首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
To test the hypothesis that human milk fucosyloligosaccharides are part of an innate immune system, we addressed whether their expression (1) depends on maternal genotype and (2) protects breastfed infants from pathogens. Thus the relationship between maternal Lewis blood group type and milk oligosaccharide expression and between variable oligosaccharide expression and risk of diarrhea in their infants was studied in a cohort of 93 Mexican breastfeeding mother-infant pairs. Milk of the 67 Le(a-b+) mothers contained more LNF-II (Le(a)) and 3-FL (Le(x)) (oligosaccharides whose fucose is exclusively alpha 1,3- or alpha 1,4-linked) than milk from the 24 Le(a-b-) mothers; milk from Le(a-b-) mothers contained more LNF-I (H-1) and 2'-FL (H-2), whose fucose is exclusively alpha 1,2-linked. The pattern of oligosaccharides varied among milk samples; in each milk sample, the pattern was summarized as a ratio of 2-linked to non-2-linked fucosyloligosaccharides. Milks with the highest ratios were produced primarily by Le(a-b-) mothers; those with the lowest ratios were produced exclusively by Le(a-b+) mothers (p<0.001). Thus maternal genetic polymorphisms expressed as Lewis blood group types are expressed in milk as varied fucosyloligosaccharide ratios. The four infants who developed diarrhea associated with stable toxin of Escherichia coli were consuming milk with lower ratios (4.4 +/- 0.8 [SE]) than the remaining infants (8.5 +/- 0.8; p<0.001). Furthermore, the 27 infants who developed moderate to severe diarrhea of any cause were consuming milk with lower ratios (6.1 +/- 0.9) than the 26 who remained healthy (10.5 +/- 1.9; p = 0.042). Thus, milk with higher 2-linked to non-2-linked fucosyloligosaccharide ratios affords greater protection against infant diarrhea. We conclude that specific oligosaccharides constitute a major element of an innate immune system of human milk.  相似文献   

2.
Mucin glycopeptides were prepared from the respiratory mucus of a non-secretor, chronic bronchitis patient with blood group O, Le(a+b-). Oligosaccharides were released by alkaline-borohydride treatment and purified by anion-exchange chromatography, size exclusion chromatography, and HPLC on a silica-bonded alkylamine column. Structural studies employed 500-MHz 1H-NMR spectroscopy, fast-atom-bombardment mass spectrometry and methylation analysis. Twenty-four neutral oligosaccharides, ranging in size from disaccharides to hexasaccharides, were fully characterized in this study. None of the structures contained an alpha(1----2)-linked fucose residue, in keeping with the non-secretor status of the patient. Seven of the structures had fucose present in alpha(1----3)-linkage in the X-determinant, while only one oligosaccharide (compound 14b) was seen with fucose alpha(1----4)-linked in the Le(a) determinant. The following eight structures isolated from the mucins of the non-secretor patient had not been found previously in the mucins of secretor individuals: [formula: see text] This study confirms that the blood group status of an individual is reflected in the carbohydrate structures of the secreted mucins. Furthermore, it clearly illustrates the need for detailed carbohydrate structural studies of mucins from different individuals before any attempt can be made to correlate observed differences in oligosaccharide profiles to disease status.  相似文献   

3.
Carbohydrates were extracted from a sample of milk from a mink, Mustela vison (Family Mustelidae). Free neutral and acidic oligosaccharides were isolated from the carbohydrate fraction and their chemical structures were compared with those of white-nosed coati (Nasua narica, Procyonidae) and harbour seal (Phoca vitulina, Phocidae) that we had studied previously. The ratio of free lactose to milk oligosaccharides was similar to that in milk of the white-nosed coati; in both species, this ratio was much lower than that in the milk of most eutherians. The neutral oligosaccharides of mink milk had alpha(1-3)-linked Gal or alpha(1-2)-linked Fuc residues at their non-reducing ends, as in the neutral oligosaccharides of white-nosed coati milk. Some of the neutral and acidic oligosaccharides, determined here, had been found also in harbour seal milk, but the harbour seal oligosaccharides did not contain alpha(1-3)-linked Gal residues.  相似文献   

