首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hepatitis B core antigen (HBcAg)-specific T cell lines were established from hepatic lymphomononuclear cells derived from five patients with chronic active hepatitis B. No hepatitis B virus envelope antigen-specific cell lines were established. Proliferation in response to recombinant and native HBcAg, but not to native hepatitis B surface antigen containing the pre-S(2) region, confirmed the specificity of the five T cell lines. All cell lines represented mixed populations of CD4+ and CD8+ T cells. The CD4+ subset provided antigen-specific help to autologous B cells with respect to anti-HBc production and to CD8+ cells with regard to HBcAg-induced proliferation and suppressor activity. The CD8+ subset contained suppressor cells that selectively inhibited the proliferative response of autologous HBcAg-specific CD4+ cells without inhibiting CD4+ cells of unrelated specificity (tetanus toxoid). Moreover, the CD8+ cells were also capable of suppressing HBcAg-stimulated antibody to HBcAg production without showing inhibition of total immunoglobulin production stimulated by pokeweed mitogen. The cytotoxic potential of the T cell lines was established in a lectin-dependent cytotoxicity system; natural killer cytotoxicity was completely absent. Our data suggest that the lesional T cells present at the site of hepatocellular injury in chronic active hepatitis B are primarily HBcAg-specific lymphocytes of the helper and suppressor/cytotoxic phenotypes and that both are functionally competent.  相似文献   

2.
We have previously reported the establishment and preliminary characterization of polyclonal hepatitis B virus (HBV) nucleoprotein (HBcAg)-specific CD4+ and CD8+ T cell lines derived from the hepatic lymphomononuclear cell infiltrate of several patients with chronic active hepatitis B. The isolated subsets from these lines were specifically activated by HBcAg and displayed antigen-specific help and suppression with respect to proliferation of the alternate subset. One of these lines was recently cloned by limiting dilution, and four HBcAg-specific CD3+ CD4+ CD8-DR+ T cell lines were produced that had a 95.3% likelihood of monoclonality. Antigenic specificity was confirmed by dose-dependent, HLA class II (DR)-restricted proliferation in response to recombinant and human serum-derived HBcAg and the lack of proliferation to HBV envelope antigens (HBsAg and pre-S(2)Ag). All cloned lines were interleukin 2 dependent, produced interferon-gamma in an antigen-specific manner, and provided antigen-specific help to autologous B cells with respect to anti-HBc production. We conclude that HBcAg-specific, HLA-class II restricted helper T cells capable of inducing antigen-specific functional responses by autologous B lymphocytes and T lymphocytes are present at the site of viral antigen synthesis and hepatocellular injury in HBV infection.  相似文献   

3.
Chronic hepatitis B virus (HBV) infection is the result of an inadequate antiviral immune response to the virus. In this study, we aimed to investigate whether the soluble CD40 ligand-activated B (CD40-B) cells could present antigen and induce specific cytotoxic T lymphocytes (CTLs) in patients with chronic HBV infection. We observed that after activated by sCD40L, the expression of CD80, CD86, major histocompatibility complex (MHC) I and II molecules on the CD40-B cells was significantly increased. Cytometry and fluorescence microscopy showed that more than 41.34% CD40-B cells were loaded by the HBcAg peptide. Furthermore, after been activated and HBcAg18–27 antigen peptide pulsed, B cells obtained from patients with chronic HBV infection could induce HBcAg18–27 specific CTLs in vitro. Taken together, our results show that B cells from patients with chronic HBV infection can be activated by sCD40L and may function as antigen presenting cells and induce HBV-specific CTLs.  相似文献   

