首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We analyzed the δ13C of soil organic matter (SOM) and fine roots from 55 native grassland sites widely distributed across the US and Canadian Great Plains to examine the relative production of C3 vs. C4 plants (hereafter %C4) at the continental scale. Our climate vs. %C4 results agreed well with North American field studies on %C4, but showed bias with respect to %C4 from a US vegetation database (statsgo ) and weak agreement with a physiologically based prediction that depends on crossover temperature. Although monthly average temperatures have been used in many studies to predict %C4, our analysis shows that high temperatures are better predictors of %C4. In particular, we found that July climate (average of daily high temperature and month's total rainfall) predicted %C4 better than other months, seasons or annual averages, suggesting that the outcome of competition between C3 and C4 plants in North American grasslands was particularly sensitive to climate during this narrow window of time. Root δ13C increased about 1‰ between the A and B horizon, suggesting that C4 roots become relatively more common than C3 roots with depth. These differences in depth distribution likely contribute to the isotopic enrichment with depth in SOM where both C3 and C4 grasses are present.  相似文献   

2.
Carbon and oxygen isotopic data are reported from 116 Pleistocene Equus teeth from sixty-six localities in the New World ranging from 68°N (Alaska, Canada) to 35°S (Argentina). Equus species have been predominantly grazers, and as such, carbon isotopic values of their tooth enamel provide evidence of the Pleistocene distribution of C3 and C4 grasses. The carbon data presented here indicate a gradient (δ13C range of 10 parts/mil) in the relative proportion of C3 and C4 grasses between high latitude and equatorial Equus samples. The largest amount of change from C3 to C4 grasses during the Pleistocene occurred in the mid-latitudes between about 30 to 40°. The oxygen data, which vary proportionately with temperature, indicate a latitudinal gradient (δ18O range of 20 parts/mil) between high-latitude and equatorial Equus samples. The basic pattern of latitudinal gradients of C3/C4 grass distribution and temperature as interpreted from these Pleistocene data is similar to the modern-day. The use of stable isotopes of fossil herbivore teeth represents a new means to interpret Pleistocene climates and terrestrial ecology.  相似文献   

3.
We have investigated carbon isotopic compositions of four plant genus/species, Bothriochloa ischaemum (C4), Stipa bungeana (C3), Lespedeza sp. (C3) and Heteropappus less (C3), along a precipitation gradient in northwest China in order to assess the impact of water availability on the carbon isotopic discrimination against 13C during carbon assimilation in this area. This information is necessary for reconstruction of paleovegetation, particularly paleo‐C3/C4 plant ratios using δ13C value of organic matter in loess and paleosols in the Chinese Loess Plateau. The δ13C of C3 plants, as a group, exhibits a negative correlation with the annual precipitation amount with a total change and sensitivity of 5‰ and ?1.1‰/100 mm, respectively, for the precipitation range from 200 to 700 mm. The C4 grass, B. ischaemum responds to aridity by decreasing 1.7‰ for over the precipitation range from 350 to 700 mm; the plant δ13C is significantly correlated with annual precipitation with a slope ?0.61‰/100 mm. This result implies that without considering the effect of water availability on the plant δ13C values, reconstruction of percent C4 vegetation during the last glaciation can be overestimated by about a factor of two.  相似文献   

