar to our model systems; and (b) the bile composition of cholesterol gallstone patients is within an intermediary range of bile salts to lipids ratio.  相似文献   

3.
Micelle formations of sodium glyco- and taurochenodeoxycholate (NaGCDC and NaTCDC) and sodium glyco- and tauroursodeoxycholates (NaGUDC and NaTUDC) was studied at 308.2 K for their critical micelle concentrations at various NaCl concentrations by pyrene fluorescence probe, and the degree of counterion binding to micelle was determined using the Corrin-Harkins plots. The degree of counterion binding was found to be 0.37-0.38 for chenodeoxycholate conjugates, while the determination of the degree was quite difficult for ursodeoxycholate conjugates. The change of I1/I3 values on the fluorescence spectrum with the conjugate bile salt concentration suggested two steps for their bile salt aggregation. The first step is a commencement of smaller aggregates, the first cmc, and the second one is a starting of stable aggregates, the second cmc. The aggregation number was determined at 308.2 K and 0.15 M NaCl concentration by static light scattering: 16.3 and 11.9 for sodium NaGCDC and NaTCDC, and 7.9 and 7.1 for NaGUDC and NaTUDC, respectively. The solubilization of cholesterol into the bile salt micelles in the presence of coexisting cholesterol phase and the maximum additive concentration (MAC) of cholesterol was determined against the bile salt concentration. The standard Gibbs energy change for the solubilization was evaluated, where the micelles were regarded as a chemical species. The solubilization was stabilized in the order of NaGUDC approximately = NaTUDC < NaTC < NaGC < NaTCDC < NaGCDC < NaTDC < NaGDC, where the preceding results were taken into the order.  相似文献   

4.
We modified classic equilibrium dialysis methodology to correct for dialysant dilution and Donnan effects, and have systematically studied how variations in total lipid concentration, bile salt (taurocholate):lecithin (egg yolk) ratio, and cholesterol content influence inter-mixed micellar/vesicular (non-lecithin-associated) concentrations (IMC) of bile salts (BS) in model bile. To simulate large volumes of dialysant, the total volume (1 ml) of model bile was exchanged nine times during dialysis. When equilibrium was reached, dialysate BS concentrations plateaued, and initial and final BS concentrations in the dialysant were identical. After corrections for Donnan effects, IMC values were appreciably lower than final dialysate BS concentrations. Quasielastic light scattering was used to validate these IMC values by demonstrating that lipid particle sizes and mean scattered light intensities did not vary when model biles were diluted with aqueous BS solutions of the appropriate IMC. Micelles and vesicles were separated from cholesterol-supersaturated model bile, utilizing high performance gel chromatography with an eluant containing the IMC. Upon rechromatography of micelles and vesicles using an identical IMC, there was no net transfer of lipid between micelles and vesicles. To simulate dilution during gel filtration, model biles were diluted with 10 mM Na cholate, the prevailing literature eluant, resulting in net transfer of lipid between micelles and vesicles, the direction of which depended upon total lipid concentration and BS/lecithin ratio. Using the present methodology, we demonstrated that inter-mixed micellar/vesicular concentrations (IMC) values increased strongly (5 to 40 mM) with increases in both bile salt (BS):lecithin ratio and total lipid concentration, whereas variations in cholesterol content had no appreciable effects. For model biles with typical physiological biliary lipid compositions, IMC values exceeded the critical micellar concentration of the pure BS, implying that in cholesterol-supersaturated biles, simple BS micelles coexist with mixed BS/lecithin/cholesterol micelles and cholesterol/lecithin vesicles. We believe that this methodology allows the systematic evaluation of IMC values, with the ultimate aim of accurately separating micellar, vesicular, and potential other cholesterol-carrying particles from native bile.  相似文献   

