首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Biotransformation of 3beta-acetoxy-19-hydroxycholest-5-ene (19-HCA, 6 g) by Moraxella sp. was studied. Estrone (712 mg) was the major metabolite formed. Minor metabolites identified were 5alpha-androst-1-en-19-ol-3,17-dione (33 mg), androst-4-en-19-ol-3,17-dione (58 mg), androst-4-en-9alpha,19-diol-3,17-dione (12 mg), and androstan-19-ol-3,17-dione (1 mg). Acidic metabolites were not formed. Time course experiments on the fermentation of 19-HCA indicated that androst-4-en-19-ol-3,17-dione was the major metabolite formed during the early stages of incubation. However, with continuing fermentation its level dropped, with a concomitant increase in estrone. Fermentation of 19-HCA in the presence of specific inhibitors or performing the fermentation for a shorter period (48 h) did not result in the formation of acidic metabolites. Resting-cell experiments carried out with 19-HCA (200 mg) in the presence of alpha,alpha'-bipyridyl led to the isolation of three additional metabolites, viz., cholestan-19-ol-3-one (2 mg), cholest-4-en-19-ol-3-one (10 mg), and cholest-5-en-3beta,19-diol (12 mg). Similar results were also obtained when n-propanol was used instead of alpha,alpha'-bipyridyl. Resting cells grown on 19-HCA readily converted both 5alpha-androst-1-en-19-ol-3,17-dione and androst-4-en-19-ol-3,17-dione into estrone. Partially purified 1,2-dehydrogenase from steroid-induced Moraxella cells transformed androst-4-en-19-ol-3,17-dione into estrone and formaldehyde in the presence of phenazine methosulfate, an artificial electron acceptor. These results suggest that the degradation of the hydrocarbon side chain of 19-HCA does not proceed via C(22) phenolic acid intermediates and complete removal of the C(17) side chain takes place prior to the aromatization of the A ring in estrone. The mode of degradation of the sterol side chain appears to be through the fission of the C(17)-C(20) bond. On the basis of these observations, a new pathway for the formation of estrone from 19-HCA in Moraxella sp. has been proposed.  相似文献   

2.
The possible presence of steroids in the tissue of induced hormone-dependent rat mammary tumours was investigated. The method used involves a preliminary extraction of tumours followed by chemical separation and thin-layer chromatography. The identified compounds were cholesterol, androst-4-ene-3,17-dione, 5β-androst-1-ene-3,17-dione, androsta-1,4-diene-3,17-dione and oestrone. This is the first report of the presence of these steroids in the tissue of an experimental tumour of a non-endocrine organ. In particular 5β-androst-1-ene-3,17-dione has not previously been identified from natural sources.  相似文献   

3.
The biotransformation of dehydroepiandrosterone (1) with Macrophomina phaseolina was investigated. A total of eight metabolites were obtained which were characterized as androstane-3,17-dione (2), androst-4-ene-3,17-dione (3), androst-4-ene-17β-ol-3-one (4), androst-4,6-diene-17β-ol-3-one (5), androst-5-ene-3β,17β-diol (6), androst-4-ene-3β-ol-6,17-dione (7), androst-4-ene-3β,7β,17β?triol (8), and androst-5-ene-3β,7α,17β-triol (9). All the transformed products were screened for enzyme inhibition, among which four were found to inhibit the β-glucuronidase enzyme, while none inhibited the α-chymotrypsin enzyme.  相似文献   

4.
Nostoc muscorum PTCC 1636 was examined for its ability to convert androst-4-en-3,17-dione (AD) and androst-1,4-dien-3,17-dione (ADD) to their 17-hydroxy related derivatives in BG-11 medium. Bioconversion procedures were carried out at 25 °C without shaking. The metabolites obtained were purified using chromatographic methods and characterized as testosterone and 1-dehydrotestosterone on the basis of their spectroscopic features. In both cases, the bioreaction characteristics observed were 17-carbonyl reduction.  相似文献   

