首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
2.
3.
4.
5.
6.
7.
Fetal cells migrate into the mother during pregnancy. Fetomaternal transfer probably occurs in all pregnancies and in humans the fetal cells can persist for decades. Microchimeric fetal cells are found in various maternal tissues and organs including blood, bone marrow, skin and liver. In mice, fetal cells have also been found in the brain. The fetal cells also appear to target sites of injury. Fetomaternal microchimerism may have important implications for the immune status of women, influencing autoimmunity and tolerance to transplants. Further understanding of the ability of fetal cells to cross both the placental and blood-brain barriers, to migrate into diverse tissues, and to differentiate into multiple cell types may also advance strategies for intravenous transplantation of stem cells for cytotherapeutic repair. Here we discuss hypotheses for how fetal cells cross the placental and blood-brain barriers and the persistence and distribution of fetal cells in the mother.Key Words: fetomaternal microchimerism, stem cells, progenitor cells, placental barrier, blood-brain barrier, adhesion, migrationMicrochimerism is the presence of a small population of genetically distinct and separately derived cells within an individual. This commonly occurs following transfusion or transplantation.13 Microchimerism can also occur between mother and fetus. Small numbers of cells traffic across the placenta during pregnancy. This exchange occurs both from the fetus to the mother (fetomaternal)47 and from the mother to the fetus.810 Similar exchange may also occur between monochorionic twins in utero.1113 There is increasing evidence that fetomaternal microchimerism persists lifelong in many child-bearing women.7,14 The significance of fetomaternal microchimerism remains unclear. It could be that fetomaternal microchimerism is an epiphenomenon of pregnancy. Alternatively, it could be a mechanism by which the fetus ensures maternal fitness in order to enhance its own chances of survival. In either case, the occurrence of pregnancy-acquired microchimerism in women may have implications for graft survival and autoimmunity. More detailed understanding of the biology of microchimeric fetal cells may also advance progress towards cytotherapeutic repair via intravenous transplantation of stem or progenitor cells.Trophoblasts were the first zygote-derived cell type found to cross into the mother. In 1893, Schmorl reported the appearance of trophoblasts in the maternal pulmonary vasculature.15 Later, trophoblasts were also observed in the maternal circulation.1620 Subsequently various other fetal cell types derived from fetal blood were also found in the maternal circulation.21,22 These fetal cell types included lymphocytes,23 erythroblasts or nucleated red blood cells,24,25 haematopoietic progenitors7,26,27 and putative mesenchymal progenitors.14,28 While it has been suggested that small numbers of fetal cells traffic across the placenta in every human pregnancy,2931 trophoblast release does not appear to occur in all pregnancies.32 Likewise, in mice, fetal cells have also been reported in maternal blood.33,34 In the mouse, fetomaternal transfer also appears to occur during all pregnancies.35  相似文献   

8.
Peptide signaling regulates a variety of developmental processes and environmental responses in plants.16 For example, the peptide systemin induces the systemic defense response in tomato7 and defensins are small cysteine-rich proteins that are involved in the innate immune system of plants.8,9 The CLAVATA3 peptide regulates meristem size10 and the SCR peptide is the pollen self-incompatibility recognition factor in the Brassicaceae.11,12 LURE peptides produced by synergid cells attract pollen tubes to the embryo sac.9 RALFs are a recently discovered family of plant peptides that play a role in plant cell growth.Key words: peptide, growth factor, alkalinization  相似文献   

9.
10.
