首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
R Kornfeld 《Biochemistry》1978,17(8):1415-1423
The carbohydrate composition and oligosaccharide structure of three glycopeptides isolated from delipidated calf thymocyte plasma membranes following Pronase digestion have been determined. Five major glycopeptide fractions were separated using Bio-Gel P-6 gel filtration and diethylaminoethylcellulose chromatography. The structure of the oligosaccharide chains of three of these glycopeptides was determined by a combination of sequential degradation with glycosidases and methylation analysis. These oligosaccharide structures consist of complex, highly branched N-linked chains containing at their nonreducing termini the unusual sequence Gal(beta1 leads to 3)Gal(beta1 leads to 4)GlcNAc leads to as well as the more usual sequence SA(alpha2 leads to 3)Gal(beta1 leads to 4)GlcNAc leads to. In addition, one glycopeptide also contains short O-linked chains with the structure Gal(beta leads to 3)GalNAc leads to Ser(Thr) which have receptor activity for the lectin from the mushroom Agaricus bisporus.  相似文献   

2.
We have examined the carbohydrate binding specificity of the B4 lectin from Vicia villosa seeds. The B4 lectin agglutinates Tn-exposed erythrocytes specifically and binds to these erythrocytes (1.4 X 10(6) sites/cell) with an association constant of 4.2 X 10(7) M-1. The concentrations of saccharides and glycopeptides of defined structure which cause 50% inhibition of B4 lectin binding to Tn-exposed erythrocytes were determined. N-Acetylgalactosamine is the best monosaccharide inhibitor, causing 50% inhibition of binding at a concentration of 0.04 mM. Other monosaccharides inhibit lectin binding in the following order of decreasing potency: N-acetylgalactosamine greater than methyl-alpha-galactopyranoside greater than p-nitrophenyl-alpha- or beta-galactopyranoside greater than methyl-beta-galactopyranoside, galactose greater than galactosamine greater than mannose, N-acetylglucosamine. The disaccharide Gal beta 1,3GalNAc causes 50% inhibition of binding at a concentration of 2.8 mM, a concentration similar to that of the p-nitrophenyl-alpha- or beta-galactopyranosides. Glycopeptides containing O-glycosidically linked oligosaccharide units are significantly more potent inhibitors of lectin binding than the oligosaccharide units alone. The most potent glycopeptide inhibitor is a fetuin glycopeptide containing two alpha-linked N-acetylgalactosamine units. This glycopeptide causes 50% inhibition of lectin binding at a concentration of 0.00034 mM and probably closely resembles the B4 lectin binding site on Tn-exposed erythrocytes.  相似文献   

3.
An alpha-galactosidase (alpha-D-galactoside galactohydrolase [EC 3.2.1.22]) was purified to homogeneity from the culture filtrate of Aspergillus niger. The enzyme had an apparent molecular weight of 45,000 and was a glycoprotein. Radioactive enzyme was prepared by growing cells in [14C]fructose and this enzyme was used to prepare 14C-labeled glycopeptides. The glycopeptides emerged from Sephadex G-50 between stachyose and the glycopeptide from ovalbumin. Based on calibration of the column with various-sized dextran oligosaccharides, the glycopeptides appeared to have a molecular weight of 1,200 to 1,400. Analysis of the glycopeptide(s) indicated that it contained mannose and N-acetylglucosamine (GlcNAc) in an approximate ratio of 3 or 4 to 1. Assuming that there are two GlcNAc residues in the oligosaccharide and based on the molecular weight of the glycopeptide, the oligosaccharide probably contains eight to nine sugar residues. Alks probably attached to the protein by a GlcNAc leads to asparagine linkage. The purified alpha-galactosidase was most active on raffinose (Km = 5 x 10--4 M, Vmax = 3 mumol/min per mg of protein), but also showed good activity on p-nitrophenyl-alpha-D-galactoside ans somewhat less activity on stachyose and melibitol. The enzyme also hydrolyzed guar flour and locust bean gum, but did not attack the p-nitrophenyl glycosides of beta-galactose, alpha- or beta-glucose, or alpha- or beta-mannose.  相似文献   