4.
Aim Based on the biochemical and physiological attributes of C4 grasses, and on the close association between decarboxylation pathways and the taxa in which they evolved, the hypotheses tested were: (1) that C4 grasses would become progressively more abundant as precipitation decreased, with grasses of the NADP‐me subtype more abundant in wetter sites and those of the NAD‐me subtype more common in arid regions; and (2) that the distribution of grass subfamilies would also be correlated with annual precipitation. Location The study was conducted along a precipitation gradient in central Argentina, from the eastern Pampas (>1000 mm year?1) to the western deserts and semi‐deserts near the Andes (<100 mm year?1). Methods Percentage of species and relative cover of C3 and C4 grasses (including C4 subtypes) in local floras from 15 lowland sites of central Argentina were obtained from our own unpublished data and from recently published floristic surveys. Pearson correlation coefficients were obtained between grass distribution parameters and the available climatic data. Results The percentage of C4 grasses increased towards the arid extreme and showed a strong negative correlation with annual rainfall (r = ?0.74, P < 0.01). Within the C4 subtypes, the NADP‐me species showed a higher proportional representation at the wetter extreme, whereas the representation of NAD‐me species increased towards the more arid extreme. The relationship of PEP‐ck species with climatic parameters in central Argentina was less evident. The distributions of the Panicoideae and Chloridoideae subfamilies along the precipitation gradient were diametrically opposed, with the Panicoideae positively (r = 0.86, P < 0.001) and the Chloridoideae negatively (r = ?0.87, P < 0.001) correlated with annual precipitation. Main conclusions Our data are consistent with the broad observation that C4 grasses tend to dominate in areas where the wet season falls in the warmer summer months. In agreement with previously reported results for Africa, Asia, Australia and North America, we describe here for the first time a significant relationship between annual precipitation and the prevalence of the NADP‐me and NAD‐me photosynthetic pathways along climatic gradients for the Neotropics. We also report for the first time that correlations between C4 species and annual rainfall are stronger when the relative cover of grass species is considered. The association of grass subfamilies Panicoideae and Chloridoideae with rainfall is as strong as that recorded for the NADP‐me and NAD‐me variants, respectively, suggesting that characteristics other than decarboxylation type may be responsible for the geographic patterns described in this study.  相似文献   

5.
The 18O content of CO2 is a powerful tracer of photosynthetic activity at the ecosystem and global scale. Due to oxygen exchange between CO2 and 18O-enriched leaf water and retrodiffusion of most of this CO2 back to the atmosphere, leaves effectively discriminate against 18O during photosynthesis. Discrimination against 18O ( Δ 18O) is expected to be lower in C4 plants because of low ci and hence low retrodiffusing CO2 flux. C4 plants also generally show lower levels of carbonic anhydrase (CA) activities than C3 plants. Low CA may limit the extent of 18O exchange and further reduce Δ 18O. We investigated CO2–H2O isotopic equilibrium in plants with naturally low CA activity, including two C4 (Zea mays, Sorghum bicolor) and one C3 (Phragmites australis) species. The results confirmed experimentally the occurrence of low Δ 18O in C4, as well as in some C3, plants. Variations in CA activity and in the extent of CO2–H2O isotopic equilibrium ( θ eq) estimated from on-line measurements of Δ 18O showed large range of 0–100% isotopic equilibrium ( θ eq = 0–1). This was consistent with direct estimates based on assays of CA activity and measurements of CO2 concentrations and residence times in the leaves. The results demonstrate the potential usefulness of Δ 18O as indicator of CA activity in vivo. Sensitivity tests indicated also that the impact of θ eq < 1 (incomplete isotopic equilibrium) on 18O of atmospheric CO2 can be similar for C3 and C4 plants and in both cases it increases with natural enrichment of 18O in leaf water.  相似文献   

6.
Aim Numerous studies have examined the climatic factors that influence the abundance of C4 species within the grass flora (C4 relative species richness) in various regions throughout the world, but very few have examined the relative abundance of C4 vs. C3 grasses (C4 relative abundance). We sought to determine the climatic factors that influence C4 relative abundance throughout Australia. Location Australia (including Tasmania). Methods We measured C4 relative abundance at 168 locations and measured δ13C (the abundance of 13C relative to 12C) of the bone collagen of 779 kangaroos collected throughout Australia, as bone collagen δ13C was assumed to be proportional to the relative abundance of C4 grasses in the diet. Results Both C4 relative abundance and kangaroo bone collagen δ13C were found to have a strong positive relationship with seasonal water availability, i.e. the distribution of rainfall in the C4 vs. C3 growing seasons (76% and 69% of deviance explained, respectively). There was clear evidence that seasonal water availability was a better predictor of both C4 relative abundance and bone collagen δ13C than other climate variables such as mean annual temperature and January daily minimum temperature. However, seasonal water availability appeared to be a relatively poor predictor of C4 relative species richness, which was most closely related to January daily minimum temperature (90% of deviance explained). Main conclusions Our results highlight the relatively poor relationship between C4 relative abundance and C4 relative species richness, and suggest that these two variables may be related to different climatic factors. They also suggest that caution is required when using C4 relative species richness to infer the relative biomass and productivity of C4 grasses on a global scale.  相似文献   