A series of works have described an important role of chemical signaling compounds in generation of the stress response of plants in both the wounded and distant undamaged plant tissues. However, pure chemical signals are often not considered in the fast (minutes) long-distance signaling (systemic response) because of their slow propagation speed. Physical signals (electrical and hydraulic) or a combination of the physical and chemical signals (hydraulic dispersal of solutes) have been proposed as possible linkers of the local wound and the rapid systemic response. We have recently demonstrated an evidence for involvement of chemical compounds (jasmonic and abscisic acids) in the rapid (within 1 hour) inhibition of photosynthetic rate and stomata conductance in distant undamaged tobacco leaves after local burning. The aim of this addendum is to discuss plausible mechanisms of a rapid long-distance chemical signaling and the putative interactions between the physical and chemical signals leading to the fast systemic response.Key Words: tobacco, local burning, systemic response, hydraulic surge, electrical signal, abscisic acid, jasmonic acidPlants have evolved an amazingly complex system of defence-related strategies to protect themselves upon local wounding.17 Important characteristics of self-defence responses of plants are their velocity and ubiquity. Indeed, fast (minutes to hours) responses to injurious factors have been detected in the site of injury and in distant regions (systemic response) in various plants.811 These findings suggest that a signal generated by an attack to one leaf is transmitted through a whole plant. Several kinds of chemical3,6 and physical12 signals induced by local wounding and even their combination13 have been implicated. However, a little is known about the interactions of these signals and about the mechanisms of initiation of the short-term systemic responses.We have used a model system—tobacco plants exposed to the local burning—to study the signals involved in rapid wound responses of photosynthetic apparatus.14 Local burning of an upper leaf of a tobacco plant induced rapid changes in surface electrical potential (within seconds) and a pronounced fast decline in the stomatal conductance, CO2 assimilation and transpiration (within minutes) in the basipetal direction (Fig. 1). Moreover, we have detected a fast (within minutes) transient increase in levels of endogenous abscisic acid (ABA) followed by a huge rapid rise in endogenous jasmonic acid (JA) in the leaf below the burned one. ABA and jasmonates are known to be involved in signaling pathways leading to stomatal closure and downregulation of photosynthesis.15,16 Increases in ABA and/or JA levels have only previously been detected in remote untreated tissues several hours after local wounding8,9 suggesting that chemical signals are too slow to induce rapid systemic response. Previous works have reported that fast physical (electrical) signals play an essential role in short-term systemic photosynthetic responses.11,17 However, a several-minutes delayed stomata closing response after the initiation of electrical potential changes has been reported in Mimosa18 and in our case in tobacco14 plants. Therefore, the guard cell deflation is most likely triggered not only by the electrical signal, but also by indirect factors. Based on close correlations, our results now provide a new evidence for the idea that chemical signals (ABA and mainly JA) participate in mediating the short-term systemic photosynthetic responses to local burning in tobacco plants.Open in a separate windowFigure 1The model of putative signalling pathways leading to the rapid systemic responses of tobacco plants to local burning. Hypothetical (dashed lines) local responses, generation of signals and transport processes and detected (full line) systemic responses are demonstrated. For details see the text.The question is how do the physical (electrical and/or hydraulic) and chemical signals act? They may independently induce specific elements of systemic responses. However, they are more likely to act in a coordinated, interactive fashion. In this scenario (see Fig. 1), within first minutes after the local burning, hydraulic surge transmitted basipetally and acropetally through the xylem would transport chemicals released at the wound site (hydraulic dispersal19) and evoke changes in the ion fluxes in surrounding living cells leading to the local electrical activity.12,13 The hypothesis of hydraulic dispersal is supported by our preliminary experiments with the fluorescent dye Rhodamine B applied on cut petiole of the upper leaf of tobacco plants showing that solutes can be rapidly transported (within minutes) basipetally following wounding.The rapid kinetics and transient character of ABA accumulation14 suggest that the main transport mechanism is the hydraulic dispersal in xylem. The participation of ABA in the generation of systemic electrical activity and/or vice versa cannot be ruled out.8,20A rapid hydraulically driven transport of chemicals in the xylem of wounded plant in a reversed (basipetal) direction19,21 to transpiration stream is not generally accepted. Exposing of leaves of undamaged plants to radioactive labelled molecules to determine the speed of chemical signal transport could be misrepresent, because hydraulic signal is not generated in undamaged plants and then the detected transport speed is too slow. Moreover, previous work22 demonstrated that neither the mass flow itself, nor the associated pressure changes induce the systemic response (the proteinase inhibitor activity). Thus, the efficacy of chemical agents in rapid systemic signaling seems to depend on transport by the mass flows associated with hydraulic signals.19However, hydraulic dispersal acts only for minutes, until all water released at the wound site is exhausted.21 A requirement for hydraulic dispersal of any solute is its presence in the wounded tissue at the time of wounding.19 Detected slower kinetics of JA accumulation than in the case of ABA and the huge rise of JA levels14 indicate a systemic accumulation of JA also by some additional processes.Does additional JA accumulation result from de-novo synthesis in undamaged leaves as a response to physical signal or does it result from a JA transport from the wounded leaves? In the longer time-frame the phloem transport23 should also be considered. Experiments with tomato plants have shown that de novo JA synthesis in distant leaves is not required for the systemic response and that biosynthesis of JA at the wound site is necessary for the generation of a systemic signal.7 Indeed, a short-term increase in endogenous concentrations of JA has been detected in wounded tissue in Nicotiana sylvestris9 and rice.10However, a rapid burst in the systemic JA accumulation found in our experiments14 would implicate an ultra-rapid and extreme JA accumulation at the wound site before its transport. The systemic JA accumulation (within 1 hour14) preceded the generation of enzymes involved in the JA biosynthesis in the wounded leaf.Thus, several processes are suggested to play a role in the ultra-rapid and huge JA accumulation:
  1. initiation of JA accumulation by preexisting enzymes,24
  2. fast release of free JA from its storage pools in cells (e.g., JA-conjugates25),
  3. direct uptake of elicitors (JA) by the phloem of the wounded leaf and exchange between the xylem and phloem as a consequence of severe wounds,26
  4. the mass flow (containing remaining JA) driven mainly acropetally in the xylem by transpiration after damping the hydraulic surge,21
  5. JA accumulation evoked by the fast transmitting physical (electrical or hydraulic) signal that leads to imbalances in ion fluxes,8,12,27
  6. JA accumulation (and subsequent transport) directly in the phloem, where JA biosynthetic enzymes are located (at least in tomato24),
  7. volatile chemical compounds (methylester of JA) spreading in the surrounding air of wounded leaf could serve as signaling molecules and sources of JA.25,28
The relevance of the above mentioned mechanisms should be checked by further research. Complex quantitative and kinetic analysis of JA and ABA content, levels of its biosynthetic derivatives (also volatiles in the surrounding air) and simultaneous physical signal detection in wounded and distant unwounded tissues would fill the remaining void about their role and interactions in the wound signal transduction networks. In addition, a suppression of other signaling pathways with similar transport kinetics (e.g., volatile compounds transmission, systemin and oligosaccharides generation and/or transport, using mutant plants) would be useful.Substantial similarity between the rapid physical (electrical) signaling in animal nervous system compared with the physical (electrical) signaling in plants has already been reported.29,30 Interaction of chemical and electrical signals is the process well documented for post-synaptic events in animals. Our data now strengthen the role of chemical signals next to the role of physical signals in plants in the rapid systemic wound response; such a role of chemicals in plants was often underestimated up to now.  相似文献   

11.
Depending on the threat to a plant, different pattern recognition receptors, such as receptor-like kinases, identify the stress and trigger action by appropriate defense response development.1,2 The plant immunity system primary response to these challenges is rapid accumulation of phytohormones, such as ethylene (ET), salicylic acid (SA), and jasmonic acid (JA) and its derivatives. These phytohormones induce further signal transduction and appropriate defenses against biotic threats.3,4 Phytohormones play crucial roles not only in the initiation of diverse downstream signaling events in plant defense but also in the activation of effective defenses through an essential process called signaling pathway crosstalk, a mechanism involved in transduction signals between two or more distinct, “linear signal transduction pathways simultaneously activated in the same cell.”5  相似文献   

12.
A role for SR proteins in plant stress responses   总被引:1,自引:0,他引:1  
  相似文献   

13.
14.
15.
16.