4.
The asparagine-linked sugar chains of bovine brain ribonuclease were quantitatively released as oligosaccharides from the polypeptide backbone by hydrazinolysis. After N-acetylation, they were converted into radioactively-labeled oligosaccharides by NaB3H4 reduction. The radioactive oligosaccharide mixture was fractionated by ion-exchange chromatography, and the acidic oligosaccharides were converted into neutral oligosaccharides by sialidase digestion. The neutral oligosaccharides were then fractionated by Bio-Gel P-4 column chromatography. Structural studies of each oligosaccharide by sequential exoglycosidase digestion in combination with methylation analysis revealed that bovine brain ribonuclease showed extensive heterogeneity. It contains bi- and tri-antennary, complex-type oligosaccharides having alpha-D-Manp-(1----3)-[alpha-D-Manp-(1----6)]-beta-D-Manp -(1----4)-beta-D- GlcpNAc-(1----4)-[alpha-L-Fucp-(1----6)]-D-GlcNAc as their common core. Four different outside oligosaccharide chains, i.e., beta-D-Galp-(1----4)-beta-D-GlcpNAc-(1----, alpha-Neu5Ac-(2----6)-beta-D- Galp-(1----4)-beta-D-GlcpNAc-(1----, alpha-Neu5Ac-(2----3)-beta-D-Galp-(1----4)- beta-D-GlcpNAc-(1----, and alpha-D-Galp-(1----3)-beta-D-Galp-(1----4)-beta-D-GlcpNAc-(1----, were found. The preferential distribution of the alpha-D-Galp-(1----3)-beta-D-Galp-(1----4)-beta-D-GlcpNAc group on the alpha-D-Manp-(1----6) arm is a characteristic feature of the sugar chains of this enzyme.  相似文献   

5.
Mannose-rich glycopeptides derived from brain glycoproteins were recovered by affinity chromatography on Concanavalin A-Sepharose. These glycopeptides, which adsorb to the lectin and are eluted with α-methylmannoside, constitute about 25–30% of the total glycopeptide material recovered from rat brain glycoproteins. They contain predominately mannose and N-acetylglucosamine (mannose/N-acetylglucosamine = 3), as well as small amounts of galactose and fucose. Approx. 65% of the Concanavalin A-binding glycopeptide carbohydrate was recovered after treatment with leucine aminopeptidase, gel filtration on Biogel P-4, and ion-exchange chromatography on coupled Dowex 50-hydrogen and Dowex 1-chrolide columns. The purified glycopeptide fraction contained six mannose and two N-acetylglucosamine residues per aspartic acid and possessed an apparent molecular weight of about 2000 as assessed by gel filtration and amino acid analysis. Galactose and fucose were absent. Treatment of the purified glycopeptides with α-mannosidase drastically reduced their affinity for Concanavalin A, suggesting the presence of one or more terminal mannose residues.  相似文献   

6.
On human erythrocytes, the membrane components associated with Pk and P1 blood-group specificity are glycosphingolipids that carry a common terminal alpha-D-Galp-(1----4)-beta-D-Gal unit, the biosynthesis of which is poorly understood. Human kidneys typed for P1 and P2 (non-P1) blood-group specificity have been assayed for (1----4)-alpha-D-galactosyltransferase activity by use of lactosylceramide [beta-D-Galp-(1----4)-beta-D-Glcp-ceramide] and paragloboside [beta-D-Galp-(1----4)-beta-D-GlcpNAc-(1----3)-beta-D-Galp- (1----4)-beta-D-Glcp-ceramide] as acceptor substrates. The linkage and anomeric configuration of the galactosyl group transferred into the reaction products were established by methylation analysis before and after alpha- and beta-D-galactosidase treatments, as well as by immunostaining using specific monoclonal antibodies directed against the Pk and P1 antigens. The results demonstrated that the microsomal proteins from P1 kidneys catalyze the synthesis of Pk [alpha-D-Galp-(1----4)-beta-D-Galp-(1----4)-beta-D-Glcp-ceramide] and P1 [alpha-D-Galp-(1----4)-beta-D-Galp-(1----4)-beta-D-GlcpNAc-(1----3)-beta -D-Galp-(1----4)-beta-D-Glcp-ceramide] glycolipids, whereas microsomes from P2 kidney catalyze the synthesis of the Pk glycolipid, but not of the P1 glycolipid. Competition studies using a mixture of two oligosaccharides (methyl beta-lactoside and methyl beta-lacto-N- neotetraoside) or of two glycolipids (lactosylceramide and paragloboside) as acceptors indicated that these substrates do not compete for the same enzyme in the microsomal preparation from P1 kidneys. The results suggested that the Pk and P1 glycolipids are synthesized by two distinct enzymes.  相似文献   