5.
The biotransformation of dehydroepiandrosterone (1) with Macrophomina phaseolina was investigated. A total of eight metabolites were obtained which were characterized as androstane-3,17-dione (2), androst-4-ene-3,17-dione (3), androst-4-ene-17β-ol-3-one (4), androst-4,6-diene-17β-ol-3-one (5), androst-5-ene-3β,17β-diol (6), androst-4-ene-3β-ol-6,17-dione (7), androst-4-ene-3β,7β,17β-triol (8), and androst-5-ene-3β,7α,17β-triol (9). All the transformed products were screened for enzyme inhibition, among which four were found to inhibit the β-glucuronidase enzyme, while none inhibited the α-chymotrypsin enzyme.  相似文献   

6.
Comamonas testosteroni TA441 degrades steroids such as testosterone via aromatization of the A ring, followed by meta-cleavage of the ring. In the DNA region upstream of the meta-cleavage enzyme gene tesB, two genes required during cholic acid degradation for the inversion of an α-oriented hydroxyl group on C-12 were identified. A dehydrogenase, SteA, converts 7α,12α-dihydroxyandrosta-1,4-diene-3,17-dione to 7α-hydroxyandrosta-1,4-diene-3,12,17-trione, and a hydrogenase, SteB, converts the latter to 7α,12β-dihydroxyandrosta-1,4-diene-3,17-dione. Both enzymes are members of the short-chain dehydrogenase/reductase superfamily. The transformation of 7α,12α-dihydroxyandrosta-1,4-diene-3,17-dione to 7α,12β-dihydroxyandrosta-1,4-diene-3,17-dione is carried out far more effectively when both SteA and SteB are involved together. These two enzymes are encoded by two adjacent genes and are presumed to be expressed together. Inversion of the hydroxyl group at C-12 is indispensable for the subsequent effective B-ring cleavage of the androstane compound. In addition to the compounds already mentioned, 12α-hydroxyandrosta-1,4,6-triene-3,17-dione and 12β-hydroxyandrosta-1,4,6-triene-3,17-dione were identified as minor intermediate compounds in cholic acid degradation by C. testosteroni TA441.  相似文献   

7.
The inhibition of aromatase, the enzyme responsible for converting androgens to estrogens, is therapeutically useful for the endocrine treatment of hormone-dependent breast cancer. Research by our laboratory has focused on developing competitive and irreversible steroidal aromatase inhibitors, with an emphasis on synthesis and biochemistry of 7α-substituted androstenediones. Numerous 7α-thiosubstituted androst-4-ene-3,17-diones are potent competitive inhibitors, and several 1,4-diene analogs, such as 7α-(4′-aminophenylthio)-androsta-1,4-diene-3,17-dione (7α-APTADD), have demonstrated effective enzyme-activated irreversible inhibition of aromatase in microsomal enzyme assays. One focus of current research is to examine the effectiveness and biochemical pharmacology of 7α-APTADD in vivo. In the hormone-dependent 7,12-dimethylbenz(a)anthracene (DMBA)-induced rat mammary carcinoma model system, 7α-APTADD at a 50 mg/kg/day dose caused an initial decrease in mean tumor volume during the first week, and tumor volume remained unchanged throughout the remaining 5-week treatment period. This agent lowers serum estradiol levels and inhibits ovarian aromatase activity. A second research area has focused on the synthesis of more metabolically stable inhibitors by replacing the thioether linkage at the 7α position with a carbon-carbon linkage. Several 7α-arylaliphatic androst-4-ene-3,17-diones were synthesized by 1,6-conjugate additions of appropriate organocuprates to a protected androst-4,6-diene or by 1,4-conjugate additions to a seco-A-ring steroid intermediate. These compounds were all potent inhibitors of aromatase with apparent Kis ranging between 13 and 19 nM. Extension of the research on these 7α-arylaliphatic androgens includes the introduction of a C1---C2 double bond in the A-ring to provide enzyme-activated irreversible inhibitors. The desired 7α-arylaliphatic androsta-1,4-diene-3,17-diones were obtained from their corresponding 7α-arylaliphatic androst-4-ene-3,17-diones by oxidation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). These inhibitors demonstrated enzyme-mediated inactivation of aromatase with apparent kinacts ranging from 4.4 × 10−4 to 1.90 x 10−3 s−1. The best inactivator of the series was 7α-phenpropylandrosta-1,4-diene-3,17-dione, which exhibited a T1/2 of 6.08 min. Aromatase inhibition was also observed in MCF-7 human mammary carcinoma cell cultures and in JAr human choriocarcinoma cell cultures, exhibiting IC50 values of 64-328 nM. The 7α-arylaliphatic androgens thus demonstrate potent inhibition of aromatase in both microsomal incubations and in choriocarcinoma cell lines expressing aromatase enzymatic activity. Additionally, the results from these studies provide further evidence for the presence of a hydrophobic binding pocket existing near the 7α-position of the steroid in the active site of aromatase. The size of the 7α-substituent influences optimal binding of steroidal inhibitors to the active site and affects the extent of enzyme-mediated inactivation observed with androsta-1,4-diene-3,17-dione analogs.  相似文献   

