首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Vibrio cholerae is a Gram-negative bacterial pathogen that exports enterotoxins, which alter host cells through a number of mechanisms resulting in diarrheal disease. Among the secreted toxins is the multifunctional, autoprocessing RTX toxin (MARTX(Vc)), which disrupts actin cytoskeleton by covalently cross-linking actin monomers into oligomers. The region of the toxin responsible for cross-linking activity is the actin cross-linking domain (ACD). In this study, we demonstrate unambiguously that ACD utilizes G- and not F-actin as a substrate for the cross-linking reaction and hydrolyzes one molecule of ATP per cross-linking event. Furthermore, major actin-binding proteins that regulate actin cytoskeleton in vivo do not block the cross-linking reaction in vitro. Cofilin inhibits the cross-linking of G- and F-actin, at a high mole ratio to actin but accelerates F-actin cross-linking at low mole ratios. DNase I completely blocks the cross-linking of actin, likely due to steric hindrance with one of the cross-linking sites on actin. In the context of the holotoxin, the inhibition of Rho by the Rho-inactivating domain of MARTX(Vc) (Sheahan, K. L., and Satchell, K. J. F. (2007) Cell. Microbiol. 9, 1324-1335) would accelerate F-actin depolymerization and provide G-actin, alone or in complex with actin-binding proteins, for cross-linking by ACD, ultimately leading to the observed rapid cell rounding.  相似文献   

2.
Enteric pathogens often export toxins that elicit diarrhea as a part of the etiology of disease, including toxins that affect cytoskeletal structure. Recently, we discovered that the intestinal pathogen Vibrio cholerae elicits rounding of epithelial cells that is dependent upon a gene we designated rtxA. Here we investigate the association of rtxA with the cell-rounding effect. We find that V. cholerae exports a large toxin, RTX (repeats-in-toxin) toxin, to culture supernatant fluids and that this toxin is responsible for cell rounding. Furthermore, we find that cell rounding is not due to necrosis, suggesting that RTX toxin is not a typical member of the RTX family of pore-forming toxins. Rather, RTX toxin causes depolymerization of actin stress fibers and covalent cross-linking of cellular actin into dimers, trimers and higher multimers. This RTX toxin-specific cross-linking occurs in cells previously rounded with cytochalasin D, indicating that G-actin is the toxin target. Although several models explain our observations, our simultaneous detection of actin cross-linking and depolymerization points toward a novel mechanism of action for RTX toxin, distinguishing it from all other known toxins.  相似文献   

3.
Many bacterial toxins target small Rho GTPases in order to manipulate the actin cytoskeleton. The depolymerization of the actin cytoskeleton by the Vibrio cholerae RTX toxin was previously identified to be due to the unique mechanism of covalent actin cross-linking. However, identification and subsequent deletion of the actin cross-linking domain within the RTX toxin revealed that this toxin has an additional cell rounding activity. In this study, we identified that the multifunctional RTX toxin also disrupts the actin cytoskeleton by causing the inactivation of small Rho GTPases, Rho, Rac and Cdc42. Inactivation of Rho by RTX was reversible in the presence of cycloheximide and by treatment of cells with CNF1 to constitutively activate Rho. These data suggest that RTX targets Rho GTPase regulation rather than affecting Rho GTPase directly. A novel 548-amino-acid region of RTX was identified to be responsible for the toxin-induced inactivation of the Rho GTPases. This domain did not carry GAP or phosphatase activities. Overall, these data show that the RTX toxin reversibly inactivates Rho GTPases by a mechanism distinct from other Rho-modifying bacterial toxins.  相似文献   

