首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 644 毫秒
1.
A multi-needle-assisted transformation of soybean cotyledonary node cells   总被引:3,自引:0,他引:3  
Xue RG  Xie HF  Zhang B 《Biotechnology letters》2006,28(19):1551-1557
A new and simple method for wounding cotyledonary node cells of soybean [Glycine max (L) Merrill] was developed for obtaining a high frequency of transformants. Soybean seeds were germinated for 1 day, and the cotyledonary node cells of half-seeds were wounded mechanically by using a multi-needle consisting of thin 30 fibers. The wounded half-seeds were inoculated with Agrobacterium tumefaciens cells harboring a recombinant DNA that contained the bar and sgfp genes conferring phosphinothricin (PPT)-resistance and green fluorescent protein (GFP) activity, respectively. The inoculated explants were selected on medium containing 5 or 3 mg PPT/l. The transformation efficiency of soybean was up to 12%. Polymerase chain reaction and genomic Southern blot analysis confirmed stable integration of the transgenes in the genome of the PPT-resistant plants. GFP analysis revealed that the transgenes were highly expressed in the plantlets. Adult plants were resistant to 100 mg PPT/l applied on the leaves, demonstrating their herbicide-resistance.An erratum to this article can be found at  相似文献   

2.
Summary A binary vector, pPTN133, was assembled that harbored two separate T-DNAs. T-DNA one contained a bar cassette, while T-DNA two carried a GUS cassette. The plasmid was mobilized into the Agrobacterium tumefaciens strain EHA101. Mature soybean cotyledonary node explants were inoculated and regenerated on medium amended with glufosinate. Transgenic soybeans were grown to maturity in the greenhouse. Fifteen primary transformants (T0) representing 10 independent events were characterized. Seven of the 10 independent T0 events co-expressed GUS. Progeny analysis was conducted by sowing the T1 seeds and monitoring the expression of the GUS gene after 21 d. Individual T1 plants were subsequently scored for herbicide tolerance by leaf painting a unifoliate leaf with a 100 mgl−1 solution of glufosinate and scoring the leaf 5 d post application. Herbicide-sensitive and GUS-positive individuals were observed in four of the 10 independent events. Southern blot analysis confirmed the absence of the bar gene in the GUS positive/herbicide-sensitive individuals. These results demonstrate that simultaneous integration of two T-DNAs followed by their independent segregation in progeny is a viable means to obtain soybeans that lack a selectable marker.  相似文献   

3.
Transgenic pearl millet lines expressing pin gene—exhibiting high resistance to downy mildew pathogen, Sclerospora graminicola—were produced using particle-inflow-gun (PIG) method. Shoot-tip-derived embryogenic calli were co-bombarded with plasmids containing pin and bar genes driven by CaMV 35S promoter. Bombarded calli were cultured on MS medium with phosphinothricin as a selection agent. Primary transformants 1T0, 2T0, and 3T0 showed the presence of both bar and pin coding sequences as evidenced by PCR and Southern blot analysis, respectively. T1 progenies of three primary transformants, when evaluated for downy mildew resistance, segregated into resistant and susceptible phenotypes. T1 plants resistant to downy mildew invariably exhibited tolerance to Basta suggesting co-segregation of pin and bar genes. Further, the downy mildew resistant 1T1 plants were found positive for pin gene in Southern and Northern analyses thereby confirming stable integration, expression, and transmission of pin gene. 1T2 progenies of 1T0 conformed to dihybrid segregation of 15 resistant:1 susceptible plants.  相似文献   

4.
Chickpea is the world’s third most important pulse crop and India produces 75% of the world’s supply. Chickpea seeds are attacked byCallosobruchus maculatus andC. chinensis which cause extensive damage. The α-amylase inhibitor gene isolated fromPhaseolus vulgaris seeds was introduced into chickpea cultivar K850 throughAgrobacterium- mediated transformation. A total of 288 kanamycin resistant plants were regenerated. Only 0.3% of these were true transformants. Polymerase chain reaction (PCR) analysis and Southern hybridization confirmed the presence of 4.9 kb α-amylase inhibitor gene in the transformed plants. Western blot confirmed the presence of α-amylase inhibitor protein. The results of bioassay study revealed a significant reduction in the survival rate of bruchid weevilC. maculatus reared on transgenic chickpea seeds. All the transgenic plants exhibited a segregation ratio of 3:1.  相似文献   