8.
New analogues of androgens that had never been available as approved drugs are marketed as “dietary supplement” recently. They are mainly advertised to promote muscle mass and are considered by the governmental authorities in various countries, as well as by the World Anti-doping Agency for sport, as being pharmacologically and/or chemically related to anabolic steroids.In the present study, we report the detection of a steroid in a product seized by the State Bureau of Criminal Investigation Schleswig-Holstein, Germany. The product “1-Androsterone” of the brand name “Advanced Muscle Science” was labeled to contain 100 mg of “1-Androstene-3b-ol,17-one” per capsule. The product was analyzed underivatized and as bis-TMS derivative by GC-MS. The steroid was identified by comparison with chemically synthesized 3β-hydroxy-5α-androst-1-en-17-one, prepared by reduction of 5α-androst-1-ene-3,17-dione with LS-Selectride (Lithium tris-isoamylborohydride), and by nuclear magnetic resonance. Semi-quantitation revealed an amount of 3β-hydroxy-5α-androst-1-en-17-one in the capsules as labeled.Following oral administration to a male volunteer, the main urinary metabolites were monitored. 1-Testosterone (17β-hydroxy-5α-androst-1-en-3-one), 1-androstenedione (5α-androst-1-ene-3,17-dione), 3α-hydroxy-5α-androst-1-en-17-one, 5α-androst-1-ene-3α,17β-diol, and 5α-androst-1-ene-3β,17β-diol were detected besides the parent compound and two more metabolites (up to now not finally identified but most likely C-18 and C-19 hydroxylated 5α-androst-1-ene-3,17-diones). Additionally, common steroids of the urinary steroid profile were altered after the administration of “1-Androsterone”. Especially the ratios of androsterone/etiocholanolone and 5α-/5β-androstane-3α,17β-diol and the concentration of 5α-dihydrotestosterone were influenced. 3α-Hydroxy-5α-androst-1-en-17-one appears to be suitable for the long-term detection of the steroid (ab-)use, as this characteristic metabolite was detectable in screening up to nine days after a single administration of one capsule.  相似文献   