In our recent paper in the Plant Journal, we reported that Arabidopsis thaliana lysophospholipase 2 (lysoPL2) binds acyl-CoA-binding protein 2 (ACBP2) to mediate cadmium [Cd(II)] tolerance in transgenic Arabidopsis. ACBP2 contains ankyrin repeats that have been previously shown to mediate protein-protein interactions with an ethylene-responsive element binding protein (AtEBP) and a farnesylated protein 6 (AtFP6). Transgenic Arabidopsis ACBP2-overexpressors, lysoPL2-overexpressors and AtFP6-overexpressors all display enhanced Cd(II) tolerance, in comparison to wild type, suggesting that ACBP2 and its protein partners work together to mediate Cd(II) tolerance. Given that recombinant ACBP2 and AtFP6 can independently bind Cd(II) in vitro, they may be able to participate in Cd(II) translocation. The binding of recombinant ACBP2 to [14C]linoleoyl-CoA and [14C]linolenoyl-CoA implies its role in phospholipid repair. In conclusion, ACBP2 can mediate tolerance to Cd(II)-induced oxidative stress by interacting with two protein partners, AtFP6 and lysoPL2. Observations that ACBP2 also binds lysophosphatidylcholine (lysoPC) in vitro and that recombinant lysoPL2 degrades lysoPC, further confirm an interactive role for ACBP2 and lysoPL2 in overcoming Cd(II)-induced stress.Key words: acyl-CoA-binding protein, cadmium, hydrogen peroxide, lysophospholipase, oxidative stressAcyl-CoA-binding proteins (ACBP1 to ACBP6) are encoded by a multigene family in Arabidopsis thaliana.1 These ACBP proteins are well studied in Arabidopsis in comparison to other organisms,14 and are located in various subcellular compartments.1 Plasma membranelocalized ACBP1 and ACBP2 contain ankyrin repeats that have been shown to function in protein-protein interactions.5,6 ACBP1 and ACBP2 which share 76.9% amino acid identity also confer tolerance in transgenic Arabidopsis to lead [Pb(II)] and Cd(II), respectively.1,5,7 Since recombinant ACBP1 and ACBP2 bind linolenoyl-CoA and linoleoyl-CoA in vitro, they may possibly be involved in phospholipid repair in response to heavy metal stress at the plasma membrane.5,7 In contrast, ACBP3 is an extracellularly-localized protein8 while ACBP4, ACBP5 and ACBP6 are localized to cytosol.9,10 ACBP1 and ACBP6 have recently been shown to be involved in freezing stress.9,11 ACBP4 and ACBP5 bind oleoyl-CoA ester and their mRNA expressions are lightregulated.12,13 Besides acyl-CoA esters, some ACBPs also bind phospholipids.9,11,13 To investigate the biological function of ACBP2, we have proceeded to establish its interactors at the ankyrin repeats, including AtFP6,5 AtEBP6 and now lysoPL2 in the Plant Journal paper. While the significance in the interaction of ACBP2 with AtEBP awaits further investigations, some parallels can be drawn between those of ACBP2 with AtFP6 and with lysoPL2.  相似文献   

17.
To optimize photosynthetic activity, chloroplasts change their intracellular location in response to ambient light conditions; chloroplasts move toward low intensity light to maximize light capture and away from high intensity light to avoid photodamage. Although several proteins have been reported to be involved in chloroplast photorelocation movement response, any physical interaction among them was not found so far. We recently found a physical interaction between two plant-specific coiled-coil proteins, WEB1 (Weak Chloroplast Movement under Blue Light 1) and PMI2 (Plastid Movement Impaired 2), that were indentified to regulate chloroplast movement velocity. Since the both coiled-coil regions of WEB1 and PMI2 were classified into an uncharacterized protein family having DUF827 (DUF: Domain of Unknown Function) domain, it was the first report that DUF827 proteins could mediate protein-protein interaction. In this mini-review article, we discuss regarding molecular function of WEB1 and PMI2, and also define a novel protein family composed of WEB1, PMI2 and WEB1/PMI2-like proteins for protein-protein interaction in land plants.Key words: Arabidopsis, blue light, chloroplast velocity, coiled-coil region, organelle movement, phototropin, protein-protein interactionIntracellular locations of chloroplasts change in response to different light conditions to capture sunlight efficiently for energy production through photosynthesis. Chloroplasts move toward weak light to maximize light capture (the accumulation response),1,2 and away from strong light to reduce photodamage (the avoidance response).3 In higher plants such as Arabidopsis thaliana, the responses are induced by blue light-dependent manner.1,2 Recently, chloroplast actin (cp-actin) filaments were found to be involved in chloroplast photorelocation movement and positioning.4,5 The cp-actin filaments are localized at the interface between the chloroplast and the plasma membrane to anchor the chloroplast to the plasma membrane, and are relocalized to the leading edge of chloroplasts