5.
Summary The generation of transgenic Cucumis sativus cv. Greenlong plants resistant to phosphinothricin (PPT) was obtained using Agrobacterium tumefaciens-mediated gene transfer. The protocol relied on the regeneration of shoots from cotyledon explants. Transformed shoots were obtained on Murashige and Skoog medium supplemented with 4.4 μM 6-benzylaminopurine 3.8 μM abscisic acid, 108.5 μM adenine sulfate, and 2 mg l−1 phosphinothricin. Cotyledons were inoculated with the strain EHA105 harboring the neomycin phosphotransferase II (npt II), and phosphinothricin resistance (bar) genes conferring resistance to kanamycin and PPT. Transformants were selected by using increasing concentrations of PPT (2–6 mg l−1). Elongation and rooting of putative transformants were performed on PPT-containing (2 mg l−1) medium with 1.4 μM gibberellic acid and 4.9 μM indolebutyric acid, respectively. Putative transformants were confirmed for transgene insertion through PCR and Southern analysis. Expression of the bar gene in transformed plants was demonstrated using a leaf painting test with the herbicide Basta. Pre-culture of explants followed by pricking, addition of 50 μM acetosyringone during infection, and selection using PPT rather than kanamycin were found to enhance transformation frequency as evidenced by transient β-glucuronidase assay. Out of 431 co-cultivated explants, 7.2% produced shoots that rooted and grew on PPT, and five different plants (1.1%) were demonstrated to be transgenic following Southern hybridization.  相似文献   

6.
Cowpea is one of the important grain legumes. Storage pests, Callosobruchus maculatus and C. chinensis cause severe damage to the cowpea seeds during storage. We employ a highly efficient Agrobacterium-mediated cowpea transformation method for introduction of the bean (Phaseolus vulgaris) α-amylase inhibitor-1 (αAI-1) gene into a commercially important Indian cowpea cultivar, Pusa Komal and generated fertile transgenic plants. The use of constitutive expression of additional vir genes in resident pSB1 vector in Agrobacterium strain LBA4404, thiol compounds during cocultivation and a geneticin based selection system resulted in twofold increase in stable transformation frequency. Expression of αAI-1 gene under bean phytohemagglutinin promoter results in accumulation of αAI-1 in transgenic seeds. The transgenic protein was active as an inhibitor of porcine α-amylase in vitro. Transgenic cowpeas expressing αAI-1 strongly inhibited the development of C. maculatus and C. chinensis in insect bioassays.  相似文献   

7.
Agrobacterium tumefaciens-mediated transformation system for perilla (Perilla frutescens Britt) was developed. Agrobacterium strain EHA105 harboring binary vector pBK I containing bar and γ-tmt cassettes or pIG121Hm containing nptII, hpt, and gusA cassettes were used for transformation. Three different types of explant, hypocotyl, cotyledon and leaf, were evaluated for transformation and hypocotyl explants resulted in the highest transformation efficiency with an average of 3.1 and 2.2%, with pBK I and pIG121Hm, respectively. The Perilla spp. displayed genotype-response for transformation. The effective concentrations of selective agents were 2 mg l−1 phosphinothricin (PPT) and 150 mg l−1 kanamycin, respectively, for shoot induction and 1 mg l−1 PPT and 125 mg l−1 kanamycin, respectively, for shoot elongation. The transformation events were confirmed by herbicide Basta spray or histochemical GUS staining of T0 and T1 plants. The T-DNA integration and transgene inheritance were confirmed by PCR and Southern blot analysis of random samples of T0 and T1 transgenic plants.  相似文献   

8.
Herbicide (Basta®)-tolerant Vigna mungo L. Hepper plants were produced using cotyledonary-node and shoot-tip explants from seedlings germinated in vitro from immature seeds. In vitro selection was performed with phosphinothricin as the selection agent. Explants were inoculated with Agrobacterium tumefaciens strain LBA4404 (harboring the binary vector pME 524 carrying the nptII, bar, and uidA genes) in the presence of acetosyringone. Shoot regeneration occurred for 6 wk on regeneration medium (MS medium with 4.44 μM benzyl adenine, 0.91 μM thidiazuron, and 81.43 μM adenine sulfate) with 2.4 mg/l PPT, explants being transferred to fresh medium every 14 d. After a period on elongation medium (MS medium with 2.89 μM gibberellic acid and 2.4 mg/l PPT), β-glucuronidase-expressing putative transformants were rooted in MS medium with 7.36 μM indolyl butyric acid and 2.4 mg/l PPT. β-Glucuronidase expression was observed in the primary transformants (T0) and in the seedlings of the T1 generation. Screening 128 GUS-expressing, cotyledonary-node-derived, acclimatized plants by spraying the herbicide Basta® at 0.1 mg/l eliminated nonherbicide-resistant plants. Southern hybridization analysis confirmed the transgenic nature of the herbicide-resistant plants. All the transformed plants were fertile, and the transgene was inherited by Mendelian genetics. Immature cotyledonary-node explants produced a higher frequency of transformed plants (7.6%) than shoot-tip explants (2.6%).  相似文献   