9.
1. [5α-3H]5α-Androst-16-en-3-one (5α-androstenone) was infused at a constant rate for 180min into the spermatic artery of a sexually mature boar. Samples of spermatic-venous blood were collected at 1min intervals for the first 10min of the infusion and thereafter at 15min intervals for the first hour, then at 64, 125, 155 and 172min. After infusion, the testis was removed and immediately cooled to −196°C. 2. From both the testicular tissue and the spermatic-venous plasma, endogenous and 3H-labelled androst-16-enes were isolated, characterized and quantitatively determined and their specific radioactivity was calculated. 3. The specific radioactivities of 5α-androstenore, 5α-androst-16-en-3α-ol and 5α-androst-16-en-3β-ol (an-α and an-β) in testicular tissue were different from those in the spermatic-venous plasma, suggesting that these compounds may be present in more than one compartment of the testis and differentially secreted into the spermatic-venous blood. 4. The ratios of the specific radioactivities of an-α and an-β to their respective sulphate conjugates in the testicular tissue were less than the ratios of the same compounds in the spermatic-venous plasma. 5. The patterns of secretion of these labelled compounds in the spermatic-venous blood during the period of infusion were demonstrated. 6. The urine that accumulated during the infusion was analysed and found to contain 3H-labelled an-β, conjugated as both glucuronide and sulphate, the specific radioactivities of which were determined. Little or no androst-16-enes occurred as free steroids. 7. The presence of an-β glucuronide in the urine is discussed.  相似文献   

10.
Norethindrone (17β-hydroxy-19-nor-17α-pregn-4-en-20-yn-3-one) and norethindrone acetate (17β-acetoxy-19-nor-17α-pregn-4-en-20-yn-3-one) interfered to a varying degree, by competitive inhibition, with the binding of progesterone and oestradiol to respective cytoplasmic receptors in the human uterus. Progesterone binding to 4S macromolecule was saturable and co-specific for progestins. Competitors like norgestrel (17β-hydroxy-18-methyl-19-nor-17α-pregn-4-en-20-yn-3-one), 19-norprogesterone, medroxyprogesterone acetate (17α-acetoxy-6α-methylpregn-4-ene-3,20-dione) and compound R5020 (17,21-dimethyl-19-norpregna-4,9-diene-3,20-dione) possessed higher binding affinities for the progestin receptor. The dissociation constant (Kd) for the progesterone–receptor interaction was 0.6–1.6nm and the receptor concentration ranged between 6600 and 8200 sites/cell. Norethindrone and norethindrone acetate competed for the progesterone receptor with inhibition constants (Ki) of 6.8 and 72nm respectively. Gradient displacement and competitive-receptor assays indicated that norethindrone acetate-binding affinity for progestin receptor was approximately one-tenth that of norethindrone and progesterone. The progestins also inhibited oestradiol binding to 4.6S oestrogenic receptor by 8–12%, involving interaction at the oestradiol-binding site with a calculated Ki value of 0.5–0.8μm. The competitive interaction of progestins with steroid receptors may be of putative importance in explaining the progestin action at the target site.  相似文献   

11.
Microbial transformation of androst-4-en-3,17-dione (AD; I) using Neurospora crassa afforded six metabolites; 6beta,14alpha-dihydroxyandrost-4-en-3,17-dione (II), 6beta,9alpha-dihydroxyandrost-4-en-3,17-dione (III), 7alpha-hydroxyandrost-4-en-3,17-dione (IV), 9alpha-hydroxyandrost-4-en-3,17-dione (V), 14alpha-hydroxyandrost-4-en-3,17-dione (VI), and androst-4,6-dien-3,17-dione (VII). The steroid products were assigned by interpretation of their spectral data such as (1)H NMR, (13)C NMR, FTIR, and mass spectroscopy. The characteristic transformations observed were C-6beta, C-7alpha, C-9alpha, C-14alpha hydroxylations, and C6-C7 dehydrogenation. The best fermentation condition was found to be 6-day incubation at 25 degrees C and pH value of 5.0-6.5 according to TLC profiles. Time course study showed the accumulation of V and VI from the third day and IV from the fourth day of the fermentation. Optimum concentration of the substrate, which gave maximum bioconversion efficiency, was 3.5mM in one batch. Biotransformation was completely inhibited in a concentration above 7.0mM.  相似文献   