4.
There are estimated to be 350 million chronic carriers of hepatitis B infection worldwide. Patients with chronic hepatitis B are at risk of liver cirrhosis with associated mortality because of hepatocellular carcinoma and other complications. An important goal, therefore, is the development of an effective therapeutic vaccine against chronic hepatitis B virus (HBV). A major barrier to the development of such a vaccine is the impaired immune response to HBV antigens observed in the T cells of affected patients. One strategy to overcome these barriers is to activate mucosal T cells through the use of nasal vaccination because this may overcome the systemic immune downregulation that results from HBV infection. In addition, it may be beneficial to present additional HBV epitopes beyond those contained in the traditional hepatitis B surface antigen (HbsAg) vaccine, for example, by using the hepatitis B core antigen (HBcAg). This is advantageous because HBcAg has a unique ability to act as a potent Th1 adjuvant to HbsAg, while also serving as an immunogenic target. In this study we describe the effect of coadministration of HBsAg and HBcAg as part of a strategy to develop a more potent and effective HBV therapeutic vaccine.  相似文献   

5.
Zenker-fixed paraffin-embedded sections of biopsy liver tissue from 64 cases of primary hepatocellular carcinoma (PHC) were stained for hepatitis B surface antigen (HBsAg) and for hepatitis B core antigen (HBcAg) by histochemical and/or immunohistochemical techniques in a retrospective study. PHC arose in livers with postnecrotic cirrhosis in 30 (46.9%) cases. Controls included liver biopsy sections from 123 miscellaneous liver disorders and from 67 randomly selected autopsy specimens, none of which were known to be associated with hepatitis B virus (HBV) infection. HBsAg was detected in tumorous hepatocytes in only one of the 64 cases of PHC. HBsAg was identified in nontumorous hepatocytes of 8 (20%) of 40 specimens that contained adequate nontumorous liver tissue. All of these HBsAg positive cases of PHC were associated with cirrhosis. Thus HBsAg was detected in 8 (33.3%) of 24 cases of PHC with cirrhosis, but in none of the remaining 16 cases without cirrhosis. HBcAg was not detected in the hepatocytes of those HBsAg positive PHC cases tested. Our results suggest that HBV infection may successively lead to chronic hepatitis, cirrhosis and ultimately PHC.  相似文献   

6.
BackgroundChronic Hepatitis B virus (HBV) infection can lead to the development of chronic hepatitis, cirrhosis and hepatocellular carcinoma. We hypothesized that HBV might accelerate hepatocyte ageing and investigated the effect of HBV on hepatocyte cell cycle state and biological age. We also investigated the relation between inflammation, fibrosis and cell cycle phase.MethodsLiver samples from patients with chronic HBV (n = 91), normal liver (n = 55) and regenerating liver (n = 15) were studied. Immunohistochemistry for cell cycle phase markers and HBV antigens was used to determine host cell cycle phase. Hepatocyte-specific telomere length was evaluated by quantitative fluorescent in-situ hybridization (Q-FISH) in conjunction with hepatocyte nuclear area and HBV antigen expression. The effects of induced cell cycle arrest and induced cellular senescence on HBV production were assessed in vitro.Results13.7% hepatocytes in chronic HBV had entered cell cycle, but expression of markers for S, G2 and M phase was low compared with regenerating liver. Hepatocyte p21 expression was increased (10.9%) in chronic HBV and correlated with liver fibrosis. Mean telomere length was reduced in chronic HBV compared to normal. However, within HBV-affected livers, hepatocytes expressing HBV antigens had longer telomeres. Telomere length declined and hepatocyte nuclear size increased as HBV core antigen (HBcAg) expression shifted from the nucleus to cytoplasm. Nuclear co-expression of HBcAg and p21 was not observed. Cell cycle arrest induced in vitro was associated with increased HBV production, in contrast to
in vitro induction of cellular senescence, which had no effect.ConclusionChronic HBV infection was associated with hepatocyte G1 cell cycle arrest and accelerated hepatocyte ageing, implying that HBV induced cellular senescence. However, HBV replication was confined to biologically younger hepatocytes. Changes in the cellular location of HBcAg may be related to the onset of cellular senescence.  相似文献   