4.
We have investigated the oligosaccharide requirements of the UDP-GlcNAc:glycoprotein N-acetylglucosamine-1-phosphotransferases from rat liver, Acanthamoeba castellani, and Dictyostelium discoideum. Uteroferrin, an acid hydrolase, was phosphorylated by the three N-acetylglucosaminylphosphotransferases, and the phosphorylated oligosaccharides were isolated and analyzed by ion suppression high performance liquid chromatography. In all three cases, the phosphorylated species contained 6 or more mannose residues. Phosphorylation of the Man5GlcNAc2 oligosaccharide could not be detected even though this was the major species on the native uteroferrin. The Man5GlcNAc2 oligosaccharides lack alpha 1,2-linked mannose residues, whereas the larger oligosaccharides contain 1 or more mannose residues in this linkage. Treatment of intact uteroferrin with an alpha 1,2-specific mannosidase-generated molecules whose oligosaccharides consisted almost entirely of species with 5 mannose residues. The N-acetylglucosaminylphosphotransferases could no longer phosphorylate such molecules. These data indicate that at least 1 alpha 1,2-linked mannose residue must be present on uteroferrin's oligosaccharide for phosphorylation to occur.  相似文献   

5.
The most common cause of infant mortality is diarrhea; the most common cause of bacterial diarrhea is Campylobacter jejuni, which is also the primary cause of motor neuron paralysis. The first step in campylobacter pathogenesis is adherence to intestinal mucosa. We found that such binding was inhibited in vitro by human milk and, with high avidity, by alpha1,2-fucosylated carbohydrate moieties containing the H(O) blood group epitope (Fuc alpha 1,2Gal beta 1,4GlcNAc em leader ). In studies on the mechanism of adherence, campylobacter, which normally does not bind to Chinese hamster ovary cells, bound avidly when the cells were transfected with a human alpha1,2-fucosyltransferase gene that caused overexpression of H-2 antigen; binding was specifically inhibited by H-2 ligands (lectins Ulex europaeus and Lotus tetragonolobus and H-2 monoclonal antibody), H-2 mimetics, and human milk oligosaccharides. Human milk oligosaccharides inhibited campylobacter colonization of mice in vivo and human intestinal mucosa ex vivo. Campylobacter colonization of nursing mouse pups was inhibited if their dams had been transfected with a human alpha1,2-fucosyltransferase gene that caused expression of H(O) antigen in milk. We conclude that campylobacter binding to intestinal H-2 antigen is essential for infection. Milk fucosyloligosaccharides and specific fucosyl alpha1,2-linked molecules inhibit this binding and may represent a novel class of antimicrobial agents.  相似文献   

6.
The PSP-I/PSP-II heterodimer is the major protein of boar seminal plasma. Both subunits are glycoproteins of the spermadhesin family and each contains a single N-glycosylation site. After enzymatic release of the oligosaccharides from isolated PSP-I and PSP-II, mainly neutral and monosialylated oligosaccharides, and small amounts of disialylated oligosaccharides, were recovered from both proteins. Twenty-two neutral oligosaccharides, 11 monosialylated glycans and three disialylated carbohydrate chains were characterized using mass spectrometric and NMR techniques. PSP-I and PSP-II share the same glycans but differ in their relative molar ratios. Most glycan structures are proximally alpha1-6-fucosylated, diantennary complex-type bearing nonsialylated or alpha2-6-sialylated N-acetyllactosamine or di-N-acetyllactosamine antennae. The majority of nonsialylated N-acetyllactosamine antennae bear terminal alpha1-3-linked Gal residues. In addition, the N-acetylglucosamine residue of nonsialylated N-acetyl and di-N-acetyllactosamine antennae can be modified by an alpha1-3-linked fucose residue. Structures of higher antennarity, as well as structures 3,6-branched at galactose residues, were found in smaller amounts. In one oligosaccharide, N-acetylneuraminic acid is substituted by N-glycolylneuraminic acid. Mass spectrometric analysis of PSP-I and PSP-II glycoforms isolated from crystallized PSP-I/PSP-II heterodimer showed the coexistence of major PSP-I and PSP-II glycoforms in the hexagonal crystals. Oligosaccharides with the NeuNAcalpha2-6GalNAcbeta1-4GlcNAc-R motif block adhesive and activation-related events mediated by CD22, suggesting a possible immunoregulatory activity for PSP-I/PSP-II.  相似文献   