12.
The anoxic metabolism of cholesterol was studied in the denitrifying bacterium Sterolibacterium denitrificans, which was grown with cholesterol and nitrate. Cholest-4-en-3-one was identified before as the product of cholesterol dehydrogenase/isomerase, the first enzyme of the pathway. The postulated second enzyme, cholest-4-en-3-one-Δ1-dehydrogenase, was partially purified, and its N-terminal amino acid sequence and tryptic peptide sequences were determined. Based on this information, the corresponding gene was amplified and cloned and the His-tagged recombinant protein was overproduced, purified, and characterized. The recombinant enzyme catalyzes the expected Δ1-desaturation (cholest-4-en-3-one to cholesta-1,4-dien-3-one) under anoxic conditions. It contains approximately one molecule of FAD per 62-kDa subunit and forms high molecular aggregates in the absence of detergents. The enzyme accepts various artificial electron acceptors, including dichlorophenol indophenol and methylene blue. It oxidizes not only cholest-4-en-3-one, but also progesterone (with highest catalytic efficiency, androst-4-en-3,17-dione, testosterone, 19-nortestosterone, and cholest-5-en-3-one. Two steroids, corticosterone and estrone, act as competitive inhibitors. The dehydrogenase resembles 3-ketosteroid-Δ1-dehydrogenases from other organisms (highest amino acid sequence identity with that from Pseudoalteromonas haloplanktis), with some interesting differences. Due to its catalytic properties, the enzyme may be useful in steroid transformations.  相似文献   

13.
Bacillus stearothermophilus, a thermophilic bacterium isolated from the Kuwaiti desert, produced a variety of monohydroxy androstene derivatives and an oxidized product when incubated with exogenous testosterone for 24 h at 65 degrees C. The major metabolite was identified as androst-4-en-3,17-dione while minor metabolites included 6 alpha-hydroxyandrost-4-en-3,17-dione, 6 beta-hydroxyandrost-4-en-3,17-dione, 6 alpha-hydroxytestosterone, and 6 beta-hydroxytestosterone. These metabolites were purified by TLC and HPLC followed by their identification using (1)H- and (13)C-NMR and other spectroscopic data.  相似文献   

14.
Catharanthus roseus (L.) G. Don cell suspension cultures were used to transform 3b-hydroxyandrost-5-en-17-one, the products were isolated by chromatographic methods. Their structures were established by means of NMR and MS spectral analyses. Nine metabolites were respectively elucidated as: androst-4-ene-3,17-dione (Ⅰ), 6a-hydroxyandrost-4-ene-3,17-dione (Ⅱ), 6a,17b-dihydroxyandrost-4-en-3-one (Ⅲ), 6b-hydroxyandrost-4-ene-3,17-dione (Ⅳ), 17b-hydroxyandrost-4-en-3-one (Ⅴ), 15a,17b-dihydroxyandrost-4-en-3-one (Ⅵ), 15b,17b-dihydroxyandrost-4-en-3-one (Ⅶ), 14a-hydroxyandrost-4-ene-3,17-dione (Ⅷ), 17b-hydroxyandrost-4-ene-3,16-dione (Ⅸ). It is the first time to obtain the above compounds by biotransformation with Catharanthus roseus cell cultures.  相似文献   

15.
The strain of Acremonium strictum PTCC 5282 was applied to investigate the biotransformation of androst-1,4-dien-3,17-dione (I; ADD). Microbial products obtained were purified by preparative TLC and the pure metabolites were characterized on the basis of their spectroscopic features (13C NMR, 1H NMR, FTIR, MS) and physical constants (melting points and optical rotations). The 15α-Hydroxyandrost-1,4-dien-3,17-dione (II), 17β-hydroxyandrost-1,4-dien-3-one (III), androst-4-en-3,17-dione (IV; AD), 15α-hydroxyandrost-4-en-3,17-dione (V), 15α,17β-dihydroxyandrost-1,4-dien-3-one (VI) and testosterone (VII) were produced during this fermentation. Formation of the 15α,17β-dihydroxy derivative of ADD is reported for the first time during steroid biotransformation. The bioconversion reactions observed were 1,2-hydrogenation, 15α-hydroxylation and 17-ketone reduction. From the time course profile of this biotransformation, ketone reduction and 1,2-hydrogenation were observed from the first day of fermentation while 15α-hydroxylation occurred from the third day. Optimum concentration of the substrate, which gave the maximum bioconversion efficiency, was 0.5 mg ml−1 in one batch. The highest yield of the microbial products recorded in this work was achieved within the pH range 6.5–7.3 and at the temperature of 27 °C.  相似文献   