7.
Mannose-rich glycopeptides derived from brain glycoproteins were recovered by affinity chromatography on Concanavalin A-Sepharose. These glycopeptides, which adsorb to the lectin and are eluted with alpha-methylmannoside, constitute about 25--30% of the total glycopeptide material recovered from rat brain glycoproteins. They contain predominately mannose and N-acetylglucosamine (mannose/N-acetylglucosamine = 3), as well as small amounts of galactose and fucose. Approx. 65% of the Concanavalin A-binding glycopeptide carbohydrate was recovered after treatment with leucine aminopeptidase, gel filtration on Biogel P-4, and ion-exchange chromatography on coupled Dowex 50-hydrogen and Dowex 1-chloride columns. The purified glycopeptide fraction contained six mannose and two N-acetylglucosamine residues per aspartic acid and possessed an apparent molecular weight of about 2000 as assessed by gel filtration and amino acid analysis. Galactose and fucose were absent. Treatment of the purified glycopeptides with alpha-mannosidase drastically reduced their affinity for Concanavalin A, suggesting the presence of one or more terminal mannose residues.  相似文献   

8.
Abnormally high amounts of low molecular weight mannose-rich carbohydrate material were found in the urine of an Angus calf with mannosidosis. At least five oligosaccharide fractions were detected by paper chromatography. The most abundant compound was purified by gel chromatography, zone electrophoresis, and two consecutive preparative paper chromatographic steps. The yield was 10 mg/liter of urine. From structural studies including nuclear magnetic resonance spectroscopy, optical rotation, sugar analysis, methylation analysis, and partial enzymatic degradation the following structure was deduced: alpha-D-Manp-(1 leads to 6)-beta-D-Manp-(1 leads to 4)-beta-D-GlcNAcp-(1 leads to 4)-beta-D-GlcNAcp-(1 leads to 4)-D-GlcNAc. This oligosaccharide is distinct from all the oligosaccharides previously described which are excreted by patients with mannosidosis.  相似文献   

9.
Total glycopeptides from human K-562 cells, labeled metabolically with [3H]glucosamine or [3H]mannose, were prepared by extracting the cells with organic solvents to remove lipids and by digesting the residue with pronase. 3H-labeled glycopeptides were fractionated on Sephadex G-50 revealing a high molecular weight fraction (Mr = 7,000 to 11,000), comprising approximately 10% of the [3H]glucosamine and 25% of the [3H]mannose label. Digestion of this glycopeptide fraction with endo-beta-galactosidase from Escherichia freundii, specific for a repeating structure of Gal(beta 1 leads to 4)GlcNAc(beta 1 leads to 3), results in the following four products as resolved by Bio-Gel P-2 gel filtration: 1) a disaccharide with the structure beta-2-deoxy-2-acetamidoglucosyl leads to beta-galactose; 2) a trisaccharide with the structure beta-galactosyl leads to beta-2-deoxy-2-acetamidoglucosyl leads to beta-galactose; 3) a tetrasaccharide with the sequence alpha-N-acetylneuraminyl leads to beta-galactosyl leads to beta-2-deoxy-2-acetamidoglucosyl leads to beta-galactose; and 4) a larger, complex fragment which contains mannose and beta-2-deoxy-2-acetamidoglucose and which is probably the protein linkage region. In addition, visualization of radiolabeled glycoproteins by fluorography on polyacrylamide gels revealed a 105,000-dalton "Band 3"-like glycoprotein and other bands that were sensitive to endo-beta-galactosidase. These results indicate that the K-562 cell line bears a glycopeptide, erythroglycan, which has been found on erythrocytes, and that this polymer is expressed mainly in the fetal form as a linear chain.  相似文献   