4.
G Suarez  BK Khajanchi  JC Sierra  TE Erova  J Sha  AK Chopra 《Gene》2012,506(2):369-376
The repeat in toxin (Rtx) of an environmental isolate ATCC 7966 of Aeromonas hydrophila consists of six genes (rtxACHBDE) organized in an operon similar to the gene organization found for the Rtx of the Vibrio species. The first gene in this operon (rtxA) encodes an exotoxin in vibrios, while other genes code for proteins needed for proper activation of RtxA and in secretion of this toxin from Vibrio cholerae. However, the RtxA of ATCC 7966, as well as from the clinical isolate SSU of A. hydrophila, was exclusively expressed and produced during co-infection of this pathogen with the host, e.g., HeLa cells, indicating that rtxA gene expression required host cell contact. Within the RtxA, an actin cross-linking domain (ACD) exists and to investigate the functionality of this domain, several truncated versions of ACD were generated to discern its minimal biological active region. Such genetically modified genes encoding ACD, which were truncated on either the NH(2) or the COOH terminal, as well as on both ends, were expressed from a bidirectional promoter of the pBI-enhanced green fluorescent protein (EGFP) vector in a HeLa-Tet-Off cell system. We demonstrated that only the full-length ACD of RtxA from A. hydrophila catalyzed the covalent cross-linking of the host cellular actin, whereas the ACD truncated on the NH(2), COOH or both ends did not exhibit such actin cross-linking characteristics. Further, we showed that the full-length ACD of A. hydrophila RtxA disrupted the actin cytoskeleton of HeLa cells, resulting in their rounding phenotype. Finally, our data provided evidence that the full-length ACD of RtxA induced host cell apoptosis. Our study is the first to report that A. hydrophila possesses a functional RtxA having an ACD that contributes to the host cell apoptosis, and hence could represent a potential virulence factor of this emerging human pathogen.  相似文献   

5.
Actin cross-linking domains (ACDs) are distinct domains found in several bacterial toxins, including the Vibrio cholerae MARTX toxin. The ACD of V. cholerae (ACDVc) catalyses the formation of an irreversible iso-peptide bond between lysine 50 and glutamic acid 270 on two actin molecules in an ATP- and Mg/Mn2+-dependent manner. In vivo , cross-linking depletes the cellular pool of G-actin leading to actin cytoskeleton depolymerization. While the actin cross-linking reaction performed by these effector domains has been significantly characterized, the ACDVc catalytic site has remained elusive due to lack of significant homology to known proteins. Using multiple genetic approaches, we have identified regions and amino acids of ACDVc required for full actin cross-linking activity. Then, using these functional data and structural homology predictions, it was determined that several residues demonstrated to be important for ACDVc activity are conserved with active-site residues of the glutamine synthetase family of enzymes. Thus, the ACDs are a family of bacterial toxin effectors that may be evolutionarily related to ligases involved in amino acid biosynthesis.  相似文献   

6.
Vibrio cholerae RTX is a large multifunctional bacterial toxin that causes actin crosslinking. Due to its size, it was predicted to undergo proteolytic cleavage during translocation into host cells to deliver activity domains to the cytosol. In this study, we identified a domain within the RTX toxin that is conserved in large clostridial glucosylating toxins TcdB, TcdA, TcnA, and TcsL; putative toxins from V. vulnificus, Yersinia sp., Photorhabdus sp., and Xenorhabdus sp.; and a filamentous/hemagglutinin-like protein FhaL from Bordetella sp. In vivo transfection studies and in vitro characterization of purified recombinant protein revealed that this domain from the V. cholerae RTX toxin is an autoprocessing cysteine protease whose activity is stimulated by the intracellular environment. A cysteine point mutation within the RTX holotoxin attenuated actin crosslinking activity suggesting that processing of the toxin is an important step in toxin translocation. Overall, we have uncovered a new mechanism by which large bacterial toxins and proteins deliver catalytic activities to the eukaryotic cell cytosol by autoprocessing after translocation.  相似文献   