before and during the movement.4,5 The difference of cp-actin filament amounts between the front and the rear halves of chloroplasts determines the chloroplast movement velocity; as the difference increases, chloroplast velocity also increases.4,5Several proteins have been reported to be involved in chloroplast movement. The blue light receptors, phototropin 1 (phot1) and phot2, mediate the accumulation response,6 and phot2 solely mediates the avoidance response.7,8 Chloroplast Unusual Positioning 1 (CHUP1), Kinesin-like Protein for Actin-Based Chloroplast Movement 1 (KAC1) and KAC2 are involved in the cp-actin filament formation.4,911 Other proteins with unknown molecular function involved in the chloroplast movement responses have also been reported. They are J-domain Protein Required for Chloroplast Accumulation Response 1 (JAC1),12,13 Plastid Movement Impaired 1 (PMI1),14 a long coiled-coil protein Plastid Movement Impaired 2 (PMI2), a PMI2-homologous protein PMI15,15 and THRUMIN1.16Recently, we characterized two plant-specific coiled-coil proteins, Weak Chloroplast Movement under Blue Light 1 (WEB1) and PMI2, which regulate the velocity of chloroplast photorelocation movement.17 In this mini-review article, we discuss about molecular function of WEB1 and PMI2 in chloroplast photorelocation movement, and also define the WEB1/PMI2-related (WPR) protein family as a new protein family for protein-protein interaction.  相似文献   

18.
Non-CG methylation is well characterized in plants where it appears to play a role in gene silencing and genomic imprinting. Although strong evidence for the presence of non-CG methylation in mammals has been available for some time, both its origin and function remain elusive. In this review we discuss available evidence on non-CG methylation in mammals in light of evidence suggesting that the human stem cell methylome contains significant levels of methylation outside the CG site.Key words: non-CG methylation, stem cells, Dnmt1, Dnmt3a, human methylomeIn plant cells non-CG sites are methylated de novo by Chromomethylase 3, DRM1 and DRM2. Chromomethylase 3, along with DRM1 and DRM2 combine in the maintenance of methylation at symmetric CpHpG as well as asymmetric DNA sites where they appear to prevent reactivation of transposons.1 DRM1 and DRM2 modify DNA de novo primarily at asymmetric CpH and CpHpH sequences targeted by siRNA.2Much less information is available on non-CG methylation in mammals. In fact, studies on mammalian non-CG methylation form a tiny fraction of those on CG methylation, even though data for cytosine methylation in other dinucleotides, CA, CT and CC, have been available since the late 1980s.3 Strong evidence for non-CG methylation was found by examining either exogenous DNA sequences, such as plasmid and viral integrants in mouse and human cell lines,4,5 or transposons and repetitive sequences such as the human L1 retrotransposon6 in a human embryonic fibroblast cell line. In the latter study, non-CG methylation observed in L1 was found to be consistent with the capacity of Dnmt1 to methylate slippage intermediates de novo.6Non-CG methylation has also been reported at origins of replication7,8 and a region of the human myogenic gene Myf3.9 The Myf3 gene is silenced in non-muscle cell lines but it is not methylated at CGs. Instead, it carries several methylated cytosines within the sequence CCTGG. Gene-specific non-CG methylation was also reported in a study of lymphoma and myeloma cell lines not expressing many B lineage-specific genes.10 The study focused on one specific gene, B29 and found heavy CG promoter methylation of that gene in most cell lines not expressing it. However, in two other cell lines where the gene was silenced, cytosine methylation was found almost exclusively at CCWGG sites. The authors provided evidence suggesting that CCWGG methylation was sufficient for silencing the B29 promoter and that methylated probes based on B29 sequences had unique gel shift patterns compared to non-methylated but otherwise identical sequences.10 The latter finding suggests that the presence of the non-CG methylation causes changes in the proteins able to bind the promoter, which could be mechanistically related to the silencing seen with this alternate methylation.Non-CG methylation is rarely seen in DNA isolated from cancer patients. However, the p16 promoter region was reported to contain both CG and non-CG methylation in breast tumor specimens but lacked methylation at these sites in normal breast tissue obtained at mammoplasty.11 Moreover, CWG methylation at the CCWGG sites in the calcitonin gene is not found in normal or leukemic lymphocyte DNA obtained from patients.12 Further, in DNA obtained from breast cancer patients, MspI sites that are refractory to digestion by MspI and thus candidates for CHG methylation were found to carry CpG methylation.13 Their