10.
Lactosaminoglycan glycopeptides were isolated from human PA1 embryonal carcinoma cells and their structures were elucidated. The glycopeptides were digested by Escherichia freundii endo-beta-galactosidase before and after the modifications by exoglycosidases. The core glycopeptides and oligosaccharides thus obtained and the intact glycopeptides were analyzed by methylation, fast atom bombardment-mass spectrometry, and high-performance liquid chromatography. Based on these experiments, the structures of PA1 lactosaminoglycans were found to have the following unique features. 1) Three lactosaminoglycan fractions of different molecular weights were isolated by Sephadex G-50 gel filtration. Lactosaminoglycans of the highest molecular weight (GpI) have tetra-antennary cores, those of intermediate molecular weight (GpII) have triantennary cores and those of low molecular weight (GpIII) have triantennary and tetra-antennary cores. 2) GpI is composed of 22-26 lactosaminyl units and 7-9 branched galactose residues, GpII is composed of 16-22 lactosaminyl units and 5-7 branched galactose residues, and GpIII is composed of 12-16 lactosaminyl units and 3-4 branched galactose residues. 3) Each branch is short and is composed of the Gal beta 1----4GlcNAc beta 1----6 structure. 4) Sialic acid is preferentially linked to nonreducing terminal regions and a significant amount of the novel disialosyl structure, NeuNAc alpha 2----9NeuNAc alpha 2----3/6Gal, is present at the terminals of the longer polylactosaminyl side chains. 5) These lactosaminoglycans are carried by cell surface glycoproteins of Mr = 80,000 approximately 120,000, as evidenced by lectin-agarose chromatography.  相似文献   

11.
Over 99% of thyroxine (T4), the major form of thyroid hormone in plasma, is bound to the plasma glycoprotein thyroxine-binding globulin (TBG). The carbohydrate composition of TBG (14.6% by weight) consists of mannose, galactose, N-acetylglucosamine, and N-acetylneuraminic acid in the molar ratios of 11:9:16:10 per mol of glycoprotein. No fucose or N-acetylgalactosamine were detected. Amino acid analyses were performed. Glycopeptides, prepared by exhaustive pronase treatment of the glycoprotein, were separated by gel filtration and ion exchange chromatography. All glycopeptides contained the four sugars present in the native glycoprotein. One-fourth of the glycopeptide fraction was resolved into a discrete component, glycopeptide I. The remaining glycopeptides were a mixture termed glycopeptides II and III. Glycopeptides II and III were resolved into two discrete carbohydrate units, termed oligosaccharides A and B, by alkaline-borohydride treatment and DEAE-cellulose chromatography. We propose that TBG contains four oligosaccharide chains as calculated from the molecular weights of the glycopeptides and from compositional data assuming 1 asparagine residue/glycopeptide. The carbohydrate structures of the glycopeptides and relative affinities of TBG, glycopeptides and oligosaccharides for hepatocyte plasma membrane binding are presented in the accompanying paper (Zinn, A.B., Marshall, J.S., and Carlson, D.M. (1978) J. Biol. Chem. 253, 6768-6773.  相似文献   

12.
Studies have been made on the oligosaccharide residues of the alkali-stable carbohydrate-protein linkage of sialoglycopeptides derived from human erythrocytes. Four glycopeptides were isolated after alkaline borohydride treatment and Pronase digestion of MN-active sialoglycopeptides. The structure of one of these glycopeptides (GPIV) has been studied by sequential hydrolysis with specific glycosidases. Glycopeptide GPIV contained (per mol): 1mol of fucose, 1mol of sialic acid, 3mol of galactose, 3mol of mannose, 4mol of acetylglucosamine, 1mol of aspartic acid and fractional amounts of threonine, serine and glycine. The molecular weight of the glycopeptide was estimated to be 2330 by gel filtration. On the basis of glycosidase-digestion results, a tentative structure is proposed for the oligosaccharide moiety of glycopeptide GPIV.  相似文献   

13.
The lipid-free protein residue of rat brain tissue was treated with papain to solubilize the heteropolysaccharide chains of the tissue glycoproteins. The glycopeptides were separated into non-dialyzable and dialyzable glycopeptide preparations. Each preparation was then sorted out into groups of glycopeptides by means of electrophoresis and gel filtration. The quantitatively predominant glycopeptides were the alkali-stable glycopeptides (Group A) which accounted for 64% of the glycopeptide carbohydrate recovered from rat brain. Most of the group A glycopeptides appeared in the non-dialyzable preparation. The molecular weight of the glycopeptides of Group A ranged from approximately 5200–3700. The largest glycopeptide molecule in this mixture possessed the highest electrophoretic mobility and contained one fucose, four N-acetylneuraminic acid (NANA), six N-acetylglucosamine, four galactose, and three mannose residues per molecule. The spectrum of glycopeptides isolated in this group showed a progressive decrease in NANA rsidues, NANA and galactose residues, and NANA, galactose, and N-acetylglucosamine residues which could be correlated with a progressive decline in molecular weight and electrophoretic mobility. Some of the glycopeptides in each fraction recovered from this group of glycopeptides contained sulfate ester groups.A second group of glycopeptides (Group C glycopeptides) accounted for 25% of the total glycoprotein carbohydrate recovered from rat brain. These were recoverd from the dialyzable glycopeptide preparation, and resolved into three fractions by column electrophoresis. These glycopeptides do not contain sulfate, are composed predominately of mannose and N-acetylglucosamine, and possess a molecular weight of approximately 3000.Several minor groups of glycopeptides were detected. Alkali-labile glycopeptides (Group B) appeared in the non-dialyzable glycopeptide preparation. The dialyzable glycopeptide preparation contained glycopeptides (Group E) which contained N-acetylgalactosamine and glucose. These had a molecular weight of approximately 2000. Group D glycopeptides recovered from the dialyzable glycopeptide preparation contained variable amounts of NANA, mannose, galactose, N-acetylglucosamine, and sulfate. These possessed a molecular weight of approximately 2900.  相似文献   