7.
Hepatitis B core (HBc)Ag-specific T cells present in the peripheral blood of a patient with chronic active hepatitis B were expanded by co-cultivation for 7 days with rHBcAg. After cloning at 1 cell/well in the presence of PHA and IL-2, five HBcAg-specific CD4+ cloned lines were obtained. All five lines proliferated and produced IL-2, IFN-gamma, and TNF in a dose-dependent fashion in response to HBcAg, but not to HBV envelope Ag. The cloned lines and derivative clones were HLA class II (DR1) restricted. All T cell clones were able to induce anti-HBc production by autologous B cells in response to HBcAg (helper effect). The proliferative response and the helper effect of the HBcAg-specific T cell lines and clones were augmented by co-cultivation with an autologous, autoreactive (HLA-DQ1 specific) T cell clone, even in the absence of HBcAg, and the autoreactive T cells directly stimulated anti-HBc secretion by autologous B cells, presumably due to the release of Ag-nonspecific factors. These findings define a model immunoregulatory circuit the physiologic significance of which remains to be determined.  相似文献   

8.
Hepatitis B virus (HBV) expresses two structural forms of the nucleoprotein, the intracellular nucleocapsid (hepatitis core antigen [HBcAg]) and the secreted nonparticulate form (hepatitis e antigen [HBeAg]). The aim of this study was to evaluate the ability of HBcAg- and HBeAg-specific genetic immunogens to induce HBc/HBeAg-specific CD4+/CD8+ T-cell immune responses and the potential to induce liver injury in HBV-transgenic (Tg) mice. Both the HBcAg- and HBeAg-specific plasmids primed comparable immune responses. Both CD4+ and CD8+ T cells were important for priming/effector functions of HBc/HBeAg-specific cytotoxic T-lymphocyte (CTL) responses. However, a unique two-step immunization protocol was necessary to elicit maximal CTL priming. Genetic vaccination did not prime CTLs in HBe- or HBc/HBeAg-dbl-Tg mice but elicited a weak CTL response in HBcAg-Tg mice. When HBc/HBeAg-specific CTLs were adoptively transferred into HBc-, HBe-, and HBc/HBeAg-dbl-Tg mice, the durations of the liver injury and inflammation were significantly greater in HBeAg-Tg recipient mice than in HBcAg-Tg mice. Importantly, liver injury in HBc/HBeAg-dbl-Tg mice was similar to the injury observed in HBeAg-Tg mice. Loss of HBeAg synthesis commonly occurs during chronic HBV infection; however, the mechanism of selection of HBeAg-negative variants is unknown. The finding that hepatocytes expressing wild-type HBV (containing both HBcAg and HBeAg) are more susceptible to CTL-mediated clearance than hepatocytes expressing only HBcAg suggest that the HBeAg-negative variant may have a selective advantage over wild-type HBV within the livers of patients with chronic infection during an immune response and may represent a CTL escape mutant.  相似文献   

9.
L. Spence  M. Fauvel 《CMAJ》1976,115(10):998-1000
Hepatitis B core antigen (HBcAg) is found on the decoated Dane particle and on a morphologically similar particle detected mainly in the nucleus of hepatocytes of patients with hepatitis B. HBcAg prepared from the liver of a chimpanzee infected with hepatitis B virus was used to test human serum for core antibody (anti-HBc) by complement fixation. Anti-HBc was found in serum collected from patients with hepatitis B in both the acute and convalescent stages, from carriers of hepatitis B surface antigen (HBsAg) and from patients with chronic liver or renal disease who were carriers of HBsAg. It was not found in patients with hepatitis A or infectious mononucleosis, or in healthy persons who were not carriers of HBsAg.  相似文献   

10.
The patterns of Hepatitis B surface antigen (HBsAg) and Hepatitis B core antigen (HBcAg) expression were studied in liver biopsies taken from 41 patients with chronic HBV disease. Immunohistochemical methods were used on deparaffinized sections for the identification of HBsAg and HBcAg in liver tissue. Twenty-one of the 41 cases (51.2%) were classified as inactive liver disease and 20 (48.8%) as active liver disease. In liver biopsies with inactive disease, HBsAg demonstrated varying types of cytoplasmic expression in a rather high number of hepatocytes distributed mainly in clusters, while HBcAg was rarely expressed in liver nuclei. On the other hand, in liver biopsies with active disease HBsAg was characterized by a diffuse cytoplasmic expression in a few discrete hepatocytes, while HBcAg was expressed in the nuclei of the hepatocytes in 70% of the cases and in half of the positive cases it was also detected in the cytoplasm. In conclusion, HBsAg expression in a few scattered hepatocytes correlates with active liver disease and positive HBcAg, while varying HBsAg cytoplasmic expression in a rather high number of clustered hepatocytes is related to chronic inactive liver disease and negative expression of HBcAg.  相似文献   