7.
Leaves of twelve C3 species and six C4 species were examined to understand better the relationship between mesophyll cell properties and the generally high photosynthetic rates of these plants. The CO2 diffusion conductance expressed per unit mesophyll cell surface area (gCO2cell) cell was determined using measurements of the net rate of CO2 uptake, water vapor conductance, and the ratio of mesophyll cell surface area to leaf surface area (Ames/A). Ames/A averaged 31 for the C3 species and 16 for the C4 species. For the C3 species gCO2cell ranged from 0.12 to 0.32 mm s-1, and for the C4 species it ranged from 0.55 to 1.5 mm s-1, exceeding a previously predicted maximum of 0.5 mm s-1. Although the C3 species Cammissonia claviformis did not have the highest gCO2cell, the combination of the highest Ames and highest stomatal conductance resulted in this species having the greatest maximum rate of CO2 uptake in low oxygen, 93 μmol m-2 s-1 (147 mg dm-2 h-1). The high gCO2cell of the C4 species Amaranthus retroflexus (1.5 mm s-1) was in part attributable to its thin cell wall (72 nm thick).  相似文献   

8.
Immediate export in leaves of C3‐C4 intermediates were compared with their C3 and C4 relatives within the Panicum and Flaveria genera. At 35 Pa CO2, photosynthesis and export were highest in C4 species in each genera. Within the Panicum, photosynthesis and export in ‘type I’ C3‐C4 intermediates were greater than those in C3 species. However, ‘type I’ C3‐C4 intermediates exported a similar proportion of newly fixed 14C as did C4 species. Within the Flaveria, ‘type II’ C3‐C4 intermediate species had the lowest export rather than the C3 species. At ambient CO2, immediate export was strongly correlated with photosynthesis. However, at 90 Pa CO2, when photosynthesis and immediate export increased in all C3 and C3‐C4 intermediate species, proportionally less C was exported in all photosynthetic types than that at ambient CO2. All species accumulated starch and sugars at both CO2 levels. There was no correlation between immediate export and the pattern of 14C‐labelling into sugars and starch among the photosynthetic types within each genus. However, during CO2 enrichment, C4Panicum species accumulated sugars above the level of sugars and starch normally made at ambient CO2, whereas the C4Flaveria species accumulated only additional starch.  相似文献   

9.
In this study, the response of N2 fixation to elevated CO2 was measured in Scirpus olneyi, a C3 sedge, and Spartina patens, a C4 grass, using acetylene reduction assay and 15N2 gas feeding. Field plants grown in PVC tubes (25 cm long, 10 cm internal diameter) were used. Exposure to elevated CO2 significantly (P < 0·05) caused a 35% increase in nitrogenase activity and 73% increase in 15N incorporated by Scirpus olneyi. In Spartina patens, elevated CO2 (660 ± 1 μ mol mol 1) increased nitrogenase activity and 15N incorporation by 13 and 23%, respectively. Estimates showed that the rate of N2 fixation in Scirpus olneyi under elevated CO2 was 611 ± 75 ng 15N fixed plant 1 h 1 compared with 367 ± 46 ng 15N fixed plant 1 h 1 in ambient CO2 plants. In Spartina patens, however, the rate of N2 fixation was 12·5 ± 1·1 versus 9·8 ± 1·3 ng 15N fixed plant 1 h 1 for elevated and ambient CO2, respectively. Heterotrophic non-symbiotic N2 fixation in plant-free marsh sediment also increased significantly (P < 0·05) with elevated CO2. The proportional increase in 15N2 fixation correlated with the relative stimulation of photosynthesis, in that N2 fixation was high in the C3 plant in which photosynthesis was also high, and lower in the C4 plant in which photosynthesis was relatively less stimulated by growth in elevated CO2. These results are consistent with the hypothesis that carbon fixation in C3 species, stimulated by rising CO2, is likely to provide additional carbon to endophytic and below-ground microbial processes.  相似文献   