9.
Three methods of transformation of pea (Pisum sativum ssp. sativum L. var. medullare) were tested. The most efficient Agrobacterium tumefaciens-mediated T-DNA transfer was obtained using embryonic segments from mature pea seeds as initial explants. The transformation procedure was based on the transfer of the T-DNA region with the reporter gene uidA and selection gene bar. The expression of β-glucuronidase (GUS) in the regenerated shoots was tested using the histochemical method and the shoots were selected on a medium containing phosphinothricin (PPT). The shoots of putative transformants were rooted and transferred to non-sterile conditions. Transient expression of the uidA gene in the tissues after co-cultivation and in the course of short-term shoot cultivation (confirmed by histochemical analysis of GUS and by RT-PCR of mRNA) was achieved; however, we have not yet succeeded in proving stable incorporation of the transgene in the analysed plants.  相似文献   

10.
11.
We have used the bar gene in combination with the herbicide Basta to select transformed rice (Oryza sativa L. cv. Radon) protoplasts for the production of herbicide-resistant rice plants. Protoplasts, obtained from regenerable suspension cultures established from immature embryo callus, were transformed using PEG-mediated DNA uptake. Transformed calli could be selected 2–4 weeks after placing the protoplast-derived calli on medium containing the selective agent, phosphinothricin (PPT), the active component of Basta. Calli resistant to PPT were capable of regenerating plants. Phosphinothricin acetyltransferase (PAT) assays confirmed the expression of the bar gene in plants obtained from PPT-resistant calli. The only exceptions were two plants obtained from the same callus that had multiple copies of the bar gene integrated into their genomes. The transgenic status of the plants was varified by Southern blot analysis. In our system, where the transformation was done via the protoplast method, there were very few escapes. The efficiency of co-transformation with a reporter gene gusA, was 30%. The To plants of Radon were self-fertile. Both the bar and gusA genes were transmitted to progeny as confirmed by Southern analysis. Both genes were expressed in T1 and T2 progenies. Enzyme analyses on T1 progeny plants also showed a gene dose response reflecting their homozygous and heterozygous status. The leaves of To plants and that of the progeny having the bar gene were resistant to application of Basta. Thus, the bar gene has proven to be a useful selectable and screenable marker for the transformation of rice plants and for the production of herbicide-resistant plants.  相似文献   

12.
Efficient Agrobacterium tumefaciens-mediated transformation and a higher recovery of transformed plants of cucumber cv. Poinsett76 were achieved via direct organogenesis from cotyledon explants. Stable transformants were obtained by inoculating explants with A. tumefaciens strains EHA105 or LBA4404, both harboring the binary vector pME508, which contains the neomycin phosphotransferase II (nptII) and phosphinothricin resistance genes (bar) conferring resistance to kanamycin and PPT, respectively, as selectable markers and the sgfp-tyg gene for the green fluorescent protein (GFP) as a visual marker driven by the constitutive CaMV35S promoter in the presence of acetosyringone (50 μM). Transformed shoots were obtained on MS Murashige and Skoog (Plant Physiol. 15: 473–497, 1962) medium supplemented with 1 mg L−1 benzyladenine (BA), 20 mg L−1 l-glutamine and 2 mg L−1 phosphinothricin (PPT) or 100 mg L−1 kanamycin. The regenerated shoots were examined in vivo using a hand-held long wave UV lamp for GFP expression. The GFP screening helped identify escapes and chimeric shoots at regular intervals to increase the growth of transformed shoots on cotyledon explants. Elongation and rooting of putative transformants were achieved on PPT (2 mg L−1) containing MS media with 0.5 mg L−1 gibberellic acid (GA3) and 0.6 mg L−1 indole butyric acid (IBA), respectively. PCR and Southern analyses confirmed the integration of the sgfp gene into the genome of T0 and the progenies. T1 segregation of transgenic progeny exhibited Mendelian inheritance of the transgene. The use of EHA105 resulted in 21% transformation efficiency compared to 8.5% when LBA4404 was used. This higher rate was greatly facilitated by PPT selection coupled with effective screening of transformants for GFP expression, thus making the protocol highly useful for the recovery of a higher number of transgenic cucumber plants.  相似文献   