11.
Secretion of the hepatitis B virus (HBV) e antigen (HBeAg) has been conserved throughout the evolution of hepadnaviruses. However, the function of this secreted form of the viral nucleoprotein remains enigmatic. It has been suggested that HBeAg functions as an immunomodulator. We therefore examined the possibility that the two structural forms of the viral nucleoprotein, the particulate HBV core (HBcAg) and the nonparticulate HBeAg, may preferentially elicit different T helper (Th) cell subsets. For this purpose, mice were immunized with recombinant HBcAg and HBeAg in the presence and absence of adjuvants, and the immunoglobulin G (IgG) isotype profiles of anti-HBc and anti-HBe antibodies were determined. Second, in vitro cytokine production by HBcAg- and HBeAg-primed Th cells was measured. The immunogenicity of HBcAg, in contrast to that of HBeAg, did not require the use of adjuvants. Furthermore, HBcAg elicited primarily IgG2a and IgG2b anti-HBc antibodies, with a low level of IgG3, and no IgG1 anti-HBc antibodies. In contrast, the anti-HBe antibody response was dominated by the IgG1 isotype; low levels of IgG2a or IgG2b anti-HBe antibodies and no IgG3 anti-HBe antibodies were produced. Cytokine production by HBcAg- and HBeAg-primed Th cells was consistent with the IgG isotype profiles. HBcAg-primed Th cells efficiently produced interleukin-2 (IL-2) and gamma interferon (IFN-gamma) and low levels of IL-4. Conversely, efficient IL-4 production and lesser amounts of IFN-gamma were elicited by HBeAg immunization. The results indicate that HBcAg preferentially, but not exclusively, elicits Th1-like cells and that HBeAg preferentially, but not exclusively, elicits Th0 or Th2-like cells. Because HBcAg and the HBeAg are cross-reactive in terms of Th cell recognition, these findings demonstrate that Th cells with the same specificity can develop into different Th subsets based on the structural form of the immunogen. These results may have relevance to chronic HBV infection. Circulating HBeAg may downregulate antiviral clearance mechanisms by virtue of eliciting anti-inflammatory Th2-like cytokine production. Last, the influence of antigen structure on Th cell phenotype was not absolute and could be modulated by in vivo cytokine treatment. For example, IFN-alpha treatment inhibited HBeAg-specific Th2-mediated antibody production and altered the IgG anti-HBe isotype profile toward the Th1 phenotype.  相似文献   

12.
Overcoming hepatitis B virus infection essentially depends on the appropriate immune response of the infected host. Among the hepatitis B virus antigens, the core (HBcAg) and e (HBeAg) proteins appear highly immunogenic and induce important lymphocyte effector functions. In order to investigate the importance of HBcAg/HBeAg-specific T lymphocytes in patients with acute and chronic hepatitis B and to identify immunodominant epitopes within the HBcAg/HBeAg, CD4+ T-cell responses to hepatitis B virus-encoded HBcAg and HBcAg/HBeAg-derived peptides were studied in 49 patients with acute and 39 patients with chronic hepatitis B. The results show a frequent antigen-specific CD4+ T-cell activation during acute hepatitis B infection, a rare HBcAg/HBeAg-specific CD4+ T-cell response among HBeAg+ chronic carriers, and no response in patients with anti-HBe+ chronic hepatitis. An increasing CD4+ T-cell response to HBcAg/HBeAg coincides with loss of HBeAg and hepatitis B virus surface antigen (HBsAg). Functional analysis of peptide-specific CD4+ T-cell clones revealed a heterogeneous population with respect to lymphokine production. Epitope mapping within the HBcAg/HBeAg peptide defined amino acids (aa) 1 to 25 and aa 61 to 85, irrespective of the HLA haplotype, as the predominant CD4+ T-cell recognition sites. Other important sequences could be identified in the amino-terminal part of the protein, aa 21 to 45, aa 41 to 65, and aa 81 to 105. The immunodominant epitopes are expressed in both proteins, HBcAg and HBeAg. Our findings lead to the conclusion that activation of CD4+ T lymphocytes by HBcAg/HBeAg is a prerequisite for viral elimination, and further studies have to focus on the question of how to enhance or induce this type of T-cell response in chronic carriers. The immunodominant viral sequences identified may have relevance to synthetic vaccine design and to the use of peptide T-cell sites as immunotherapeutic agents in chronic infection.  相似文献   