resistance to MspI restriction was found to be caused by an unusual secondary structure in the DNA spanning the MspI site that prevents restriction.13 This latter observation suggests caution in interpreting EcoRII/BstNI or EcoRII/BstOI restriction differences as due to CWG methylation, since in contrast to the 37°C incubation temperature required for full EcoRII activity, BstNI and BstOI require incubation at 60°C for full activity where many secondary structures are unstable.The recent report by Lister et al.14 confirmed a much earlier report by Ramsahoye et al.15 suggesting that non-CG methylation is prevalent in mammalian stem cell lines. Nearest neighbor analysis was used to detect non-CG methylation in the earlier study on the mouse embryonic stem (ES) cell line,15 thus global methylation patterning was assessed. Lister et al.14 extend these findings to human stem cell lines at single-base resolution with whole-genome bisulfite sequencing. They report14 that the methylome of the human H1 stem cell line and the methylome of the induced pluripotent IMR90 (iPS) cell line are stippled with non-CG methylation while that of the human IMR90 fetal fibroblast cell line is not. While the results of the two studies are complementary, the human methylome study addresses locus specific non-CG methylation. Based on that data,14 one must conclude that non-CG methylation is not carefully maintained at a given site in the human H1 cell line. The average non-CG site is picked up as methylated in about 25% of the reads whereas the average CG methylation site is picked up in 92% of the reads. Moreover, non-CG methylation is not generally present on both strands and is concentrated in the body of actively transcribed genes.14Even so, the consistent finding that non-CG methylation appears to be confined to stem cell lines,14,15 raises the possibility that cancer stem cells16 carry non-CG methylation while their nonstem progeny in the tumor carry only CG methylation. Given the expected paucity of cancer stem cells in a tumor cell population, it is unlikely that bisulfite sequencing would detect non-CG methylation in DNA isolated from tumor cells since the stem cell population is expected to be only a very minor component of tumor DNA. Published sequences obtained by bisulfite sequencing generally report only CG methylation, and to the best of our knowledge bisulfite sequenced tumor DNA specimens have not reported non-CG methylation. On the other hand, when sequences from cell lines have been reported, bisulfite-mediated genomic sequencing8 or ligation mediated PCR17 methylcytosine signals outside the CG site have been observed. In a more recent study plasmid DNAs carrying the Bcl2-major breakpoint cluster18 or human breast cancer DNA13 treated with bisulfite under non-denaturing conditions, cytosines outside the CG side were only partially converted on only one strand18 or at a symmetrical CWG site.13 In the breast cancer DNA study the apparent CWG methylation was not detected when the DNA was fully denatured before bisulfite treatment.13In both stem cell studies, non-CG methylation was attributed to the Dnmt3a,14,15 a DNA methyltransferase with similarities to the plant DRM methyltransferase family19 and having the capacity to methylate non-CG sites when expressed in Drosophila melanogaster.15 DRM proteins however, possess a unique permuted domain structure found exclusively in plants19 and the associated RNA-directed non-CG DNA methylation has not been reproducibly observed in mammals despite considerable published2023 and unpublished efforts in that area. Moreover, reports where methylation was studied often infer methylation changes from 5AzaC reactivation studies24 or find that CG methylation seen in plants but not non-CG methylation is detected.21,22,25,26 In this regard, it is of interest that the level of non-CG methylation reported in stem cells corresponds to background non-CG methylation observed in vitro with human DNA methyltransferase I,27 and is consistent with the recent report that cultured stem cells are epigenetically unstable.28The function of non-CG methylation remains elusive. A role in gene expression has not been ruled out, as the studies above on Myf3 and B29 suggest.9,10 However, transgene expression of the bacterial methyltransferase M.EcoRII in a human cell line (HK293), did not affect the CG methylation state at the APC and SerpinB5 genes29 even though the promoters were symmetrically de novo methylated at mCWGs within each CCWGG sequence in each promoter. This demonstrated that CG and non-CG methylation are not mutually exclusive as had been suggested by earlier reports.9,10 That observation is now extended to the human stem cell line methylome where CG and non-CG methylation co-exist.14 Gene expression at the APC locus was likewise unaffected by transgene expression of M.EcoRII. In those experiments genome