7.
We find that the N-linked Man8GlcNAc2- core oligosaccharide of Saccharomyces cerevisiae mnn mutant mannoproteins is enlarged by the addition of the outer chain to the alpha 1----3-linked mannose in the side chain that is attached to the beta 1----4-linked mannose rather than by addition to the terminal alpha 1----6-linked mannose. This conclusion is derived from structural studies on a phosphorylated oligosaccharide fraction and from mass spectral fragment analysis of neutral core oligosaccharides.  相似文献   

8.
We have isolated and characterized a new yeast mutation in the glucosylation steps of lipid-linked oligosaccharide biosynthesis, alg8-1. Cells carrying the alg8-1 mutation accumulate Glc1Man9GlcNAc2-lipid both in vivo and in vitro. We present evidence showing that the alg8-1 mutation blocks addition of the second alpha 1,3-linked glucose. alg8-1 cells transfer Glc1Man9GlcNAc2 to protein instead of the wild type oligosaccharide, Glc3Man9GlcNAc2. Pulse-chase studies indicate that the Glc1Man9GlcNAc2 transferred is processed more slowly than the wild type oligosaccharide. The yeast mutation gls1-1 lacks glucosidase I activity (Esmon, B., Esmon, P.C., and Schekman, R. (1984) J. Biol. Chem. 259, 10322-10327), the enzyme responsible for removing the alpha 1,2-linked glucose residues from protein-linked oligosaccharides. We demonstrate that gls1-1 cells contain glucosidase II activity (which removes alpha 1,3-linked glucose residues) and have constructed the alg8-1 gls1-1 haploid double mutant. The Glc1Man9GlcNAc2 oligosaccharide was trimmed normally in these cells, demonstrating that the alg8-1 oligosaccharide contained an alpha 1,3-linked glucose residue. A novel Glc2 compound was probably produced by the action of the biosynthetic enzyme that normally adds the alpha 1,2-linked glucose to lipid-linked Glc2Man9GlcNAc2. This enzyme may be able to slowly add alpha 1,2-linked glucose residue to protein-bound Glc1Man9GlcNAc2. The relevance of these findings to similar observations in other systems where glucose residues are added to asparagine-linked oligosaccharides and the possible significance of the reduced rate of oligosaccharide trimming in the alg mutants are discussed.  相似文献   

9.
This study examines the genes coding for enzymes involved in bovine milk oligosaccharide metabolism by comparing the oligosaccharide profiles with the expressions of glycosylation-related genes. Fresh milk samples (n = 32) were collected from four Holstein and Jersey cows at days 1, 15, 90 and 250 of lactation and free milk oligosaccharide profiles were analyzed. RNA was extracted from milk somatic cells at days 15 and 250 of lactation (n = 12) and gene expression analysis was conducted by RNA-Sequencing. A list was created of 121 glycosylation-related genes involved in oligosaccharide metabolism pathways in bovine by analyzing the oligosaccharide profiles and performing an extensive literature search. No significant differences were observed in either oligosaccharide profiles or expressions of glycosylation-related genes between Holstein and Jersey cows. The highest concentrations of free oligosaccharides were observed in the colostrum samples and a sharp decrease was observed in the concentration of free oligosaccharides on day 15, followed by progressive decrease on days 90 and 250. Ninety-two glycosylation-related genes were expressed in milk somatic cells. Most of these genes exhibited higher expression in day 250 samples indicating increases in net glycosylation-related metabolism in spite of decreases in free milk oligosaccharides in late lactation milk. Even though fucosylated free oligosaccharides were not identified, gene expression indicated the likely presence of fucosylated oligosaccharides in bovine milk. Fucosidase genes were expressed in milk and a possible explanation for not detecting fucosylated free oligosaccharides is the degradation of large fucosylated free oligosaccharides by the fucosidases. Detailed characterization of enzymes encoded by the 92 glycosylation-related genes identified in this study will provide the basic knowledge for metabolic network analysis of oligosaccharides in mammalian milk. These candidate genes will guide the design of a targeted breeding strategy to optimize the content of beneficial oligosaccharides in bovine milk.  相似文献   