5.
6.
Using compressed discs and microcrystals of cholesterol monohydrate, we evaluated the mechanisms and kinetics of dissolution in conjugated bile salt-lecithin solutions. In stirred conjugated ursodeoxycholate-lecithin and cheno-deoxycholate-lecithin solutions, dissolution of 10,000-psi discs was micellar and linear with time for 10 hours. The dissolution rate constants (k) decreased in proportion to the lecithin content and dissolution rates and k values were appreciably smaller in conjugated ursodeoxycholate-lecithin solutions. After dissolution for 5 to 10 days the discs incubated with ursodeoxycholate-lecithin systems became progressively transformed into macroscopic liquid crystals. Unstirred dissolution of 3,000-psi discs in "simulated" human bile containing physiological lecithin concentrations gave apparent k values that decreased in the following order: ursodeoxycholate-rich >/= chenodeoxycholate-rich > normal. In most cases the discs incubated with ursodeoxycholate-rich bile became covered with a microscopic liquid-crystalline layer. With 20-25 moles % lecithin, these layers eventually dispersed into the bulk solution as microscopic vesicles. During dissolution of microcrystalline cholesterol in conjugated ursodeoxycholate-lecithin systems, a bulk liquid-crystalline phase formed rapidly (within 12 hours) and the final cholesterol solubilities were greater than those in conjugated chenodeoxycholate-lecithin micellar systems. Prolonged incubation of cholesterol microcrystals with pure lecithin or lecithin plus bile salt liposomes did not reproduce these effects. Condensed ternary phase diagrams of conjugated ursodeoxycholate-lecithin-cholesterol systems established that cholesterol-rich liquid crystals constituted an equilibrium precipitate phase that coexisted with cholesterol monohydrate crystals and saturated micelles under physiological conditions. Similar phase dissolution-relationships were observed at physiological lecithin-bile salt ratios for a number of other hydrophilic bile salts (e.g., conjugated ursocholate, hyocholate, and hyodeoxycholate). In contrast, liquid crystals were not observed in conjugated chenodeoxycholate-lecithin-cholesterol systems except at high (nonphysiological) lecithin contents. Based on these and other results we present a molecular hypothesis for cholesterol monohydrate dissolution by any bile salt-lecithin system and postulate that enrichment of bile with highly hydrophilic bile salts will induce crystalline cholesterol dissolution by a combination of micellar and liquid crystalline mechanisms. Since bile salt polarity can be measured and on this basis the ternary phase diagram deduced, we believe that the molecular mechanisms of cholesterol monohydrate dissolution as well as the in vivo cholelitholytic potential of uncommon bile salts can be predicted.-Salvioli, G., H. Igimi, and M. C. Carey. Cholesterol gallstone dissolution in bile. Dissolution kinetics of crystalline cholesterol monohydrate by conjugated chenodeoxycholate-lecithin and conjugated ursodeoxycholate-lecithin mixtures: dissimilar phase equilibria and dissolution mechanisms.  相似文献   

7.
Micellization of sodium chenodeoxycholate (NaCDC) was studied for the critical micelle concentration (CMC), the micelle aggregation number, and the degree of counterion binding to micelle at 288.2, 298.2, 308.2, and 318.2 K. They were compared with those of three other unconjugated bile salts; sodium cholate (NaC), sodium deoxycholate (NaDC), and sodium ursodeoxycholate (NaUDC). The I(1)/I(3) ratio of pyrene fluorescence and the solubility dependence of solution pH were employed to determine the CMC values. As the results, a certain concentration range for the CMC and a stepwise molecular aggregation for micellization were found reasonable. Using a stepwise association model of the bile salt anions, the mean aggregation number (n) of NaCDC micelles was found to increase with the total anion concentration, while the n values decreased with increasing temperature; 9.1, 8.1, 7.4, and 6.3 at 288.2, 298.2, 308.2, and 318.2 K, respectively, at 50 mmol dm(-3). The results from four unconjugated bile salts indicate that the number, location, and orientation of hydroxyl groups in the steroid nucleus are quite important for growth of the micelles. Activity of the counterion (Na(+)) was determined by a sodium ion selective electrode in order to confirm the low counterion binding to micelles. The solubilized amount of cholesterol into the aqueous bile salt solutions increased in the order of NaUDC相似文献   