13.
An optimized complete protocol was developed forAgrobacterium tumefaciens-mediated transformation of tobacco (Nicotiana tabacum L. cultivar SR1), producing T1 flowering plants homozygous for the inserted T-DNA as verified by kanamycin resistance in T2 seedlings in 6 to 7 months from the time of cocultivation withAgrobacterium. Previous protocols require up to 9 to 12 months to obtain similar results. Procedures unique and important to this protocol include; a modified “whole-leaf” transformation coupled with a long duration of cocultivation, resulting in high rates of transformation, high levels of kanamycin in selection media resulting in few escapes, and extensive rooting of regenerants prior to a greenhouse hardening procedure. Once in the greenhouse, primary regenerants were maintained in small containers with long day photoperiod and high light levels, greatly shortening the time to seed set. Flowers from primary transformants were bagged to allow self pollination, and seed capsules harvested and dried prior to normal maturation on the plant. T1 and T2 seeds were plated and selected on kanamycin media by an improved seed plating technique which eliminates the need for the placement of individual seeds, saving time and improving selection homogeneity. Using this protocol, over 130 independent tobacco lines from six separate gene constructs have been generated in a very short time period. Of these 130, nearly 60 percent segregated 3∶1 for kanamycin resistance: susceptibility, indicating single transgene insertion events.  相似文献   

14.
The expression of the mouse α-amylase gene in the methylotrophic yeast,P. pastoris was investigated. The mouse α-amylase gene was inserted into the multi-cloning site of a Pichia expression vector, pPIC9, yielding a new expression vector pME624. The plasmid pME624 was digested withSalI orBglII, and was introduced intoP. pastoris strain GS115 by the PEG1000 method. Fifty-three transformants were obtained by the transplacement of pME624 digested withSalI orBglII into theHIS 4 locus (38 of Mut+ clone) or into theAOX1 locus (45 of Muts clone). Southern blot was carried out in 11 transformants, which showed that the mouse α-amylase gene was integrated into thePichia chromosome. When the second screening was performed in shaker culture, transformant G2 showed the highest α-amylase activity, 290 units/ml after 3-day culture, among 53 transformants. When this expression level of the mouse α-amylase gene is compared with that in recombinantSaccharomyces cerevisiae harboring a plasmid encoding the same mouse α-amylase gene, the specific enzyme activity is eight fold higher than that of the recombinantS. cerevisiae.  相似文献   

15.
Summary We have established an efficient Agrobacterium-mediated transformation procedure for Arabidopsis thaliana genotype C24 using the chimeric bialaphos resistance gene (bar) coding for phosphinothricin acetyltransferase (PAT). Hypocotyl explants from young seedlings cocultivated with agrobacteria carrying a bar gene were selected on shoot-inducing media containing different concentrations of phosphinothricin (PPT) which is an active component of bialaphos. We found that 20 mg/l of PPT completely inhibited the control explants from growing whereas the explants transformed with the bar gene gave rise to multiple shoots resistant to PPT after 3 weeks under the same selection conditions. The transformation system could also be applied to root explants. Resulting plantlets could produce viable seeds in vitro within 3 months after preparation of the explants. The stable inheritance of the resistance trait, the integration and expression of the bar gene in the progeny were confirmed by genetic tests, Southern analysis and PAT enzyme assay, respectively. In addition, the mature plants in soil showed tolerance to the herbicide Basta.Abbreviations bar bialaphos resistance gene - CIM callus-inducing medium - DTNB 5,5-dithiobis(2-nitrobenzoic acid) - GM germination medium - HPT hygromycin phosphotransferase - MS Murashige and Skoog salts - NPTII neomycin phosphotransferase II - PAT phosphinothricin acetyltransferase - PPT phosphinothricin - SIM shoot-inducing medium  相似文献   