16.
The aromatization of androst-4-en-3,17-dione or 17beta hydroxyandrost-4-en-3-one (testosterone) is not inhibited by carbon monoxide under normal incubation conditions, whereas the aromatization of corresponding 19-nor steroids (estr-4-en-3,17-dione and 17beta-hydroxyestr-4-en-3-one) is readily inhibited under the same conditions. A possible explanation was found when it was shown that androst-4-en-3,17-dione and testosterone could displace bound carbon monoxide from human placental microsomal cytochrome P-450. The 19-nor steroids did not displace carbon monoxide, even at very high concentrations. These C-18 compounds appeared to facilitate complex formation and reversed the effects of the C-19 steroids. A mutual antagonism was observed with regard to effects on the formation of the ce titrated. These observations suggested that the aromatization of androst-4-en-3,17-dione should be inhibited by carbon monoxide if sufficient concentrations of the 19-nor steroids were present in reaction flasks. This hypotheses was tested and positive results were obtained, providing strong evidence for the involvement of cytochrome P-450 in normal estrogen biosynthesis.  相似文献   

17.
R A Meigs 《Life sciences》1990,46(5):321-327
All oxidative functions of aromatase, i.e., estrogen production, 19-oxygenated androgen production and 7-ethoxycoumarin deethylation, were inhibited in parallel in placental microsomes from non-smokers by the mechanism-based, time-dependent inactivators (suicide substrates) 10 beta-(2-propynyl)estr-4-ene-3,17-dione and 4-hydroxyandrost-4-ene-3,17-dione. In contrast, the aromatase suicide substrate androst-4-ene-3,6,17-trione had little or no effect on the conversion of androst-4-ene-3,17-dione to 19-hydroxyandrost-4-ene-3,17-dione or on the conversion of the latter to 3,17-dioxoandrost-4-en-19-al while severely limiting the capacity for estrogen production from androst-4-ene-3,17-dione and 19-hydroxyandrost-4-ene-3,17-dione in such microsomal preparations. Androst-4-ene-3,6,17-trione, therefore, appears to uncouple the 19-hydroxylation of androgens from estrogen synthesis. This agent also produced only a minimal inhibition of 7-ethoxycoumarin deethylation, indicating that this major constitutive transformation of a xenobiotic chemical is associated with the steroid 19-hydroxylating function of the aromatase system.  相似文献   

18.
The known involvement of axillary microflora with under-arm odour (UAO) production led us to determine whether the odorous 16-androstene steroids are formed in the axilla by bacterial metabolism of an odourless precursor such as testosterone. Axillary bacteria from 34 men were selectively cultured for aerobic coryneform bacteria (ACB), Micrococcaceae and propionibacteria. Overnight suspensions of bacteria were incubated separately at 37°C for two weeks with radiolabelled testosterone plus unlabelled testosterone (0.5 mg) and 0.5-mg quantities of 4,16-androstadien-3-one (androstadienone) and 5,16-androstadien-3β-ol (androstadienol). After extraction and purification by Sep-Pak cartridges and thin-layer chromatography, the eluted steroids were derivatised as the pentafluorobenzyl oximes (PFBO) and tert.-butyl dimethylsilyl (TBDMS) ethers. Saturated analogues were used as internal standards. Selected-ion monitoring electron-impact mass spectrometry was performed at the m/z corresponding to the M+ ion for the PFBO derivatives and the [M − 57]+ ion for the TBDMS ethers. Only ACB produced classical musk-like UAO (UAO +ve) in an in vitro odour-producing system with 29% being UAO −ve. ACB (UAO +ve) metabolised far more (p = 0.001) testosterone than ACB (UAO −ve), the principal metabolites being 5α(β)-dihydrotestosterone, 5α(β)-androstane-3,17-dione and 4-androstene-3,17-dione (4-androstenedione). No non-polar 16-androstenes were formed. Micrococcus luteus (ten strains) metabolised testosterone to 4-androstenedione only; propionibacterium spp. did not metabolise testosterone at all. However, incubation of 16-androstenes with ACB gave evidence for 4-ene-5α(β)-reduction, 3α(β)-oxido-reduction and epimerisation. In general the direction of transformations favoured formation of the more odorous 5α-androst-16-en-3-one (5α-androstenone) and 5α-androst-16-en-3α-ol (3α-androstenol) from less odorous steroids. Such transformations, in vivo, would not require de novo synthesis of 5α-androstenone or 3α-androstenol and would be consistent with utilisation by ACB of 16-androstenes already present in small quantities in fresh apocrine secretions, which are odourless, to produce a more powerfully smelling mixture on the axillary skin surface.  相似文献   