7.
8.
Vibrio cholerae is the cause of the diarrheal disease cholera. V. cholerae produces RtxA, a large toxin of the MARTX family, which is targeted to the host cell cytosol, where its actin cross-linking domain (ACD) cross-links G-actin, leading to F-actin depolymerization, cytoskeleton rearrangements, and cell rounding. These effects on the cytoskeleton prevent phagocytosis and bacterial engulfment by macrophages, thus preventing V. cholerae clearance from the gut. The V. cholerae Type VI secretion-associated VgrG1 protein also contains a C-terminal ACD, which shares 61% identity with MARTX ACD and has been shown to covalently cross-link G-actin. Here, we purified the VgrG1 C-terminal domain and determined its crystal structure. The VgrG1 ACD exhibits a V-shaped three-dimensional structure, formed of 12 β-strands and nine α-helices. Its active site comprises five residues that are conserved in MARTX ACD toxin, within a conserved area of ∼10 Å radius. We showed that less than 100 ACD molecules are sufficient to depolymerize the actin filaments of a fibroblast cell in vivo. Mutagenesis studies confirmed that Glu-16 is critical for the F-actin depolymerization function. Co-crystals with divalent cations and ATP reveal the molecular mechanism of the MARTX/VgrG toxins and offer perspectives for their possible inhibition.  相似文献   

9.
R L Aft  G C Mueller 《Life sciences》1985,36(22):2153-2161
Hemin (ferriprotoporphyrin IX-chloride) can mediate the covalent cross-linking and degradation of yeast glutathione reductase. This reaction requires both NADPH and oxygen suggesting the involvement of a reduced oxygen species in the cross-linking and degradation process. During the course of the reaction the enzymatic activity of glutathione reductase is rapidly destroyed. Implications of these findings for a regulatory role of hemin in cell biology are discussed.  相似文献   

10.
Bacillus anthracis lethal toxin consists of the protective antigen (PA) and the metalloprotease lethal factor (LF). During cellular uptake PA forms pores in membranes of endosomes, and unfolded LF translocates through the pores into the cytosol. We have investigated whether host cell chaperones facilitate translocation of LF and the fusion protein LF(N)DTA. LF(N) mediates uptake of LF(N)DTA into the cytosol, where DTA, the catalytic domain of diphtheria toxin, ADP-ribosylates elongation factor-2, allowing for detection of small amounts of translocated LF(N)DTA. Cyclosporin A, which inhibits peptidyl-prolyl cis/trans isomerase activity of cyclophilins, and radicicol, which inhibits Hsp90 activity, prevented uptake of LF(N)DTA into the cytosol of CHO-K1 cells and protected cells from intoxication by LF(N)DTA/PA. Both inhibitors, as well as an antibody against cyclophilin A blocked the release of active LF(N)DTA from endosomal vesicles into the cytosol in vitro. In contrast, the inhibitors did not inhibit cellular uptake of LF. In vitro, cyclophilin A and Hsp90 bound to LF(N)DTA and DTA but not to LF, implying that DTA determines this interaction. In conclusion, cyclophilin A and Hsp90 facilitate translocation of LF(N)DTA, but not of LF, across endosomal membranes, and thus they function selectively in promoting translocation of certain proteins, but not of others.  相似文献   

11.
Vibrio vulnificus causes acute cell death and a fatal septicaemia. In this study, we show that contact with host cells is a prerequisite to the acute cytotoxicity. We screened transposon mutants defective in the contact-dependent cytotoxicity . Two mutants had insertions within two open reading frames in a putative RTX toxin operon, the rtxA1 or rtxD encoding an RTX toxin (4701 amino acids) or an ABC type transporter (467 amino acids). An rtxA1 mutation resulted in a cytotoxicity defect, which was fully restored by in trans complementation. The expression of RtxA1 toxin increased after host cell contact in a time-dependent manner. The RtxA1 toxin induced cytoskeletal rearrangements and plasma membrane blebs, which culminated in a necrotic cell death. RtxA1 colocalized with actin and caused actin aggregation coinciding with a significant decrease in the F/G actin ratio. The RtxA1 toxin caused haemolysis through pore formation (radius 1.63 nm). The rtxA1 deletion mutant was defective in invading the blood stream from ligated ileal loops of CD1 mice. The rtxA1 null mutation resulted in over 100-fold increase in both intragastric and intraperitoneal LD50s against mice. Overall, these results show that the RtxA1 toxin is a multifunctional cytotoxin and plays an essential role in the pathogenesis of V. vulnificus infections.  相似文献   