8.
The objective of this study was to develop non-invasive spectroscopic methods to quantify the partition coefficients of two beta-blockers, atenolol and nadolol, in aqueous solutions of bile salt micelles and to assess the effect of lecithin on the partition coefficients of amphiphilic drugs in mixed bile salt/lecithin micelles, which were used as a simple model for the naturally occurring mixed micelles in the gastrointestinal tract. The partition coefficients (Kp) at 25.0 +/- 0.1degreesC and at 0.1 M NaCl ionic strength were determined by spectrofluorimetry and by derivative spectrophotometry, by fitting equations that relate molar extinction coefficients and relative fluorescence intensities to the partition constant Kp. Drug partition was controlled by the: (i) drug properties, with the more soluble drug in water (atenolol) exhibiting smaller values of Kp, and with both drugs interacting more extensively in the protonated form; and by (ii) the bile salt monomers, with the dihydroxylic salts producing larger values of Kp for the beta-blockers, and with glycine conjugation of the bile acid increasing the values of Kp for the beta-blockers. Addition of lecithin to bile salt micelles decreases the values of Kp of the beta-blockers. Mixed micelles incorporate hydrophobic compounds due to their large size and the fluidity of their core, but amphiphilic drugs, for which the interactions are predominantly polar/electrostatic, are poorly incorporated in mixed micelles of bile salts/lecithin.  相似文献   

9.
A nonmicellar, bile salt-independent mode of cholesterol transport in human bile involving phospholipid vesicles was recently reported by our group. In the present study, we have investigated the relative contribution of the phospholipid vesicles and mixed bile salt-phospholipid micelles to cholesterol transport in human hepatic and gallbladder biles. The vesicles (ca 800 A diameter) were demonstrated by quasi-elastic light scattering (QELS) in fresh bile and after chromatography. Gel filtration under conditions that preserved micellar integrity demonstrated that biliary cholesterol was associated with both vesicles and micelles. At low bile salt concentration, the vesicular phase was predominant and most of the cholesterol was transported by it. With increasing bile salt concentrations, a progressive solubilization of the vesicles occurred with a concomitant increase in the amount of cholesterol transported by micelles. The vesicular carrier may be of particular biological significance for cholesterol solubilization in supersaturated biles.  相似文献   

10.
The effect of bile salts and other surfactants on the rate of incorporation of cholesterol into isolated brush-border membranes was tested. At constant cholesterol concentration, a stimulatory effect of taurocholate was noticed which increased as the bile salt concentration was raised to 20 mM. Taurodeoxycholate was as effective as taurocholate at concentrations of up to 5 mM and inhibited at higher concentrations. Glycocholate was only moderately stimulatory whereas cholate was nearly as effective as taurocholate at concentrations above 5 mM. Other surfactants such as sodium lauryl sulfate and Triton X-100 were very inhibitory at all concentrations tried whereas cetyltrimethyl ammonium chloride was stimulatory only at a very low range of concentrations. These micellizing agents all caused some disruption of the membranes and the greater effectiveness of taurocholate in stimulating sterol uptake was partly relatable to the weaker membrane solubilizing action of this bile salt. Preincubation of membranes with 20 mM taurocholate followed by washing and exposure to cholesterol-containing lipid suspensions lacking bile salt, did not enhance the incorporation of the sterol. In the absence of bile salt the incorporation of cholesterol was unaffected by stirring of the incubation mixtures. Increasing the cholesterol concentration in the mixed micelle while keeping the concentration of bile salt constant caused an increase in rate of sterol incorporation. This increased rate was seen whether the cholesterol suspension was turbid, i.e., contained non-micellized cholesterol, or whether it was optically-clear and contained only monomers and micelles. When the concentration of taurocholate and cholesterol were increased simultaneously such that the concentration ratio of these two components was kept constant, there resulted a corresponding increase in rate of cholesterol uptake. The initial rates of cholesterol incorporation from suspensions containing micellar and monomer forms of cholesterol were much larger than from solutions containing only monomers of the same concentration. The rates of incorporation of cholesterol and phosphatidylethanolamine from mixed micelles containing these lipids in equimolar concentrations were very different. The results as a whole suggest at least for those experimental conditions specified in this study, that uptake of cholesterol by isolated brush-border membranes involves both the monomer and micellar phases of the bulk lipid and that the interaction of the micelles with membrane does not likely involve a fusion process.  相似文献   