19.
Steroids metabolism plays an important role in mammals and contributes to quality of pig meat. The main objective of this study was to identify metabolites of androstenone, 17β-estradiol and dihydrotestosterone using primary cultured pig hepatocytes as a model system. The role of 3β-hydroxysteroid dehydrogenase (3βHSD) in regulation of steroid metabolism was also validated using trilostane, a specific 3βHSD inhibitor. Steroid glucuronide conjugated metabolites were detected by liquid chromatography time of flight mass spectrometry (LC-TOF-MS). 3βHSD enzyme was essential for metabolism of androstenone to 5α-androst-16-en-3β-ol, which then formed androstenone glucuronide conjugate. Metabolism of 17β-estradiol was accompanied by formation of glucuronide-conjugated estrone and glucuronide-conjugated estradiol. The ratio of the two metabolites was around 5∶1. 3βHSD enzyme was not involved in 17β-estradiol metabolism. 5α-Dihydrotestosterone-17β-glucuronide was identified as a dihydrotestosterone metabolite, and this metabolism was related to 3βHSD enzyme activity as demonstrated by inhibition study.  相似文献   

20.
Cytochrome P450 monooxygenases (P450s), which constitute a superfamily of heme-containing proteins, catalyze the direct oxidation of a variety of compounds in a regio- and stereospecific manner; therefore, they are promising catalysts for use in the oxyfunctionalization of chemicals. In the course of our comprehensive substrate screening for all 27 putative P450s encoded by the Streptomyces griseus genome, we found that Escherichia coli cells producing an S. griseus P450 (CYP154C3), which was fused C terminally with the P450 reductase domain (RED) of a self-sufficient P450 from Rhodococcus sp., could transform various steroids (testosterone, progesterone, Δ4-androstene-3,17-dione, adrenosterone, 1,4-androstadiene-3,17-dione, dehydroepiandrosterone, 4-pregnane-3,11,20-trione, and deoxycorticosterone) into their 16α-hydroxy derivatives as determined by nuclear magnetic resonance and high-resolution mass spectrometry analyses. The purified CYP154C3, which was not fused with RED, also catalyzed the regio- and stereospecific hydroxylation of these steroids at the same position with the aid of ferredoxin and ferredoxin reductase from spinach. The apparent equilibrium dissociation constant (Kd) values of the binding between CYP154C3 and these steroids were less than 8 μM as determined by the heme spectral change, indicating that CYP154C3 strongly binds to these steroids. Furthermore, kinetic parameters of the CYP154C3-catalyzed hydroxylation of Δ4-androstene-3,17-dione were determined (Km, 31.9 ± 9.1 μM; kcat, 181 ± 4.5 s−1). We concluded that CYP154C3 is a steroid D-ring 16α-specific hydroxylase which has considerable potential for industrial applications. This is the first detailed enzymatic characterization of a P450 enzyme that has a steroid D-ring 16α-specific hydroxylation activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号