14.
Streptococcus thermophilus Sfi6 produces an exopolysaccharide (EPS) composed of glucose, galactose and N-acetylgalactosamine in the molar ratio of 1:2:1. The genes responsible for the EPS biosynthesis have been isolated previously and found to be clustered in a 14.5 kb region encoding 13 genes. Transfer of this gene cluster into a non-EPS-producing heterologous host, Lactococcus lactis MG1363, yielded an EPS with a similar high molecular weight, but a different structure from the EPS from the native host. The structure of the recombinant EPS was determined by means of 1H homonuclear and 1H-13C heteronuclear two-dimensional nuclear magnetic resonance (NMR) spectra and was found to be --> 3)-beta-D-Glcp-(1 --> 3)-alpha-D-Galp-(1 --> 3)-beta-D-Galp-(1 --> as opposed to --> 3)[alpha-D-Galp-(1 --> 6)]-beta-D-Glcp-(1 --> 3)-alpha-D-GalpNAc-(1 --> 3)-beta-D-Galp-(1 --> for the wild-type S. thermophilus Sfi6. Furthermore, L. lactis MG1363 (pFS101) was also lacking a UDP-N-acetylglucosamine C4-epimerase activity, which would provide UDP-GalNAc for a GalNAc incorporation into the EPS and probably caused the substitution of GalNAc by Gal in the recombinant EPS. This modification implies that (i) bacterial glycosyltransferases could potentially have multiple specificities for the donor and the acceptor sugar molecule; and (ii) the repeating unit polymerase can recognize and polymerize a repeating unit that differs in the backbone as well as in the side-chain from its native substrate.  相似文献   

15.
The structures of the lipooligosaccharides (LOSs) from Haemophilus ducreyi ITM 5535 and ITM 3147 and a fresh clinical isolate, ACY1, have been investigated. Oligosaccharides were obtained from phenol-water-extracted LOS by mild acid hydrolysis and were studied by methylation analysis, fast atom bombardment and electrospray ionization mass spectrometry, and nuclear magnetic resonance spectroscopy. The major oligosaccharide obtained from all strains was a nonasaccharide with the structure beta-D-Galp-(1-->4)-beta-D-GlcNAcp-(1-->3)-beta-D-Galp-(1-->4)-D-a lpha-D-Hepp- (1-->6)-beta-D-Glcp-(1-->[L-alpha-D-Hepp-(1-->2)-L-alpha-D-Hepp - (1-->3)]4)-L-alpha-D-Hepp-Kdo (Kdo stands for 3-deoxy-D-manno-octulosonic acid) and is thus identical to that identified as the major oligosaccharide in H. ducreyi ITM 2665 (E. K. H. Schweda, A. C. Sundström, L. M. Eriksson, J.A. Jonasson, and A. A. Lindberg, J. Biol. Chem. 269:12040-12048, 1994). Electrospray ionization mass spectrometry on O-deacylated LOS from H. ducreyi ITM 5535 obtained after treatment with anhydrous hydrazine gave evidence for the presence of a sialylated major compound, Neu5Ac alpha(2-->3)-beta-D-Galp-(1-->4)-beta-D-GlcNAcp-(1-->3)-beta-D-Gal p- (1-->4)-D-alpha-D-Hepp-(1-->6)-beta-D-Glcp-(1-->[L-alpha-D-Hepp -(1-->2)-L- alpha-D-Hepp-(1-->3)]4)-L-alpha-D-Hepp-Kdo(P)-O-deacylated lipid A (Neu5Ac stands for N-acetylneuraminic acid). However, an even larger oligosaccharide could be isolated from all strains as a minor component, viz., the undecasaccharide beta-D-Galp-(1-->4)-beta-D-GlcNAcp-(1-->3)-beta-d-Galp-(1-->4)-beta-D-glcNAcp-(1-->3)-beta-D-Galp-(1-->4)-D-alpha-D-Hepp-(1-->6)-beta-D-Glcp-(1-->[L-alpha-D-Hepp-(1-->2)-L-alpha-D-Hepp-(1-->3)]4-L-alpha-D-Hepp-Kdo, which represents an N-acetyl lactosamine disaccharide unit elongation of the LOS outer core. No Sialylation of this latter minor component undecasaccharide was detected.  相似文献   