12.
Clinical isolates of Neisseria meningitidis produce a repeat in toxin (RTX) protein, FrpC, of unknown biological activity. Here we show that physiological concentrations of calcium ions induce a novel type of autocatalytic cleavage of the peptide bond between residues Asp(414) and Pro(415) of FrpC that is insensitive to inhibitors of serine, cysteine, aspartate, and metalloproteases. Moreover, as a result of processing, the newly generated amino-terminal fragment of FrpC can be covalently linked to another protein molecule by a novel type of Asp-Lys isopeptide bond that forms between the carboxyl group of its carboxyl-terminal Asp(414) residue and the epsilon-amino group of an internal lysine of another FrpC molecule. Point substitutions of negatively charged residues possibly involved in calcium binding (D499K, D510A, D521K, and E532A) dramatically reduced the self-processing activity of FrpC. The segment necessary and sufficient for FrpC processing was localized by deletion mutagenesis within residues 400-657, and sequences homologous to this segment were identified in several other RTX proteins. The same type of calcium-dependent processing and cross-linking activity was observed also for the purified ApxIVA protein of Actinobacillus pleuropneumoniae. These results define a protein cleavage and cross-linking module of a new class of RTX proteins of Gram-negative pathogens of man, animals, and plants. In the calcium-rich environments colonized by these bacteria this novel activity is likely to be of biological importance.  相似文献   

13.
The basement membrane (BM) provides a physical barrier to invasion in epithelial tumors, and alterations in the molecular makeup and structural integrity of the BM have been implicated in cancer progression. Invadopodia are the invasive protrusions that enable cancer cells to breach the nanoporous basement membrane, through matrix degradation and generation of force. However, the impact of covalent cross-linking on invadopodia extension into the BM remains unclear. Here, we examine the impact of covalent cross-linking of extracellular matrix on invasive protrusions using biomaterials that present ligands relevant to the basement membrane and provide a nanoporous, confining microenvironment. We find that increased covalent cross-linking of reconstituted basement membrane (rBM) matrix diminishes matrix mechanical plasticity, or the ability of the matrix to permanently retain deformation due to force. Covalently cross-linked rBM matrices, and rBM-alginate interpenetrating networks (IPNs) with covalent cross-links and low plasticity, restrict cell spreading and protrusivity. The reduced spreading and reduced protrusivity in response to low mechanical plasticity occurred independent of proteases. Mechanistically, our computational model reveals that the reduction in mechanical plasticity due to covalent cross-linking is sufficient to mechanically prevent cell protrusions from extending, independent of the impact of covalent cross-linking or matrix mechanical plasticity on cell signaling pathways. These findings highlight the biophysical role of covalent cross-linking in regulating basement membrane plasticity, as well as cancer cell invasion of this confining tissue layer.  相似文献   

14.
Binary toxins are among the most potent bacterial protein toxins performing a cooperative mode of translocation and exhibit fatal enzymatic activities in eukaryotic cells. Anthrax and C2 toxin are the most prominent examples for the AB(7/8) type of toxins. The B subunits bind both host cell receptors and the enzymatic A polypeptides to trigger their internalization and translocation into the host cell cytosol. C2 toxin is composed of an actin ADP-ribosyltransferase (C2I) and C2II binding subunits. Anthrax toxin is composed of adenylate cyclase (EF) and MAPKK protease (LF) enzymatic components associated to protective antigen (PA) binding subunit. The binding and translocation components anthrax protective antigen (PA(63)) and C2II of C2 toxin share a sequence homology of about 35%, suggesting that they might substitute for each other. Here we show by conducting in vitro measurements that PA(63) binds C2I and that C2II can bind both EF and LF. Anthrax edema factor (EF) and lethal factor (LF) have higher affinities to bind to channels formed by C2II than C2 toxin's C2I binds to anthrax protective antigen (PA(63)). Furthermore, we could demonstrate that PA in high concentration has the ability to transport the enzymatic moiety C2I into target cells, causing actin modification and cell rounding. In contrast, C2II does not show significant capacity to promote cell intoxication by EF and LF. Together, our data unveiled the remarkable flexibility of PA in promoting C2I heterologous polypeptide translocation into cells.  相似文献   