wide methylation of the CCWGG site was detected by restriction analysis and bisulfite sequencing,29 however stem cell characteristics were not studied.Many alternative functions can be envisioned for non-CG methylation, but the existing data now constrains them to functions that involve low levels of methylation that are primarily asymmetric. Moreover, inheritance of such methylation patterns requires low fidelity methylation. If methylation were maintained with high fidelity at particular CHG sites one would expect that the spontaneous deamination of 5-methylcytosine would diminish the number of such sites, so as to confine the remaining sites to those positions performing an essential function, as is seen in CG methylation.3033 However, depletion of CWG sites is not observed in the human genome.34 Since CWG sites account for only about 50% of the non-CG methylation observed in the stem cell methylome14 where methylated non-CG sites carry only about 25% methylation, the probability of deamination would be about 13% of that for CWG sites that are subject to maintenance methylation in the germ line. Since mutational depletion of methylated cytosines has to have its primary effect on the germ line, if the maintenance of non-CG methylation were more accurate and more widespread, one would have had to argue that stem cells in the human germ lines lack CWG methylation. As it is the data suggests that whatever function non-CG methylation may have in stem cells, it does not involve accurate somatic inheritance in the germ line.The extensive detail on non-CG methylation in the H1 methylome14 raises interesting questions about the nature of this form of methylation in human cell lines. A key finding in this report is the contrast between the presence of non-CG methylation in the H1 stem cell line and its absence in the IMR90 human fetal lung fibroblast cell line.14 This suggests that it may have a role in the origin and maintenance of the pluripotent lineage.14By analogy with the well known methylated DNA binding proteins specific for CG methylation,35 methylated DNA binding proteins that selectively bind sites of non-CG methylation are expected to exist in stem cells. Currently the only protein reported to have this binding specificity is human Dnmt1.3638 While Dnmt1 has been proposed to function stoichiometrically39 and could serve a non-CG binding role in stem cells, this possibility and the possibility that other stem-cell specific non-CG binding proteins might exist remain to be been explored.Finally, the nature of the non-CG methylation patterns in human stem cell lines present potentially difficult technical problems in methylation analysis. First, based on the data in the H1 stem cell methylome,40 a standard MS-qPCR for non-CG methylation would be impractical because non-CG sites are infrequent, rarely clustered and are generally characterized by partial asymmetric methylation. This means that a PCR primer that senses the 3 adjacent methylation sites usually recommended for MS-qPCR primer design41,42 cannot be reliably found. For example in the region near Oct4 (Chr6:31,246,431), a potential MS-qPCR site exists with a suboptimal set of two adjacent CHG sites both methylated on the + strand at Chr6:31,252,225 and 31,252,237.14,40 However these sites were methylated only in 13/45 and 30/52 reads. Thus the probability that they would both be methylated on the same strand is about 17%. Moreover, reverse primer locations containing non-CG methylation sites are generally too far away for practical bisulfite mediated PCR. Considering the losses associated with bisulfite mediated PCR43 the likelihood that such an MS-qPCR system would detect non-CG methylation in the H1 cell line or stem cells present in a cancer stem cell niche44,45 is very low.The second difficulty is that methods based on the specificity of MeCP2 and similar methylated DNA binding proteins for enriching methylated DNA (e.g., MIRA,46 COMPARE-MS47) will discard sequences containing non-CG methylation since they require cooperative binding afforded by runs of adjacent methylated CG sites for DNA capture. This latter property of the methylated cytosine capture techniques makes it also unlikely that methods based on 5-methylcytosine antibodies (e.g., meDIP48) will capture non-CG methylation patterns accurately since the stem cell methylome shows that adjacent methylated non-CG sites are rare in comparison to methylated CG sites.14In summary, whether or not mammalian stem cells in general or human stem cells in particular possess functional plant-like methylation patterns is likely to continue to be an interesting and challenging question. At this point we can conclude that the non-CG patterns reported in human cells appear to differ significantly from the non-CG patterns seen in plants, suggesting that they do not have a common origin or function.  相似文献   

19.