16.
Certain oligomannose type glycopeptides have previously been shown to be bivalent for binding to concanavalin A, and to give quantitative precipitation profiles with the protein that consist of single peaks which correspond to the binding stoichiometry of glycopeptide to protein monomer (1:2) (Bhattacharyya, L., Ceccarini, C., Lorenzoni, P., and Brewer, C.F. (1987) J. Biol. Chem. 262, 1288-1293). In the present study, equimolar mixtures of two oligomannose type glycopeptides, a Man-6 and a Man-9 glycopeptide, gives a quantitative precipitation profile which shows two protein peaks. Each glycopeptide was radiolabelled with 3H or 14C, and the the precipitation profiles of the individual glycopeptides in the mixture determined. The results show that the radioactivity profile of the Man-6 glycopeptide corresponds to the first protein peak, while the radioactivity profile of the Man-9 glycopeptide corresponds to the second protein peak. The results indicate that each glycopeptide forms a unique homogeneous cross-linked lattice with the lectin which excludes the lattice of the other glycopeptide.  相似文献   

17.
Electrophoretically homogeneous type 1 (GP-C1 and GP-C2), type 2 (GP-C3a and GP-C3b,) and type 3 (GP-D1, and GP-D2) glycopeptides fromAspergillus niger glucoamylase II (Manjunath and Raghavendra Rao, preceding paper) were separately treated with alkaline borohydride. The (\-eliminated oligosaccharides were subjected to single and sequential digestion with specific glycosidases and the products analysed by gas liquid chromatography. The studies revealed that carbohydrate moieties were present as mannose, Man-Man-, and trisaccharide structures, namely, (a) GIc-Man-Man-, (b) Gal-Man-Man, (c) Man-Man-Man-, (d) GlcNAc-Man-Man-, and (e) Xyl-Man-Man. None of the glycopeptides contained all the trisaccharide structures (a) to (e). Type 1 glycopeptide contained structures (a), (b) and (c); type 2, (a) and (d) and type 3, (a), (b) and (e). The number of carbohydrate units (mono-, di-and trisaccharides) present in the major glycopeptides was determined and tentative structures for the glycopeptides proposed. Carbohydrate units appeared to occur in clusters of 4 to 7 in each glycopeptide, a structure unique to the carbohydrate moiety inAspergillus niger glucoamylase. Based on carbohydrate analysis and yields of glycopeptide, the number of units of each type of glycopeptide present in glucoamylase II was tentatively calculated to give two of type Man:Glc:Gal = 12–15:l:l, one of type Man:Glc:GlcN = 10-l1:1:2 and one of type Man :GIc :Gal:Xyl = 4–8:0.1:0.5-0.8:0.3-1 glycopeptides.  相似文献   