10.
Elevated atmospheric carbon dioxide concentrations ([CO2]) generally increase plant photosynthesis in C3 species, but not in C4 species, and reduce stomatal conductance in both C3 and C4 plants. In addition, tissue nitrogen concentration ([N]) often fails to keep pace with enhanced carbon gain under elevated CO2, particularly in C3 species. While these responses are well documented in many species, implications for plant growth and nutrient cycling in native ecosystems are not clear. Here we present data on 18 years of measurement of above and belowground biomass, tissue [N] and total standing crop of N for a Scirpus olneyi‐dominated (C3 sedge) community, a Spartina patens‐dominated (C4 grass) community and a C3–C4‐mixed species community exposed to ambient and elevated (ambient +340 ppm) atmospheric [CO2] in natural salinity and sea level conditions of a Chesapeake Bay wetland. Increased biomass production (shoots plus roots) under elevated [CO2] in the S. olneyi‐dominated community was sustained throughout the study, averaging approximately 35%, while no significant effect of elevated [CO2] was found for total biomass in the C4‐dominated community. We found a significant decline in C4 biomass (correlated with rising sea level) and a concomitant increase in C3 biomass in the mixed community. This shift from C4 to C3 was accelerated by the elevated [CO2] treatment. The elevated [CO2] stimulation of total biomass accumulation was greatest during rainy, low salinity years: the average increase above the ambient treatment during the three wettest years (1994, 1996, 2003) was 2.9 t ha−1 but in the three driest years (1995, 1999, 2002), it was 1.2 t ha−1. Elevated [CO2] depressed tissue [N] in both species, but especially in the S. olneyi where the relative depression was positively correlated with salinity and negatively related with the relative enhancement of total biomass production. Thus, the greatest amount of carbon was added to the S. olneyi‐dominated community during years when shoot [N] was reduced the most, suggesting that the availability of N was not the most or even the main limitation to elevated [CO2] stimulation of carbon accumulation in this ecosystem.  相似文献   

11.
Attempts are being made to introduce C4 photosynthetic characteristics into C3 crop plants by genetic manipulation. This research has focused on engineering single‐celled C4‐type CO2 concentrating mechanisms into C3 plants such as rice. Herein the pros and cons of such approaches are discussed with a focus on CO2 diffusion, utilizing a mathematical model of single‐cell C4 photosynthesis. It is shown that a high bundle sheath resistance to CO2 diffusion is an essential feature of energy‐efficient C4 photosynthesis. The large chloroplast surface area appressed to the intercellular airspace in C3 leaves generates low internal resistance to CO2 diffusion, thereby limiting the energy efficiency of a single‐cell C4 concentrating mechanism, which relies on concentrating CO2 within chloroplasts of C3 leaves. Nevertheless the model demonstrates that the drop in CO2 partial pressure, pCO2, that exists between intercellular airspace and chloroplasts in C3 leaves at high photosynthetic rates, can be reversed under high irradiance when energy is not limiting. The model shows that this is particularly effective at lower intercellular pCO2. Such a system may therefore be of benefit in water‐limited conditions when stomata are closed and low intercellular pCO2 increases photorespiration.  相似文献   

12.
Abstract Ultrastructural and physiological characteristics of the C3-C4 intermediate Neurachne minor S. T. Blake (Poaceae) are compared with those of C3 and C4 relatives, and C3-C4Panicum milioides Nees ex Trin. N. minor consistently exhibits very low CO2 compensation points (τ: 1.0, usually 0.3–0.6 Pa) yet has C3-like δ13C values. CO2 assimilation rates (A) respond like those of C3 plants to a decrease in O2 partial pressure (2 × 104–1.9 × 103 Pa) at ambient CO2 levels, but this response is progressively attenuated until negligible at very low CO2. By contrast, other species of the Neurachneae are clearly either C4 (two spp.) or C3 (seven spp.). For plants grown and measured at different photon flux densities (PFDs), τ for N. minor and P. milioides increases from 0.5 to 1.0, and from 1.0 to 2.1 Pa, respectively, as PFD is decreased from 1860 to 460 μmol m?2s?1. In N. minor, the O2 response of τ is either biphasic as in P. milioides, but much diminished and with a higher transition point, or is very C4-like. As in C4 relatives, inner sheath cells contain numerous chloroplasts. Their walls possess a suberized lamella, which may make them more CO2-tight than bundle sheath cells of P. milioides, contributing to the almost C4-like τ characteristics of N. minor. The biochemical basis of C3-C4 intermediacy is considered.  相似文献   