10.
Kim MW  Rhee SK  Kim JY  Shimma Y  Chiba Y  Jigami Y  Kang HA 《Glycobiology》2004,14(3):243-251
Presently almost no information is available on the oligosaccharide structure of the glycoproteins secreted from the methylotrophic yeast Hansenula polymorpha, a promising host for the production of recombinant proteins. In this study, we analyze the size distribution and structure of N-linked oligosaccharides attached to the recombinant glycoprotein glucose oxidase (GOD) and the cell wall mannoproteins obtained from H. polymorpha. Oligosaccharide profiling showed that the major oligosaccharide species derived from the H. polymorpha-secreted recombinant GOD (rGOD) had core-type structures (Man(8-12)GlcNAc(2)). Analyses using anti-alpha 1,3-mannose antibody and exoglycosidases specific for alpha 1,2- or alpha 1,6-mannose linkages revealed that the mannose outer chains of N-glycans on the rGOD have very short alpha 1,6 extensions and are mainly elongated in alpha 1,2-linkages without a terminal alpha 1,3-linked mannose addition. The N-glycans released from the H. polymorpha mannoproteins were shown to contain mostly mannose in their outer chains, which displayed almost identical size distribution and structure to those of H. polymorpha-derived rGOD. These results strongly indicate that the outer chain processing of N-glycans by H. polymorpha significantly differs from that by Saccharomyces cerevisiae, thus generating much shorter mannose outer chains devoid of terminal alpha 1,3-linked mannoses.  相似文献   

11.
BHK-21 cells expressing a human IgG-IL2 fusion protein, with potential application in tumor-targeted therapy, were grown under different nutrient conditions in a continuous system for a time period of 80 days. At very low-glucose (< 0.5 mM) or glutamine (< 0. 2 mM) concentrations, a shift toward an energetically more efficient metabolism was observed. Cell-specific productivity was maintained under metabolically shifted growth conditions and at the same time an almost identical intracellular ATP content, obtained by in vivo (31)P NMR experiments, was observed. No significant differences in the oligosaccharide structures were detected from the IgG-IL2 fusion protein preparations obtained by growing cells under the different metabolic states. By using oligosaccharide mapping and MALDI/TOF-MS, only neutral diantennary oligosaccharides with or without core alpha1-6-linked fucose were detected that carried no, one or two beta1-4-linked galactose. Although the O-linked oligosaccharide structures that are present in the IL2 moiety of the protein were studied with less detail, the data obtained from the hydrazinolysis procedure point to the presence of the classical NeuAcalpha2-3Galbeta1-3GalNAc structure. Here, it is shown that under different defined cellular metabolic states, the quality of a recombinant product in terms of O- and N-linked oligosaccharides is stable, even after a prolonged cultivation period. Moreover, unaffected intracellular ATP levels under the different metabolic states were observed.  相似文献   

12.
The structural determinants required for interaction of oligosaccharides with Ricinus communis agglutinin I (RCAI) and Ricinus communis agglutinin II (RCAII) have been studied by lectin affinity high-performance liquid chromatography (HPLC). Homogeneous oligosaccharides of known structure, purified following release from Asn with N-glycanase and reduction with NaBH4, were tested for their ability to interact with columns of silica-bound RCAI and RCAII. The characteristic elution position obtained for each oligosaccharide was reproducible and correlated with specific structural features. RCAI binds oligosaccharides bearing terminal beta 1,4-linked Gal but not those containing terminal beta 1,4-linked GalNAc. In contrast, RCAII binds structures with either terminal beta 1,4-linked Gal or beta 1,4-linked GalNAc. Both lectins display a greater affinity for structures with terminal beta 1,4-rather than beta 1,3-linked Gal, although RCAII interacts more strongly than RCAI with oligosaccharides containing terminal beta 1,3-linked Gal. Whereas terminal alpha 2,6-linked sialic acid partially inhibits oligosaccharide-RCAI interaction, terminal alpha 2,3-linked sialic acid abolishes interaction with the lectin. In contrast, alpha 2,3- and alpha 2,6-linked sialic acid equally inhibit but do not abolish oligosaccharide interaction with RCAII. RCAI and RCAII discriminate between N-acetyllactosamine-type branches arising from different core Man residues of dibranched complex-type oligosaccharides; RCAI has a preference for the branch attached to the alpha 1,3-linked core Man and RCAII has a preference for the branch attached to the alpha 1,6-linked core Man. RCAII but not RCAI interacts with certain di- and tribranched oligosaccharides devoid of either Gal or GalNAc but bearing terminal GlcNAc, indicating an important role for GlcNAc in RCAII interaction. These findings suggest that N-acetyllactosamine is the primary feature required for oligosaccharide recognition by both RCAI and RCAII but that lectin interaction is strongly modulated by other structural features. Thus, the oligosaccharide specificities of RCAI and RCAII are distinct, depending on many different structural features including terminal sugar moieties, peripheral branching pattern, and sugar linkages.  相似文献   