20.
Organelle movement in plants is dependent on actin filaments with most of the organelles being transported along the actin cables by class XI myosins. Although chloroplast movement is also actin filament-dependent, a potential role of myosin motors in this process is poorly understood. Interestingly, chloroplasts can move in any direction and change the direction within short time periods, suggesting that chloroplasts use the newly formed actin filaments rather than preexisting actin cables. Furthermore, the data on myosin gene knockouts and knockdowns in Arabidopsis and tobacco do not support myosins'' XI role in chloroplast movement. Our recent studies revealed that chloroplast movement and positioning are mediated by the short actin filaments localized at chloroplast periphery (cp-actin filaments) rather than cytoplasmic actin cables. The accumulation of cp-actin filaments depends on kinesin-like proteins, KAC1 and KAC2, as well as on a chloroplast outer membrane protein CHUP1. We propose that plants evolved a myosin XI-independent mechanism of the actin-based chloroplast movement that is distinct from the mechanism used by other organelles.Key words: actin, Arabidopsis, blue light, kinesin, myosin, organelle movement, phototropinOrganelle movement and positioning are pivotal aspects of the intracellular dynamics in most eukaryotes. Although plants are sessile organisms, their organelles are quickly repositioned in response to fluctuating environmental conditions and certain endogenous signals. By and large, plant organelle movements and positioning are dependent on actin filaments, although microtubules play certain accessory roles in organelle dynamics.1,2 Actin inhibitors effectively retard the movements of mitochondria,36 peroxisomes,5,711 Golgi stacks,12,13 endoplasmic reticulum (ER),14,15 and nuclei.1618 These organelles are co-aligned and associated with actin filaments.5,7,8,1012,15,18 Recent progress in this field started to reveal the molecular motility system responsible for the organelle transport in plants.19Chloroplast movement is among the most fascinating models of organelle movement in plants because it is precisely controlled by ambient light conditions.20,21 Weak light induces chloroplast accumulation response so that chloroplasts can capture photosynthetic light efficiently (Fig. 1A). Strong light induces chloroplast avoidance response to escape from photodamage (Fig. 1B).22 The blue light-induced chloroplast movement is mediated by the blue light receptor phototropin (phot). In some cryptogam plants, the red light-induced chloroplast movement is regulated by a chimeric phytochrome/phototropin photoreceptor neochrome.2325 In a model plant Arabidopsis, phot1 and phot2 function redundantly to regulate the accumulation response,26 whereas phot2 alone is essential for the avoidance response.27,28 Several additional factors regulating chloroplast movement were identified by analyses of Arabidopsis mutants deficient in chloroplast photorelocation.2932 In particular, identification of CHUP1 (chloroplast unusual positioning 1) revealed the connection between chloroplasts and actin filaments at the molecular level.29 CHUP1 is a chloroplast outer membrane protein capable of interacting with F-actin, G-actin and profilin in vitro.29,33,34 The chup1 mutant plants are defective in both the chloroplast movement and chloroplast anchorage to the plasma membrane,22,29,33 suggesting that CHUP1 plays an important role in linking chloroplasts to the plasma membrane through the actin filaments. However, how chloroplasts move using the actin filaments and whether chloroplast movement utilizes the actin-based motility system similar to other organelle movements remained to be determined.Open in a separate windowFigure 1Schematic distribution patterns of chloroplasts in a palisade cell under different light conditions, weak (A) and strong (B) lights. Shown as a side view of mid-part of the cell and a top view with three different levels (i.e., top, middle and bottom of the cell). The cell was irradiated from the leaf surface shown as arrows. Weak light induces chloroplast accumulation response (A) and strong light induces the avoidance response (B).Here, we review the recent findings pointing to existence of a novel actin-based mechanisms for chloroplast movement and discuss the differences between the mechanism responsible for movement of chloroplasts and other organelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号