13.
Nitrogen (N) cycling was analyzed in the Kalahari region of southern Africa, where a strong precipitation gradient (from 978 to 230 mm mean annual precipitation) is the main variable affecting vegetation. The region is underlain by a homogeneous soil substrate, the Kalahari sands, and provides the opportunity to analyze climate effects on nutrient cycling. Soil and plant N pools, 15N natural abundance (δ15N), and soil NO emissions were measured to indicate patterns of N cycling along a precipitation gradient. The importance of biogenic N2 fixation associated with vascular plants was estimated with foliar δ15N and the basal area of leguminous plants. Soil and plant N was more 15N enriched in arid than in humid areas, and the relation was steeper in samples collected during wet than during dry years. This indicates a strong effect of annual precipitation variability on N cycling. Soil organic carbon and C/N decreased with aridity, and soil N was influenced by plant functional types. Biogenic N2 fixation associated with vascular plants was more important in humid areas. Nitrogen fixation associated with trees and shrubs was almost absent in arid areas, even though Mimosoideae species dominate. Soil NO emissions increased with temperature and moisture and were therefore estimated to be lower in drier areas. The isotopic pattern observed in the Kalahari (15N enrichment with aridity) agrees with the lower soil organic matter, soil C/N, and N2 fixation found in arid areas. However, the estimated NO emissions would cause an opposite pattern in δ15N, suggesting that other processes, such as internal recycling and ammonia volatilization, may also affect isotopic signatures. This study indicates that spatial, and mainly temporal, variability of precipitation play a key role on N cycling and isotopic signatures in the soil–plant system.  相似文献   

14.
An experiment was carried out to determine the effects of elevated CO2, elevated temperatures, and altered water regimes in native shortgrass steppe. Intact soil cores dominated by Bouteloua gracilis, a C4 perennial grass, or Pascopyrum smithii, a C3 perennial grass, were placed in growth chambers with 350 or 700 μL L?1 atmospheric CO2, and under either normal or elevated temperatures. The normal regime mimicked field patterns of diurnal and seasonal temperatures, and the high-temperature regime was 4 °C warmer. Water was supplied at three different levels in a seasonal pattern similar to that observed in the field. Total biomass after two growing seasons was 19% greater under elevated CO2, with no significant difference between the C3 and C4 grass. The effect of elevated CO2 on biomass was greatest at the intermediate water level. The positive effect of elevated CO2 on shoot biomass was greater at normal temperatures in B. gracilis, and greater at elevated temperatures in P. smithii. Neither root-to-shoot ratio nor production of seed heads was affected by elevated CO2. Plant tissue N and soil inorganic N concentrations were lower under elevated Co2, but no more so in the C3 than the C4 plant. Elevated CO2 appeared to increase plant N limitation, but there was no strong evidence for an increase in N limitation or a decrease in the size of the CO2 effect from the first to the second growing season. Autumn samples of large roots plus crowns, the perennial organs, had 11% greater total N under elevated CO2, in spite of greater N limitation.  相似文献   

15.
An investigation to determine whether stomatal acclimation to [CO2] occurred in C3/C4 grassland plants grown across a range of [CO2] (200–550 µmol mol?1) in the field was carried out. Acclimation was assessed by measuring the response of stomatal conductance (gs) to a range of intercellular CO2 (a gsCi curve) at each growth [CO2] in the third and fourth growing seasons of the treatment. The gsCi response curves for Solanum dimidiatum (C3 perennial forb) differed significantly across [CO2] treatments, suggesting that stomatal acclimation had occurred. Evidence of non–linear stomatal acclimation to [CO2] in this species was also found as maximum gs (gsmax; gs measured at the lowest Ci) increased with decreasing growth [CO2] only below 400 µmol mol?1. The substantial increase in gs at subambient [CO2] for S. dimidiatum was weakly correlated with the maximum velocity of carboxylation (Vcmax; r2 = 0·27) and was not associated with CO2 saturated photosynthesis (Amax). The response of gs to Ci did not vary with growth [CO2] in Bromus japonicus (C3 annual grass) or Bothriochloa ischaemum (C4 perennial grass), suggesting that stomatal acclimation had not occurred in these species. Stomatal density, which increased with rising [CO2] in both C3 species, was not correlated with gs. Larger stomatal size at subambient [CO2], however, may be associated with stomatal acclimation in S. dimidiatum. Incorporating stomatal acclimation into modelling studies could improve the ability to predict changes in ecosystem water fluxes and water availability with rising CO2 and to understand their magnitudes relative to the past.  相似文献   