13.
Oligosaccharides from feces of preterm infants fed on breast milk   总被引:1,自引:0,他引:1  
Nine neutral and five acidic oligosaccharides were isolated from feces of a preterm (30th postmenstrual week) blood group A nonsecretor infant fed on pooled breast milk. Structural analyses were carried out using sugar and methylation analyses, fast atom bombardment mass spectrometry, and 1H NMR. The acidic oligosaccharides are well-known components of human milk. The neutral oligosaccharides are characteristic of nonsecretor milk. Surprisingly, no secretor gene-dependent oligosaccharides were present in the feces. Another preterm (27th postmenstrual week) blood group A, secretor infant fed on pooled breast milk showed the same fecal oligosaccharide pattern as above during the first week after birth, despite being a secretor individual. Also notable was the absence of blood group A-active oligosaccharides in this sample. Another sample of feces collected 8 weeks later from the latter infant contained the expected blood group A-active oligosaccharides. Furthermore, free sialic acid was present at the cost of the sialyl oligosaccharides seen earlier. Thus, infants born prematurely do not show the same degree of development of oligosaccharide metabolism as their more mature counterparts.  相似文献   

14.
Carbohydrate structures of HVJ (Sendai virus) glycoproteins   总被引:7,自引:0,他引:7  
The carbohydrate structures of two membrane glycoproteins (HANA protein and F protein) of HVJ have been determined on materials purified from virions grown in the allantoic sac of embryonated chicken eggs. Both glycoproteins contain fucose, mannose, galactose, and glucosamine but not galactosamine, indicating that their sugar chains are exclusively of the asparagine-linked type. The radioactive oligosaccharide fractions obtained from the two glycoproteins by hydrazinolysis followed by NaB[3H]4 reduction gave quite distinct fractionation patterns after paper electrophoresis. More than 75% of the oligosaccharides from F protein were acidic and separated into at least four components by paper electrophoresis. Only 18% of the oligosaccharide from HANA protein was an acidic single component. These acidic oligosaccharides could not be converted to neutral oligosaccharides by sialidase digestion. Structural studies of the neutral oligosaccharide fractions from HANA and F proteins revealed that both of them are mixtures of a series of high mannose type oligosaccharides and of complex type oligosaccharides with Gal beta 1 leads to (Fuc alpha 1 leads to 3) GlcNAc group in their outer chain moieties.  相似文献   

15.
Oligosaccharides in human milk inhibit enteric pathogens in vitro and in vivo. Neutral milk oligosaccharides vary among individuals and over the course of lactation. To study such variation in the acidic milk oligosaccharides, a sensitive, convenient, quantitative method is needed. High-performance capillary electrophoresis of underivatized acidic oligosaccharides with detection by UV absorbance at 205 nm proved to be sensitive to the femtomole level. Eleven standard oligosaccharides ranging from tri- to nonasaccharide (3'-sialyllactose, 6'-sialyllactose, 3'-sialyllactosamine, 6'-sialyllactosamine, disialyltetraose, 3'-sialyl-3-fucosyllactose, sialyllacto-N-tetraose-a, sialyllacto-N-tetraose-b, sialyllacto-N-neotetraose-c, disialyllacto-N-tetraose, and disialomonofucosyllacto-N-neohexaose) were resolved; baseline resolutions of 3'-sialyllactose, 6'-sialyllactose, and other structural isomers were achieved. Peak areas were linear from 30 to 2000 pg and were reproducible with a coefficient of variation between 4 and 9%. There was no evidence of quantitative interference of one oligosaccharide with another. In studies using pooled human milk, addition of increasing amounts of authentic standard oligosaccharides produced the expected positive increments in detected values, indicating quantitative recovery without interference by other milk components. The identities of the major sialylated acidic oligosaccharides of pooled human milk agreed with the results of previous studies employing other analytical methods. Comparison of oligosaccharide profiles of milk samples from different donors revealed extensive variation, especially in the structural isomers of sialyllacto-N-tetraose. This sensitive, highly reproducible method requires only simple sample workup and is useful in defining variations in human milk acidic oligosaccharides and investigating their possible relationship with diseases of infants.  相似文献   