15.
J J Otto  R E Kane  J Bryan 《Cell》1979,17(2):285-293
Echinoderm coelomocytes or phagocytes purified in the petaloid stage will attach to a glass substrate and form large circumferential lamellIpodia. Hypotonic shock will induce quantitative transformation to a filopodial form. Differentiation of the peripheral cytoplasm begins at the cell edge, when phase dense rods composed of actin filaments start to form. These structures, which eventually form the cores of filopodia, continue to grow, lengthen and extend deeper into the cytoplasm. In the final stage, the plasma membrane retracts down around a core to form a filopodium. Antibody against a 58,000 dalton protein isolated from sea urchin egg actin gels has been used to study a rather striking redistribution of this protein in the peripheral cytoplasm of the coelomocyte during the transformation sequence. This protein is known to organize actin filaments in vitro into linear paracrystalline arrays with a distinct 11 nm banding pattern by forming cross-links between adjacent actin filaments. In the early stage of the transformation, indirect immunofluorescence indicates a random distribution of this protein in the circumferential lamellipodia. Organization is first seen at the cell edge, where fluorescent rods coincident with the phase-dense structures start to form. These rods lengthen, extend deeper into the cytoplasm and become more intensely fluorescent. After membrane retraction, cells with individual, intensely stained filopodia are visible. The known chemistry of the actin cross-linking protein (Mr = 58,000) and its redistribution during the transformation sequence are consistent with the idea that this protein functions to organize F actin into filopodial cores by cross-linking adjacent actin filaments. We have named this protein “fascin,” because it organizes actin filaments, both in vivo and in vitro, into linear arrays or fascicles. Antibody staining shows a second population of these actin cross-linking molecules localized in the perinuclear cytoplasm. In this region, fascin appears to function to maintain a stable circumnuclear cage structure which is part of the coelomocyte cytoskeleton.  相似文献   

16.
Cofilin is a low molecular weight actin-modulating protein whose structure and function are conserved among eucaryotes. Cofilin exhibits in vitro both a monomeric actin-sequestering activity and a filamentous actin-severing activity. To investigate in vivo functions of cofilin, cofilin was overexpressed in Dictyostelium discoideum cells. An increase in the content of D. discoideum cofilin (d-cofilin) by sevenfold induced a co-overproduction of actin by threefold. In cells over-expressing d-cofilin, the amount of filamentous actin but not that of monomeric actin was increased. Overexpressed d-cofilin co-sedimented with actin filaments, suggesting that the sequestering activity of d- cofilin is weak in vivo. The overexpression of d-cofilin increased actin bundles just beneath ruffling membranes where d-cofilin was co- localized. The overexpression of d-cofilin also stimulated cell movement as well as membrane ruffling. We have demonstrated in vitro that d-cofilin transformed latticework of actin filaments cross-linked by alpha-actinin into bundles probably by severing the filaments. D. discoideum cofilin may sever actin filaments in vivo and induce bundling of the filaments in the presence of cross-linking proteins so as to generate contractile systems involved in membrane ruffling and cell movement.  相似文献   