18.
The anti-A1 lectin of Dolichos biflorus L. seeds has been isolated from the active protein fraction obtained by 40–60% saturation by ammonium sulfate of a saline extract (1 : 5) followed by successive chromatography on DEAE-cellulose, Sephadex G-100 and DEAE-cellulose. The lectin has a molecular weight of 122 000 and contains 1.25% neutral sugar, 0.8% glucosamine and only one terminal amino acid, alanine. Neutral sugar components comprise mannose, glucose, fucose and xylose.On the other hand, affinity chromatography of the same active protein fraction on O-(N-acetyl-α-d-galactosaminy;) polyacrylamide yields with different electrophoretic mobilities and with an overall neutral sugar content of 3.7%. Electrophoresis on polyacrylamide gel reveals a diffused broad band of unequal intensity. On ultracentrifugation the lectin shows a molecular weight of 124 000 with a tendency to form a dimer. Lectin isolated by affinity techniques contains 0.17% Ca, 0.11% Zn, 0.07% Mn and 0.01% Mg; lectin obtained by conventional chormatographic procedure shows a somewhat decreased content of Zn and Ca.Digestion with pepsin and pronase of the lectin isolated by conventional procedures yields a mixture of fragments from which three glycopeptides designated as G1, G2A and G2B can be isolated by chromatography on Sephadex G-25 and preparative paper electrophoresis. G1 contains aspartic acid, threonine, proline, glycine, alanine, glucose and fucose and its calculated minimal molecular weight is approximately 2800; glycopeptide G2A contains aspartic acid, serine, glucosamine, mannose and fucose and has a calculated minimal molecular weight of approximately 1800.The purified lectin isolated by either of the two methods is active in concentration of 10 μg/ml against A1-erythrocytes. Its erythroagglutinating activity is enhanced by Ca2+, Co2+, Ni2+ and Mg2+ and inhibiited by both N-acetyl-d-galactosamine and EDTA. The mixture of glycopeptides G2 isoalted by pronase digestion shows erythroagglutinating activity at the same concentration, but is nonspecific.  相似文献   

19.
A lectin was isolated from Rana catesbiana eggs that agglutinated blood group A-erythrocytes but did not agglutinate blood group B- or 0-erythrocytes. The lectin was purified by Sephadex G-75 gel filtration and by acrylamide gel electrophoresis at pH 4.3 and was proved to be homogeneous on electrophoresis, and the molecular weight was determined as 210 000. The specificity of A-like activity seems to direct towards three monosaccharide units: GalNAcalpha1 leads to 3(or 4)-Galbeta1 leads to 4(or 3)GlcNAcbeta1 leads to R based on inhibition of A-like hemagglutination by various monosaccharides, oligosaccharides and glycolipids, and based on precipitin reaction with various glycolipids and glycoproteins with known structures. Uniquely, A-like agglutination was inhibited not only by alpha-N-acetylgalactosamine analogs but also by N-acetyllactosamine analogs. The lectin showed therefore, two correlated specificities: one directed towards alpha-N-acetylgalactosamine residue at the terminal, and the other towards the subterminal Galbeta1 leads to 4betaGlcNAc (N-acetyllactosaminyl) residue. The reactivity due to the N-acetyllactosamine structure which is also found in erythrocyte ganglioside and in H-active chain might be blocked by sialyl or alpha-L-fucosyl substitution at the terminal, as the reactivity appeared after elimination of these sugar residues. In the A structure the reactivity due to N-acetyllactosaminyl residue seems not to be blocked by the presence of alpha-N-acetylgalactosamine at the terminal as A-agglutination was strongly inhibited by N-acetyllactosamine and its analogs. Although the lectin showed a single band on electrophoresis under different conditions, there is a possibility that the lectin may be a mixture of two proteins with different specificities as mentioned above.  相似文献   

20.
We have previously shown that certain oligomannose and bisected hybrid type glycopeptides are bivalent for binding to concanavalin A (Con A) [Bhattacharyya, L., Ceccarini, C., Lorenzoni, P., & Brewer, C. F. (1987) J. Biol. Chem. 262, 1288-1293]. Each glycopeptide gives a quantitative precipitation profile with the protein which consists of a single peak that corresponds to the binding stoichiometry of glycopeptide to protein monomer (1:2). We have shown that the affinities of the primary and secondary sites of the glycopeptides influence their extent of precipitation with the lectin [Bhattacharyya, L., & Brewer, C. F. (1988) Eur. J. Biochem. (in press)]. In the present study, we demonstrate that equimolar mixtures of any two of the glycopeptides result in a quantitative precipitation profile which shows two protein peaks. Using radiolabeled glycopeptides, the precipitation profiles of the individual glycopeptides were determined. The results show that each glycopeptide forms its own precipitation profile with the protein which is independent of the profile of the other glycopeptide. For mixtures containing an equimolar ratio of two glycopeptides, the glycopeptide with lower affinity shows a precipitation maximum at a lower concentration than the one with higher affinity. However, this can be reversed by increasing the ratio of the lower affinity glycopeptide in the mixture. Thus, the relative precipitation maxima of the glycopeptides are determined by mass-action equilibria involving competitive binding of the two carbohydrates to the protein. These equilibria, in turn, are sensitive to the relative amounts and affinities of the carbohydrates at both their primary and secondary sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号