16.
Carbohydrates were extracted from high Arctic harbour seal milk, Phoca vitulina vitulina (family Phocidae). Free neutral oligosaccharides were separated by gel filtration and preparative thin layer chromatography, while free sialyl oligosaccharides were separated by gel filtration and then purified by ion exchange chromatography, gel filtration and high performance liquid chromatography. Oligosaccharide structures were determined by 1H-NMR spectroscopy. The structures of the neutral oligosaccharides were as follows: lactose, 2'-fucosyllactose, lacto-N-neotetraose, lacto-N-neohexaose, monofucosyl lacto-N-neohexaose and difucosyl lacto-N-neohexaose. Thus, all of the neutral saccharides contained lactose or lacto-N-neotetraose or lacto-N-neohexaose as core units and/or non-reducing alpha(1-2) linked fucose. These oligosaccharides have also been found in hooded seal milk. The structures of the silalyl oligosaccharides were: monosialyl lacto-N-neohexaose, monosialyl monofucosyl lacto-N-neohexaose, monosialyl difucosyl lacto-N-neohexaose and disialyl lacto-N-neohexaose. These oligosaccharides contained lacto-N-neohexaose as core units, and one or two alpha(2-6) linked Neu5Ac, and/or non-reducing alpha(1-2) linked Fuc. The Neu5Ac residues were found to be linked to GlcNAc or penultimate Gal residues. The acidic oligosaccharides are the first to have been characterized in the milk of any species of seal.  相似文献   

17.
The processing of asparagine-linked oligosaccharides on the alpha- chains of an immunoglobulin A (IgA) has been investigated using MOPC 315 murine plasmacytoma cells. These cells secrete IgA containing complex-type oligosaccharides that were not sensitive to endo-beta-N- acetylglucosaminidase H. In contrast, oligosaccharides present on the intracellular alpha-chain precursor were of the high mannose-type, remaining sensitive to endo-beta-N-acetylglucosaminidase H despite a long intracellular half-life of 2-3 h. The major [3H]mannose-labeled alpha-chain oligosaccharides identified after a 20-min pulse were Man8GlcNAc2 and Man9GlcNAc2. Following chase incubations, the major oligosaccharide accumulating intracellularly was Man6GlcNAc2, which was shown to contain a single alpha 1,2-linked mannose residue. Conversion of Man6GlcNAc2 to complex-type oligosaccharides occurred at the time of secretion since appreciable amounts of Man5GlcNAc2 or further processed structures could not be detected intracellularly. The subcellular locations of the alpha 1,2-mannosidase activities were studied using carbonyl cyanide m-chlorophenylhydrazone and monensin. Despite inhibiting the secretion of IgA, these inhibitors of protein migration did not effect the initial processing of Man9GlcNAc2 to Man6GlcNAc2. Furthermore, no large accumulation of Man5GlcNAc2 occurred, indicating the presence of two subcellular locations of alpha 1,2-mannosidase activity involved in oligosaccharide processing in MOPC 315 cells. Thus, the first three alpha 1,2-linked mannose residues were removed shortly after the alpha-chain was glycosylated, most likely in rough endoplasmic reticulum, since this processing occurred in the presence of carbonyl cyanide m-chlorophenylhydrazone. However, the removal of the final alpha 1,2-linked mannose residue as well as subsequent carbohydrate processing occurred just before IgA secretion, most likely in the trans Golgi complex since processing of Man6GlcNAc2 to Man5GlcNAc2 was greatly inhibited in the presence of monensin.  相似文献   

18.
alpha1,2-linked fucose can be found on xyloglucans which are the main hemicellulose compounds of dicotyledons. The fucosylated nonasaccharide XXFG derived from xyloglucans plays a role in cell signaling and is active at nanomolar concentrations. The plant enzyme acting on this alpha1,2-linked fucose residues has been previously called fucosidase II; here we report on the molecular identification of a gene from Arabidopsis thaliana (At4g34260 hereby designed AtFuc95A) encoding this enzyme. Analysis of the predicted protein composed of 843 amino acids shows that the enzyme belongs to the glycoside hydrolase family 95 and has homologous sequences in different monocotyledons and dicotyledons. The enzyme was expressed recombinantly in Nicotiana bentamiana, a band was visible by Coomassie blue staining and its identity with the alpha1,2-fucosidase was assessed by an antibody raised against a peptide from this enzyme as well as by peptide-mass mapping. The recombinant AtFuc95A is active towards 2-fucosyllactose with a Km of 0.65 mM, a specific activity of 110 mU/mg and a pH optimum of 5 but does not cleave alpha1,3, alpha1,4 or alpha1,6-fucose containing oligosaccharides and p-nitrophenyl-fucose. The recombinant enzyme is able to convert the xyloglucan fragment XXFG to XXLG, and is also active against xyloglucan polymers with a Km value for fucose residues of 1.5mM and a specific activity of 36 mU/mg. It is proposed that the AtFuc95A gene has a role in xyloglucan metabolism.  相似文献   