11.
We have demonstrated in vitro the efficacy of the taurine-conjugated dihydroxy bile salts deoxycholate and chenodeoxycholate in solubilizing both cholesterol and phospholipid from hamster liver bile-canalicular and contiguous membranes and from human erythrocyte membrane. On the other hand, the dihydroxy bile salt ursodeoxycholate and the trihydroxy bile salt cholate solubilize much less lipid. The lipid solubilization by the four bile salts correlated well with their hydrophobicity: glycochenodeoxycolate, which is more hydrophobic than the tauro derivative, also solubilized more lipid. All the dihydroxy bile salts have a threshold concentration above which lipid solubilization increases rapidly; this correlates approximately with the critical micellar concentration. The non-micelle-forming bile salt dehydrocholate solubilized no lipid at all up to 32 mM. All the dihydroxy bile acids are much more efficient at solubilizing phospholipid than cholesterol. Cholate does not show such a pronounced discrimination. Lipid solubilization by chenodeoxycholate was essentially complete within 1 min, whereas that by cholate was linear up to 5 min. Maximal lipid solubilization with chenodeoxycholate occurred at 8-12 mM; solubilization by cholate was linear up to 32 mM. Ursodeoxycholate was the only dihydroxy bile salt which was able to solubilize phospholipid (although not cholesterol) below the critical micellar concentration. This similarity between cholate and ursodeoxycholate may reflect their ability to form a more extensive liquid-crystal system. Membrane specificity was demonstrated only inasmuch as the lower the cholesterol/phospholipid ratio in the membrane, the greater the fractional solubilization of cholesterol by bile salts, i.e. the total amount of cholesterol solubilized depended only on the bile-salt concentration. On the other hand, the total amount of phospholipid solubilized decreased with increasing cholesterol/phospholipid ratio in the membrane.  相似文献   

12.
Mixed dispersions of egg phosphatidylcholine (PC) and the bile salt sodium deoxycholate (DOC) were prepared by various methods, and their turbidities and proton magnetic resonance spectra were studied as a function of time. The spectra of dispersions prepared by dissolving both components in a common organic solvent and replacing the organic solvent by water did not change with time, indicating that the mixed aggregates formed represent "a state of equilibrium". In the 1H NMR spectra of these mixed aggregates, only signals from small mixed micellar structures were narrow enough to be observed. The dependence of the NMR line widths on the molar ratio of DOC to PC (R) is interpreted in terms of a model for the PC--DOC mixed micelles, according to which PC is arranged as a curved bilayer, the curvature of which increases with increasing R. Upon mixing PC with aqueous solutions of DOC, we found that the mixed aggregates formed are slowly reorganized and ultimately reach the same state of equilibrium. This reorganization was found to be a pseudo-first-order process, the rate constant of which depends linearly upon the detergent concentration. This process involves saturation of the outer bilayers of the multilamellar PC by detergent, followed by transformation of these bilayers into mixed micelles. It is concluded that the solubilization occurs through consecutive "peeling off" of lecithin bilayers.  相似文献   

13.
M A Long  E W Kaler    S P Lee 《Biophysical journal》1994,67(4):1733-1742
Small-angle neutron scattering (SANS) and dynamic light scattering (QLS) are used to characterize the aggregates found upon dilution of mixed lecithin-bile salt micelles. Molar ratios of lecithin (L) to taurocholate (TC) studied varied from 0.1 to 1, and one series contained cholesterol (Ch). Mixed aggregates of L and taurodeoxycholate (TDC) at ratios of 0.4 and 1 were also examined. In all cases the micelles are cylindrical or globular and elongate upon dilution. The radius of the mixed micelles varies only slightly with the overall composition of lecithin and bile salt which indicates that the composition of the cylindrical micelle body is nearly constant. The transition from micelles to vesicles is a smooth transformation involving a region where micelles and vesicles coexist. SANS measurements are more sensitive to the presence of two aggregate populations than QLS. Beyond the coexistence region the vesicle size and degree of polydispersity decrease with dilution. Incorporation of a small amount of cholesterol in the lipid mixture does not affect the sequence of observed aggregate structures.  相似文献   