13.
The hepatitis B virus (HBV) core (HBc) antigen (HBcAg) is a highly immunogenic subviral particle. Studies with mice have shown that HBcAg can bind and activate B cells in a T-cell-independent fashion. By using a human peripheral blood leukocyte (hu-PBL)-Nod/LtSz-Prkdc(scid)/Prkdc(scid) (NOD/SCID) mouse model, we show here that HBcAg also activates human B cells in vivo in a T-cell-independent way. HBcAg was capable of inducing the secretion of HBcAg-binding human immunoglobulin M (IgM) in naive human B cells derived from adult human and neonatal (cord blood) donors when these hu-PBL were transferred directly into the spleens of optimally conditioned NOD/SCID mice. No such responses were found in chimeric mice that were given hu-PBL plus HBV e antigen or hu-PBL plus phosphate-buffered saline. In addition, HBcAg activated purified human B cells to produce anti-HBc IgM in the chimeric mice, thus providing evidence that HBcAg behaves as a T-cell-independent antigen in humans. However, HBcAg-activated hu-PBL from naive donors were unable to switch from IgM to IgG production, even after a booster dose of HBcAg. Production of HBcAg-specific IgG could only be induced when hu-PBL from subjects who had recovered from or had an ongoing chronic HBV infection were transferred into NOD/SCID mice. Our data suggest that humans also have a population of naive B cells that can bind HBcAg and is subsequently activated to produce HBcAg-binding IgM.  相似文献   

14.
The proliferative response of PBMC to hepatitis B virus (HBV) envelope, core, and e Ag was analyzed prospectively in 21 patients with acute self-limited HBV infection and compared with the response of patients with chronic HBV infection and different levels of HBV replication (i.e., hepatitis e Ag (HBeAg)- or anti-HBe-positive) and liver damage (i.e., chronic active hepatitis or chronic asymptomatic carriers). Our results indicate that: 1) HBV-infected subjects who develop a self-limited acute hepatitis show a vigorous PBMC response to hepatitis B core Ag and HBeAg, as expression of T cell activation; 2) appearance of a detectable lymphocyte response to HBV nucleocapsid Ag is temporally associated with the clearance of HBV envelope Ag; 3) in patients with chronic HBV infection the level of T cell responsiveness to hepatitis B core Ag and to HBeAg is significantly lower than that observed during acute infection; 4) T cell sensitization to HBV envelope Ag in acute and chronic HBV infection is usually undetectable and when measurable is expressed transiently and at low levels. These results may reflect immune events of pathogenetic relevance with respect to evolution of disease and viral clearance.  相似文献   