16.
Samples of recently produced shoot material collected in winter/spring from common plant species of mulga vegetation in eastern and Western Australia were assayed for 13C and 15N natural abundance. 13C analyses showed only three of the 88 test species to exhibit C4 metabolism and only one of seven succulent species to be in CAM mode. Non-succulent winter ephemeral C3 species showed significantly lower mean δ13C values (– 28·0‰) than corresponding C3-type herbaceous perennials, woody shrubs or trees (– 26·9, – 25·7 and – 26·2‰, respectively), suggesting lower water stress and poorer water use efficiency in carbon acquisition by the former than latter groups of taxa. Corresponding values for δ15N of the above growth and life forms lay within the range 7·5–15·5‰. δ15N of soil NH4+ (mean 19·6‰) at a soft mulga site in Western Australia was considerably higher than that of NO3 (4·3‰). Shoot dry matter of Acacia spp. exhibited mean δ15N values (9·10 ± 0·6‰) identical to those of 37 companion non-N2-fixing woody shrubs and trees (9·06 ± 0·5‰). These data, with no evidence of nodulation, suggested little or no input of fixed N2 by the legumes in question. However, two acacias and two papilionoid legumes from a dune of wind-blown, heavily leached sand bordering a lake in mulga in Western Australia recorded δ15N values in the range 2·0–3·0‰ versus 6·4–10·7‰ for associated non-N2-fixing taxa. These differences in δ15N, and prolific nodulation of the legumes, indicated symbiotic inputs of fixed N in this unusual situation. δ15N signals of lichens, termites, ants and grasshoppers from mulga of Western Australia provided evidence of N2 fixation in certain termite colonies and by a cyanobacteria-containing species of lichen. Data are discussed in relation to earlier evidence of nitrophily and water availability constraints on nitrate utilization by mulga vegetation.  相似文献   

17.
Evidence is presented contrary to the suggestion that C4 plants grow larger at elevated CO2 because the C4 pathway of young C4 leaves has C3-like characteristics, making their photosynthesis O2 sensitive and responsive to high CO2. We combined PAM fluorescence with gas exchange measurements to examine the O2 dependence of photosynthesis in young and mature leaves of Panicum antidotale (C4, NADP-ME) and P. coloratum (C4, NAD-ME), at an intercellular CO2 concentration of 5 Pa. P. laxum (C3) was used for comparison. The young C4 leaves had CO2 and light response curves typical of C4 photosynthesis. When the O2 concentration was gradually increased between 2 and 40%, CO2 assimilation rates (A) of both mature and young C4 leaves were little affected, while the ratio of the quantum yield of photosystem II to that of CO2 assimilation (ΦPSII/ΦCO2) increased more in young (up to 31%) than mature (up to 10%) C4 leaves. A of C3 leaves decreased by 1·3 and ΦPSII/ΦCO2 increased by 9-fold, over the same range of O2 concentrations. Larger increases in electron transport requirements in young, relative to mature, C4 leaves at low CO2 are indicative of greater O2 sensitivity of photorespiration. Photosynthesis modelling showed that young C4 leaves have lower bundle sheath CO2 concentration, brought about by higher bundle sheath conductance relative to the activity of the C4 and C3 cycles and/or lower ratio of activities of the C4 to C3 cycles.  相似文献   