14.
The effect of cholesterol on the fluidity of the phospholipid matrix in mixed micelles derived from bile salts and lecithin has been determined by the paramagnetic probe technique. It was found that correlation times for the cholestane spin label were discontinuous functions of cholesterol content and that these discontinuities correlate with the equilibrium solubility limit for cholesterol in this quaternary system. The origin of these discontinuities is attributed to the existence of another aggregate in addition to the discshaped mixed micelle in lipid solutions supersaturated with cholesterol.  相似文献   

15.
The aqueous solubility of cholesterol was determined over the temperature range from 288.2 to 318.2 K with intervals of 5 K by the enzymatic method. The solubility was (3.7+/-0.3)x10(-8) mol dm(-3) (average +/- S.D.) at 308.2 K. The maximum additive concentrations of cholesterol into the aqueous micellar solutions of sodium deoxycholate (NaDC), sodium ursodeoxycholate (NaUDC), and sodium cholate (NaC) were spectrophotometrically determined at different temperatures. The cholesterol solubility increased in the order of NaUDC相似文献   

16.
The interaction of the bile salt cholate with unilamellar vesicles was studied. At low cholate content, equilibrium binding measurements with egg yolk lecithin membranes suggest that cholate binds to the outer vesicle leaflet. At increasing concentrations, further bile salt binding to the membrane is hampered. Before the onset of membrane solubilization, diphenylhexatriene fluorescence anisotropy decreases to a shallow minimum. It then increases to the initial value in the cholate concentration range of membrane solubilization. At still higher cholate concentrations, a drop in fluorescence anisotropy indicates the transformation of mixed disk micelles into spherical micelles. Perturbation of the vesicle membranes at molar ratios of bound cholate/lecithin exceeding 0.15 leads to a transient release of oligosaccharides from intravesicular space. The cholate concentrations required to induce the release depend on the size of the entrapped sugars. Cholesterol stabilizes the membrane, whereas, in spite of enhanced membrane order, sphingomyelin destabilizes the membrane against cholate. Freeze-fracture electron microscopy and phosphorus-31 nuclear magnetic resonance (31P NMR) also reflect a change in membrane structure at maximal cholate binding to the vesicles. In 31P NMR spectra, superimposed on the anisotropic line typically found in phospholipid bilayers, an isotropic peak was found. This signal is most probably due to the formation of smaller vesicles after addition of cholate. The results were discussed with respect to bile salt/membrane interactions in the liver cell. It is concluded that vesicular bile salt transport in the cytoplasm is unlikely and that cholate binding is restricted to the outer leaflet of the canalicular part of the plasma membrane.  相似文献   