15.
Summary Using light and ultrastructural immunoperoxidase techniques, we examined the distribution of hepatitis B virus (HBV)-associated antigens and the subcellular localization of hepatitis B surface antigen (HBsAg) in liver biopsies of HBsAg—positive patients with cirrhosis. The localization patterns of HBsAg in hepatocytes were membranous, cytoplasmic, festoon and inclusion body types. Cytoplasmic and festoon types were seen more often than the membranous type in pseudolobules, and hepatitis B core antigen (HBcAg)—positive cells with cytoplasmic type were distributed in the periphery of pseudolobules with active inflammation. Immunoelectron microscopy in the cytoplasmic or festoon type of HBsAg showed immunoreaction in the cisternae and on virus-like particles in the cisternae in patients with hepatitis B e antigen (HBeAg) antigenemia. Simultaneous staining of HBsAg and HBcAg revealed that hepatocytes with cytoplasmic or festoon type of HBsAg contained HBcAg—immunoreactivity. The inclusion body type of HBsAg was characteristic of liver cirrhosis with hepatocellular carcinoma (HCC); the subcellular localization of HBsAg was seen in clusters of the endoplasmic reticulum around the nucleus, and HBsAg—immunoreactivity was observed on many virus-like particles in most of the cisternae in those with HBeAg antigenemia. These findings suggest that the synthesis of HBsAg is active in patients with liver cirrhosis and that the formation of HBV is also active in those with HBeAg antigenemia and that HBV may be retained more in cirrhotic livers with hepatocellular carcinoma after proliferation than in those without it.  相似文献   

16.
针对HBV感染的治疗性DNA疫苗虽然具有很好的应用前景,但目前抗病毒效果并不高,表明在病毒长期感染过程中存在免疫抑制机制。以HBV的表面蛋白(HBsAg)和核心蛋白(HBcAg)为DNA疫苗抗原,采用gp96和HSP70作为佐剂联合电转以提高疫苗的活性。将gp96为佐剂的HBsAg/HBcAg DNA疫苗免疫HBV转基因鼠后引发抗原特异性的细胞免疫和体液免疫应答。使用gp96和HSP70佐剂引起Treg下调20%。与没有免疫的小鼠相比,以gp96和HSP70为佐剂的DNA疫苗显著降低血清中病毒S抗原水平和DNA拷贝数,大幅降低小鼠肝脏中HBc的表达。该研究为设计以gp96为佐剂的乙肝治疗性DNA疫苗提供了依据。  相似文献   

17.

Background

Chronic hepatitis B virus (HBV) infection remains incurable. Although HBsAg-specific chimeric antigen receptor (HBsAg-CAR) T cells have been generated, they have not been tested in animal models with authentic HBV infection.

Methods

We generated a novel CAR targeting HBsAg and evaluated its ability to recognize HBV+ cell lines and HBsAg particles in vitro. In vivo, we tested whether human HBsAg-CAR T cells would have efficacy against HBV-infected hepatocytes in human liver chimeric mice.

Results

HBsAg-CAR T cells recognized HBV-positive cell lines and HBsAg particles in vitro as judged by cytokine production. However, HBsAg-CAR T cells did not kill HBV-positive cell lines in cytotoxicity assays. Adoptive transfer of HBsAg-CAR T cells into HBV-infected humanized mice resulted in accumulation within the liver and a significant decrease in plasma HBsAg and HBV-DNA levels compared with control mice. Notably, the fraction of HBV core–positive hepatocytes among total human hepatocytes was greatly reduced after HBsAg-CAR T cell treatment, pointing to noncytopathic viral clearance. In agreement, changes in surrogate human plasma albumin levels were not significantly different between treatment and control groups.

Conclusions

HBsAg-CAR T cells have anti-HBV activity in an authentic preclinical HBV infection model. Our results warrant further preclinical exploration of HBsAg-CAR T cells as immunotherapy for HBV.  相似文献   