19.
Oligosaccharide structures of human colonic mucin   总被引:19,自引:0,他引:19  
Purified human colonic mucin was separated into six distinct components by DEAE-cellulose chromatography, and the structures of oligosaccharide side chains from the three most abundant species were determined. Oligosaccharide side chains were isolated from colonic mucin species III, IV, and V after alkaline borohydride reductive cleavage in the presence of sodium borotritide. After initial separation of acidic and neutral oligosaccharides by ion exchange chromatography, individual oligosaccharides were isolated by sequential chromatography on Bio-Gel P-4 and Bio-Gel P-2 resins followed by preparative normal phase high performance liquid chromatography. Composition and structure of individual oligosaccharides were determined by combination of gas chromatography, methylation analysis, and sequential glycosidase digestion. Collectively, 21 discrete oligosaccharide structures were identified in the major human colonic mucin species including 10 acidic oligosaccharides and 11 neutral structures which ranged in size from 2 to 12 sugar residues. Although detailed structures were defined for each oligosaccharide, the majority of the structures identified were variations of a relatively small number of "basic" structures, and several generalizations pertained. First, many oligosaccharides represented variations of a biantennary structure in which branch chains arise in N-acetylglucosaminyl residues linked to C3 and C6 of a galactosyl residue linked in turn to a GlcNAc beta (1-3)GalNAc core; second, non-branched oligosaccharides appeared to be linear chain derivatives of the same core structure; third, all acidic oligosaccharides could be derived from neutral structures present in the mucin species; fourth, sialic acid substitution was limited to few sites and always included substitution in alpha 2-6 linkage to the reducing terminal N-acetylgalactosamine, and finally several structures contained both sialic acid and fucose residues. Individually, mucin species III, IV, and V were found to contain unique mixtures of 13, 14, and 10 oligosaccharide structures, respectively. These data demonstrate that human colonic mucin contain a wide range of oligosaccharides reflecting variations of common core oligosaccharide structures. The major chromatographically defined constituents of normal colonic mucin appear to possess characteristic and distinguishable combinations of oligosaccharide structures. These findings support the concept that colonic mucin contains structurally and functionally distinct subpopulations.  相似文献   

20.
A 'serotransferrin-like' protein was purified from mouse milk. This serotransferrin cross-reacts immunologically with the serotransferrin isolated from mouse plasma and not with the mouse lactotransferrin (lactoferrin). Sugar analysis of the three transferrins, i.e. serotransferrin, milk 'serotransferrin-like' protein and lactotransferrin, revealed that the major difference between the glycan primary structure of mouse serotransferrin and those of mouse milk 'serotransferrin-like' protein and lactotransferrin concerns essentially the presence of one fucose residue in the last two proteins. For structural determination, the N-glycosidically linked glycans were released from the protein by a reductive cleavage of the oligosaccharide-protein linkage under strong alkaline conditions. The primary structure of the released oligosaccharide alditols was determined by methylation analysis and 400 MHz 1H-n.m.r. spectroscopy. The oligosaccharide alditols released from milk 'serotransferrin-like' protein and lactotransferrin were identical and were identified as disialylated biantennary glycans of the N-acetyl-lactosamine type with a fucose residue alpha-1,6-linked to the N-acetylglucosamine residue conjugated to the peptide chain and having the following primary structure: NeuAc(alpha 2-6)Gal(beta 1-4)GlcNAc(beta 1-2)Man(alpha 1-3)[NeuAc(alpha 2-6)Gal(beta 1-4)GlcNAc(beta 1-2)Man(alpha 1-6)]Man(beta 1-4)GlcNAc(beta 1-4)[Fuc(alpha 1-6)]GlcNAc(beta 1-N)Asn. The serotransferrin glycan has the same primary structure but is only partially fucosylated (10-15%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号