17.
N A Mazer  M C Carey 《Biochemistry》1983,22(2):426-442
We have employed quasi-elastic light-scattering methods to characterize micellar aggregates and microprecipitates formed in aqueous solutions containing sodium taurocholate (TC), egg lecithin (L), and cholesterol (Ch). Particle size and polydispersity were studied as functions of Ch mole fraction (XCh = 0-15%), L/TC molar ratio (0-1.6), temperature (5-85 degrees C), and total lipid concentration (3 and 10 g/dL in 0.15 M NaCl). For XCh values below the established solubilization limits (XChmax) [Carey, M. C., & Small, D. M. (1978) J. Clin. Invest. 61, 998], added Ch has little influence on the size of simple TC micelles (type 1 systems), on the coexistence of simple and mixed TC-L micelles (type 2 systems), or on the growth of "mixed disc" TC-L micelles (type 3 systems). For supersaturated systems (XCh/XChmax greater than 1), 10 g/dL type 1 systems (L/TC = 0) exist as metastable micellar solutions even at XCh/XChmax = 5.3. Metastability is decreased in type 2 systems (0 less than L/TC less than 0.6), and "labile" microprecipitation occurs when XCh/XChmax exceeds approximately 1.6. In 10 g/dL mixtures, the microprecipitates initially range in size from 500 to 20000 A and later coalesce to form a buoyant macroscopic precipitate phase. In 3 g/dL mixtures, the microprecipitates are smaller (200-400 A) and remain as a stable, noncoalesced microdispersion. Transmission electron microscopy of the microprecipitates formed at both concentrations indicates a globular noncrystalline structure, and lipid analysis reveals the presence of cholesterol and lecithin in a molar ratio (Ch/L) of approximately 2/1, suggesting that the microprecipitates represent a metastable cholesterol-rich liquid-crystalline phase. In supersaturated type 3 systems (0.6 less than L/TC less than 2.0), the precipitate phase is a lecithin-rich liquid-crystalline phase which likewise coalesces in a 10 g/dL system but forms stable vesicle (liposomal) structures (600-800 A radius) in 3 g/dL systems. In conjunction with these experimental data, we present a quantitative thermodynamic analysis of Ch solubilization in model bile systems from which rigorous deductions of the free energy and enthalpy change for solubilization of cholesterol monohydrate in type 1 and type 2 systems are obtained. In addition, we employ homogeneous nucleation theory to analyze the origin of the metastable/labile limit in supersaturated systems and to deduce the interfacial tension between microprecipitates and solution. On the basis of these experimental data and theoretical analyses, we offer new hypotheses on the structure and physiology of bile and the pathogenesis of Ch gallstones. In particular, it is suggested that the "stable" microprecipitates observed in 3 g/dL type 2 systems may provide a secondary vehicle (in addition to micelles) for cholesterol transport in supersaturated hepatic bile.  相似文献   

18.
Gel filtration with bile salts at intermixed micellar/vesicular concentrations (IMC) in the eluant has been proposed to isolate vesicles and micelles from supersaturated model biles, but the presence of vesicular aggregates makes this method unreliable. We have now validated a new method for isolation of various phases. First, aggregated vesicles and - if present - cholesterol crystals are pelleted by short ultracentrifugation. Cholesterol contained in crystals and vesicular aggregates can be quantitated from the difference of cholesterol contents in the pellets before and after bile salt-induced solubilization of the vesicular aggregates. Micelles are then isolated by ultrafiltration of the supernatant through a highly selective 300 kDa filter and unilamellar vesicles by dialysis against buffer containing bile salts at IMC values. Lipids contained in unilamellar vesicles are also estimated by subtraction of lipid contents in filtered micelles from lipid contents in (unilamellar vesicle+micelle containing) supernatant ('subtraction method'). 'Ultrafiltration-dialysis' and 'subtraction' methods yielded identical lipid solubilization in unilamellar vesicles and identical vesicular cholesterol/phospholipid ratios. In contrast, gel filtration yielded much more lipids in micelles and less in unilamellar vesicles, with much higher vesicular cholesterol/phospholipid ratios. When vesicles obtained by dialysis were analyzed by gel filtration, vesicular cholesterol/phospholipid ratios increased strongly, despite correct IMC values for bile salts in the eluant. Subsequent extraction of column material showed significant amounts of lipids. In conclusion, gel filtration may underestimate vesicular lipids and overestimate vesicular cholesterol/phospholipid ratios, supposedly because of lipids remaining attached to the column. Combined ultracentrifugation-ultrafiltration-dialysis should be considered state-of-the-art methodology for quantification of cholesterol carriers in model biles.  相似文献   