18.
Acute exacerbations (AEs) of chronic hepatitis B (CH-B) are accompanied by increased T cell responses to hepatitis B core and e antigens (HBcAg/HBeAg). Why patients are immunotolerant (IT) to the virus and why AEs occur spontaneously on the immunoactive phase remain unclear. The role of HBcAg-specific CD4(+)CD25(+) regulatory T (T(reg)) cells in AE and IT phases was investigated in this study. The SYFPEITHI scoring system was employed to predict MHC class II-restricted epitope peptides on HBcAg overlapping with HBeAg that were used for T(reg)-cell cloning and for the construction of MHC class II tetramers to measure T(reg) cell frequencies (T(reg) f). The results showed that HBcAg-specific T(reg) f declined during AE accompanied by increased HBcAg peptide-specific cytotoxic T lymphocyte frequencies. Predominant Foxp3-expressing T(reg) cell clones were generated from patients on the immune tolerance phase, while the majority of Th1 clones were obtained from patients on the immunoactive phase. T(reg) cells from liver and peripheral blood of CH-B patients express CD152 and PD1 antigens that exhibit suppression on PBMCs proliferation to HBcAg. These data suggest that HBcAg peptide-specific T(reg) cells modulate the IT phase, and that their decline may account for the spontaneous AEs on the natural history of chronic hepatitis B virus infection.  相似文献   

19.
Liver inflammation after chronic hepatitis B virus (HBV) infection is essential for hepatocellular carcinoma (HCC) development. We did a nested case-control study based on QBC chronic HBV infection cohort to identify HCC-related inflammatory cytokines. Serum levels of distinct Th-cell representative cytokines at varied periods before HCC diagnosis were determined in 50 HCC cases and 150 age- and gender-matched controls who did not develop HCC in 8–10?years. The individuals with HCC outcome had statistically higher serum levels of IL-23 than controls (P?<?0.01). Further analysis in HCC tissues showed that CD14+ inflammatory macrophages were the major IL-23 producers. Monocytes-derived macrophages generated more amount of IL-23 after being stimulated with cell-associated HBV core antigen from damaged HBV-infected hepatocytes than the cells being stimulated with HBV-S and HBV e antigen, which are secreted from infected hepatocytes. IL-23 upregulated IL-23 receptor expressions on macrophages, enhanced macrophage-mediated angiogenesis. In HBV-transgenic (Alb1HBV) mice, administration of diethylnitrosamine induced more liver tumors than in wild-type mice. The livers of Alb1HBV mice had higher concentrations of IL-23 and vascular endothelial growth factor (VEGF) than the wild-type mice. Neutralizing IL-23 activity, diethylnitrosamine-treated Alb1HBV mice developed significantly less tumors and produced less VEGF, tumor angiogenesis was inhibited with dramatically decreased CD31+ cells within tumor mass (all P?<?0.01).

Conclusion

Persistent IL-23 generation of liver inflammatory macrophages responding to damaged hepatocytes after chronic HBV infection altered macrophage function for HCC promotion. Blocking IL-23 activity might be helpful for the intervention in chronic hepatitis B patients who had high risk to HCC.  相似文献   

20.
Peripheral T-cell subsets in asymptomatic hepatitis B-virus carriers   总被引:6,自引:0,他引:6  
To ascertain whether the abnormalities of circulating T-cell subsets in patients with hepatitis B virus (HBV)-related chronic liver diseases represent the primary immunological process or are secondary to liver disease process, peripheral T-cell subsets were analyzed by indirect immunofluorescence using monoclonal antibodies against total T cells (OKT3), T helper/inducer cells (OKT4), and T suppressor/cytotoxic cells (OKT8), in 30 asymptomatic HBV carriers without biochemical or histological evidence of liver disease, and the results were compared to 15 HBV-induced chronic active liver diseases. The results revealed that OKT4/OKT8 ratios were significantly reduced in 15 hepatitis B e antigen (HBeAg)-positive asymptomatic carriers as compared with controls, with decreased OKT4-positive cells and increased OKT8-positive cells, while T-cell subsets and ratios were normal in 15 hepatitis B e antibody (anti-HBe)-positive asymptomatic carriers. The changes of circulating T-cell subsets in 15 HBe-Ag-positive asymptomatic carriers showed no significant difference from those of 15 HBeAg-positive patients with chronic active liver diseases. These findings suggest that the deranged T-cell subsets in chronic HBV infection are not secondary to liver cell damage, but might represent the underlying immunological abnormalities which are closely related to HBeAg/anti-HBe status, and that the pathogenetic mechanism of liver cell damage in chronic HBV infection may not be simply related to circulating T-cell subsets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号