16.
Transgenic herbicide-resistant sweet potato plants [Ipomoea batatas (L.) Lam.] were produced through Agrobacterium-mediated transformation system. Embryogenic calli derived from shoot apical meristems were infected with Agrobacterium tumefaciens strain EHA105 harboring the pCAMBIA3301 vector containing the bar gene encoding phosphinothricin N-acetyltransferase (PAT) and the gusA gene encoding β-glucuronidase (GUS). The PPT-resistant calli and plants were selected with 5 and 2.5 mg l−1 PPT, respectively. Soil-grown plants were obtained 28–36 weeks after Agrobacterium-mediated transformation. Genetic transformation of the regenerated plants growing under selection was demonstrated by PCR, and Southern blot analysis revealed that one to three copies of the transgene were integrated into the plant genome of each transgenic plant. Expression of the bar gene in transgenic plants was confirmed by RT-PCR and application of herbicide. Transgenic plants sprayed with Basta containing 900 mg l−1 of glufosinate ammonium remained green and healthy. The transformation frequency was 2.8% determined by herbicide application which was high when compared to our previous biolistic method. In addition, possible problems with multiple copies of transgene were also discussed. We therefore report here a successful and reliable Agrobacterium-mediated transformation of the bar gene conferring herbicide-resistance and this method may be useful for routine transformation and has the potential to develop new varieties of sweet potato with several important genes for value-added traits such as enhanced tolerance to the herbicide Basta.  相似文献   

17.
18.
Introduction of Resistance to Herbicide Basta® in Savoy Cabbage   总被引:1,自引:0,他引:1  
Resistance to herbicide Basta® was introduced into pure inbred lines of Savoy cabbage (Brassica oleracea L. var. sabauda) by cocultivation of cotyledon and hypocotyl explants with Agrobacterium tumefaciens strains AGL1/pDM805 and LBA4404/pGKB5 (LB5-1). Shoot regeneration occurred on Murashige and Skoog medium supplemented with 1 mg dm–3 6-benzyladenine and 0.5 mg dm–3 indole-3-butyric acid at 42.3 % and 71.4 % of hypocotyl explants treated with AGL1/pDM805 and LB5-1, respectively. Putative transformants that survived selection on 10 mg dm–3 phosphinothricin (L-PPT) supplemented medium were confirmed by GUS assay and PCR analysis. The transformation rate was 58 % with AGL1/ pDM805 and 25 % with LB5-1. Rooted plantlets were acclimated and then again screened for Basta®-resistance by spraying with 15 – 60 mg dm–3 L-PPT. Surviving plants were selfed and Basta®-resistance was demonstrated in T1 progeny.  相似文献   

19.
An efficient transformation system was developed for maize (Zea mays L.) elite inbred lines using Agrobacterium-mediated gene transfer by identifying important factors that affected transformation efficiency. The hypervirulent Agrobacterium tumefaciens strain EHA105 proved to be better than octopine LBA4404 and nopaline GV3101. Improved transformation efficiencies were obtained when immature embryos were inocubated with Agrobacterium suspension cells (A600 = 0.8) for 20 min in the presence of 0.1% (v/v) of a surfactant (Tween20) in the infection medium. Optimized cocultivation was performed in the acidic medium (pH5.4) at 22 °C in the dark for 3 days. Using the optimized system, we obtained 42 morphologically normal, independent transgenic plants in four maize elite inbred lines representing different genetic backgrounds. Most of them (about 85%) are fertile. The transformation frequency (the number of independent, PCR-positive transgenic plants per 100 embryos infected) ranged from 2.35 to 5.26%. Stable integration, expression, and inheritance of the transgenes were confirmed by molecular and genetic analysis. One to three copies of the transgene were integrated into the maize nuclear genome. About 70% of the transgenic plants received a single insertion of the transgenes based on Southern analysis of 10 transformed events. T1 plants were analyzed and transmission of transgenes to the T1 generation in a Mendelian fashion was verified. This system should facilitate the introduction of agronomically important genes into commercial genotypes.  相似文献   

20.
Agave salmiana was transformed using two different protocols: co-cultivation with Agrobacterium tumefaciens and particle bombardment. The uidA (β-glucuronidase) gene was used as a reporter gene for both methods whereas the nptII and bar genes were used as selectable markers for A. tumefaciens and biolistic transformation respectively. Previous reports for in vitro regeneration of A. salmiana have not been published; therefore the conditions for both shoot regeneration and rooting were optimized using leaves and embryogenic calli of Agave salmiana. The transgenes were detected by Polymerase Chain Reaction (PCR) in 11 month old plants. The transgenic nature of the plants was also confirmed using GUS histochemical assays. Transformation via co-cultivation of explants with Agrobacterium harbouring the pBI121 binary vector was the most effective method of transformation, producing 32 transgenic plants and giving a transformation efficiency of 2.7%. On the other hand, the biolistic method produced transgenic calli that tested positive with the GUS assay after 14 months on selective medium while still undergoing regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号