19.
We developed equilibrium phase diagrams corresponding to aqueous lipid compositions of upper small intestinal contents during lipid digestion and absorption in adult human beings. Ternary lipid systems were composed of a physiological mixture of bile salts (BS), mixed intestinal lipids (MIL), principally partially ionized fatty (oleic) acid (FA) plus racemic monooleylglycerol (MG), and cholesterol (Ch), all at fixed aqueous-electrolyte concentrations, pH, temperature, and pressure. The condensed phase diagram for typical physiological conditions (1 g/dL total lipids, FA:MG molar ratio of 5:1, pH 6.5, 0.15 M Na+ at 37 degrees C) was similar to that of a dilute model bile [BS/lecithin (PL)/Ch] system [Carey, M. C., & Small, D. M. (1978) J. Clin. Invest. 61, 998-1026]. We identified two one-phase zones composed of mixed micelles and lamellar liquid crystals, respectively, and two two-phase zones, one composed of Ch monohydrate crystals and Ch-saturated micelles and the other of physiologic relevance composed of Ch- and MIL-saturated mixed micelles and unilamellar vesicles. A single large three-phase zone in the system was composed of Ch-saturated micelles, Ch monohydrate crystals, and liquid crystals. Micellar phase boundaries for otherwise typical physiological conditions were expanded by increases in total lipid concentration (0.25-5 g/dL), pH (5.5-7.5), and FA:MG molar ratio (5-20:1), resulting in a reduction of the size of the physiological two-phase zone. Mean particle hydrodynamic radii (Rh), measured by quasielastic light scattering (QLS), demonstrated an abrupt increase from micellar (less than 40 A) to micelle plus vesicle sizes (400-700 A) as this two-phase zone was entered. With relative lipid compositions within this zone, unilamellar vesicles formed spontaneously following coprecipitation, and their sizes changed markedly as functions of time, reaching equilibrium values only after 4 days. Further, vesicle Rh values were influenced appreciably by MIL:mixed bile salt (MBS) ratio, pH, total lipid concentration, and FA:MG ratio, but not by Ch content. In comparison, micellar systems equilibrated rapidly, and their Rh values only slightly influenced by physical-chemical variables of physiological importance. In contrast to the BS-PL-Ch system [Mazer, N. A., & Carey, M. C. (1983) Biochemistry 22, 426-442], no divergence in micellar sizes occurred as the micellar phase boundary was approached. The ionization state of FA at simulated "intestinal" pH values (5.5-7.5) in the micellar and physiologic two-phase zones was principally that of 1:1 sodium hydrogen dioleate, an insoluble swelling "acid soap" compound. By phase separation and analysis, tie-lines for the constituent phase in the two-phase zone demonstrated that the mixed micelles were saturated with MIL and Ch and the coexisting vesicles were saturated with MBS, but not with Ch.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
We used a model intestinal solution to understand the mechanisms of cholesterol lowering by the addition of plant sterols. The experimental results of the competitive solubilization of cholesterol and β-sitosterol in vitro give useful information about these mechanisms. The states of the model intestinal solution as a solubilizer were analyzed by transmission electron microscopy (TEM) and dynamic light scattering (DLS) by changing the number of components, and the bile salt and phosphatidylcholine concentrations. There were aggregates of different sizes: liposomes and mixed micelles depending on their components and concentrations. The maximum solubilization of cholesterol increased from 0.2mM to 1.3mM when adding fatty compounds in the pure bile salts system, which is almost the same as the full components model intestinal solution. Therefore, an excessive intake of fatty compounds may also increase cholesterol absorption in vivo. Even if the components of the model intestinal solution were modified from the standard condition, there were not remarkable differences in the selectivity of cholesterol and β-sitosterol in competitive solubilization. With the addition of β-sitosterol, the maximum solubilization of cholesterol decreases to almost half of that in the system with only cholesterol, except for PC-rich systems. In general, the different structures of aggregates considerably influence the maximum solubilization of sterols but not the selectivity of cholesterol and β-sitosterol in the competitive solubilization. The Gibbs energy change (ΔG°) of the solubilization of β-sitosterol showed a more negative value than cholesterol by -4 to -6kJmol(-1), which indicates that β-sitosterol is energetically favored relative to cholesterol in the model intestinal solution, regardless of the different systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号