17.
We compared the effects of human filamin A (FLNa) and the activated human Arp2/3 complex on mechanical properties of actin filaments. As little as 1 FLNa to 800 polymerizing actin monomers induces a sharp concentration-dependent increase in the apparent viscosity of 24 microm actin, a parameter classically defined as a gel point. The activated Arp2/3 complex, at concentrations up to 1:25 actins had no detectable actin gelation activity, even in the presence of phalloidin, to stabilize actin filaments against debranching. Increasing the activated Arp2/3 complex to actin ratio raises the FLNa concentration required to induce actin gelation, an effect ascribable to Arp2/3-mediated actin nucleation resulting in actin filament length diminution. Time lapse video microscopy of microparticles attached to actin filaments or photoactivation of fluorescence revealed actin filament immobilization by FLNa in contrast to diffusion of Arp2/3-branched actin filaments. The experimental results support theories predicting that polymer branching absent cross-linking does not lead to polymer gelation and are consistent with the observation that cells deficient in actin filament cross-linking activity have unstable surfaces. They suggest complementary roles for actin branching and cross-linking in cellular actin mechanics in vivo.  相似文献   

18.
Two low-molecular-weight basic proteins, termed A and B proteins, comprise about 15% of the protein of dormant spores of Bacillus megaterium. Irradiation of intact dormant spores with ultraviolet light results in covalent cross-linking of the A and B proteins to other spore macromolecules. The cross-linked A and B proteins are precipitated by ethanol and can be solubilized by treatment with deoxyribonuclease (75%) or ribonuclease (25%). Irradiation of complexes formed in vitro between deoxyribonucleic acid (DNA) or ribonucleic acid and a mixture of the low-molecular-weight basic proteins from spores also resulted in cross-linking of A and B proteins to nucleic acids. The dose-response curves for formation of covalent cross-links were similar for irradiation of both a protein-DNA complex in vitro and intact spores. However, if irradiation was carried out in vitro under conditions where DNA-protein complexes were disrupted, no covalent cross-links were formed. These data suggest that significant amounts of the low-molecular-weight basic proteins unique to bacterial spores are associated with spore DNA in vivo.  相似文献   

19.
Repeat in toxin (RTX) motifs are nonapeptide sequences found among numerous virulence factors of Gram-negative bacteria. In the presence of calcium, these RTX motifs are able to fold into an idiosyncratic structure called the parallel β-roll. The adenylate cyclase toxin (CyaA) produced by Bordetella pertussis, the causative agent of whooping cough, is one of the best-characterized RTX cytolysins. CyaA contains a C-terminal receptor domain (RD) that mediates toxin binding to the eukaryotic cell receptor. The receptor-binding domain is composed of about forty RTX motifs organized in five successive blocks (I to V). The RTX blocks are separated by non-RTX flanking regions of variable lengths. It has been shown that block V with its N- and C-terminal flanking regions constitutes an autonomous subdomain required for the toxicity of CyaA. Here, we investigated the calcium-induced biophysical changes of this subdomain to identify the respective contributions of the flanking regions to the folding process of the RTX motifs. We showed that the RTX polypeptides, in the absence of calcium, exhibited the hallmarks of intrinsically disordered proteins and that the C-terminal flanking region was critical for the calcium-dependent folding of the RTX polypeptides, while the N-terminal flanking region was not involved. Furthermore, the secondary and tertiary structures were acquired concomitantly upon cooperative binding of several calcium ions. This suggests that the RTX polypeptide folding is a two-state reaction, from a calcium-free unfolded state to a folded and compact conformation, in which the calcium-bound RTX motifs adopt a β-roll structure. The relevance of these results to the toxin physiology, in particular to its secretion, is discussed.  相似文献   

20.
Ascorbic acid during oxidation in vitro can generate H2O2 which induces non-disulphide covalent cross-linking of coincubated oxyhemoglobin. The cross-linking phenomenon mediated by H2O2 takes place possibly without the involvement of hydroxyl radicals as evident from the failure of radical scavengers like mannitol and dimethyl sulphoxide as well as metal-chelator, to inhibit the process. This pro-oxidant effect of ascorbic acid may have physiological significance in red blood cells in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号