18.
Atmospheric CO2 (Ca) has risen dramatically since preglacial times and is projected to double in the next century. As part of a 4‐year study, we examined leaf gas exchange and photosynthetic acclimation in C3 and C4 plants using unique chambers that maintained a continuous Ca gradient from 200 to 550 µmol mol?1 in a natural grassland. Our goals were to characterize linear, nonlinear and threshold responses to increasing Ca from past to future Ca levels. Photosynthesis (A), stomatal conductance (gs), leaf water‐use efficiency (A/gs) and leaf N content were measured in three common species: Bothriochloa ischaemum, a C4 perennial grass, Bromus japonicus, a C3 annual grass, and Solanum dimidiatum, a C3 perennial forb. Assimilation responses to internal CO2 concentrations (A/Ci curves) and photosynthetically active radiation (A/PAR curves) were also assessed, and acclimation parameters estimated from these data. Photosynthesis increased linearly with Ca in all species (P < 0.05). S. dimidiatum and B. ischaemum had greater carboxylation rates for Rubisco and PEP carboxylase, respectively, at subambient than superambient Ca (P < 0.05). To our knowledge, this is the first published evidence of A up‐regulation at subambient Ca in the field. No species showed down‐regulation at superambient Ca. Stomatal conductance generally showed curvilinear decreases with Ca in the perennial species (P < 0.05), with steeper declines over subambient Ca than superambient, suggesting that plant water relations have already changed significantly with past Ca increases. Resource‐use efficiency (A/gs and A/leaf N) in all species increased linearly with Ca. As both C3 and C4 plants had significant responses in A, gs, A/gs and A/leaf N to Ca enrichment, future Ca increases in this grassland may not favour C3 species as much as originally thought. Non‐linear responses and acclimation to low Ca should be incorporated into mechanistic models to better predict the effects of past and present rising Ca on grassland ecosystems.  相似文献   

19.
There is continuing controversy over whether a degree of C4 photosynthetic metabolism exists in ears of C3 cereals. In this context, CO2 exchange and the initial products of photosynthesis were examined in flag leaf blades and various ear parts of two durum wheat (Triticum durum Desf.) and two six-rowed barley (Hordeum vulgare L.) cultivars. Three weeks after anthesis, the CO2 compensation concentration at 210 mmol mol?1 O2 in durum wheat and barley ear parts was similar to or greater than that in flag leaves. The O2 dependence of the CO2 compensation concentration in durum wheat ear parts, as well as in the flag leaf blade, was linear, as expected for C3 photosynthesis. In a complementary experiment, intact and attached ears and flag leaf blades of barley and durum wheat were radio-labelled with 14CO2 during a 10s pulse, and the initial products of fixation were studied in various parts of the ears (awns, glumes, inner bracts and grains) and in the flag leaf blade. All tissues assimilated CO2 mainly by the Calvin (C3) cycle, with little fixation of 14CO2 into the C4 acids malate and aspartate (about 10% or less). These collective data support the conclusion that in the ear parts of these C3 cereals C4 photosynthetic metabolism is nil.  相似文献   

20.
The photosynthetic performance of C4 plants is generally inferior to that of C3 species at low temperatures, but the reasons for this are unclear. The present study investigated the hypothesis that the capacity of Rubisco, which largely reflects Rubisco content, limits C4 photosynthesis at suboptimal temperatures. Photosynthetic gas exchange, chlorophyll a fluorescence, and the in vitro activity of Rubisco between 5 and 35 °C were measured to examine the nature of the low‐temperature photosynthetic performance of the co‐occurring high latitude grasses, Muhlenbergia glomerata (C4) and Calamogrostis canadensis (C3). Plants were grown under cool (14/10 °C) and warm (26/22 °C) temperature regimes to examine whether acclimation to cool temperature alters patterns of photosynthetic limitation. Low‐temperature acclimation reduced photosynthetic rates in both species. The catalytic site concentration of Rubisco was approximately 5.0 and 20 µmol m?2 in M. glomerata and C. canadensis, respectively, regardless of growth temperature. In both species, in vivo electron transport rates below the thermal optimum exceeded what was necessary to support photosynthesis. In warm‐grown C. canadensis, the photosynthesis rate below 15 °C was unaffected by a 90% reduction in O2 content, indicating photosynthetic capacity was limited by the capacity of Pi‐regeneration. By contrast, the rate of photosynthesis in C. canadensis plants grown at the cooler temperatures was stimulated 20–30% by O2 reduction, indicating the Pi‐regeneration limitation was removed during low‐temperature acclimation. In M. glomerata, in vitro Rubisco activity and gross CO2 assimilation rate were equivalent below 25 °C, indicating that the capacity of the enzyme is a major rate limiting step during C4 photosynthesis at cool temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号