首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Insect Biochemistry》1988,18(1):117-126
Flight activity or injection of the death's-head hawkmoth Acherontia atropos with locust synthetic adipokinetic hormone (AKH I) results in a dramatic increase in the concentration of hemolymph diacylglycerol which is carried by specific lipophorins. In resting hawkmoths diacylglycerols are associated with a high-density lipophorin (HDLp, density ∼1.13 g/ml) consisting of two major apolipophorins (apoLp-I and -II, mol. wt ∼240,000 and 70,000, respectively). During flight or after AKH injection the formation of a new low-density lipophorin is induced (LDLp, density ∼1.03 g/ml), exhibiting a much higher lipid loading and consisting of HDLp subunits and an additional subunit (apoLp-III, mol. wt approx. 20,000). This subunit is a regular constitutent of hemolymph proteins in resting hawkmoths and consists of two protein components with slightly different molecular weights. The component with the lowest molecular weight seems to be preferentially incorporated into the newly generated LDLp. In the resting situation the HDLp already contains some apoLp-III.In spite of some minor differences, the overall mechanism of lipophorin rearrangements upon flight activity in the hawkmoth appears to be very similar to the known systems established for both Locusta migratoria and Manduca sexta.  相似文献   

2.
A hybrid low density lipophorin particle (LDLp) was prepared by incubation with human apolipoprotein (apo) A-I in vitro. ApoA-I associated with LDLp in a concentration dependent, saturable manner which was accompanied by dissociation of apolipophorin III (apoLp-III). The apoA-I hybrid LDLp had the same lipid composition, density and morphology as native LDLp indicating that displacement of apoLp-III by apoA-I did not affect its structural properties. The molar ratio of apoLp-I:apoLp-II:apoLp-III was maximally reduced from 1:1:16 to 1:1:2 in native versus hybrid LDLp with the latter particle binding 7 molecules of apoA-I. The inability of apoA-I to displace the remaining 2 apoLp-III supports the concept that these apoLp-III molecules are not equivalent to the other fourteen. Native and hybrid LDLp particles were both metabolized to high density lipophorin in vivo. The displacement reaction represents a novel method for the production of apolipoprotein hybrids of LDLp and the results indicate that apoA-I has an inherently higher affinity for lipid surfaces than apoLp-III.  相似文献   

3.
The mobilization of carbohydrate and lipid reserves from the insect fat body as fuels for migratory flight activity is controlled by adipokinetic hormone (AKH), of which in Locusta migratoria three different forms occur: AKH-I, -II and -III. In fat body in vitro, each AKH is capable of activating glycogen phosphorylase and of stimulating cAMP production, but only in the presence of extracellular Ca2+. The hormones stimulate both the influx and the efflux of Ca2+, the higher influx probably causing an increase in intracellular [Ca2+]. AKH enhances the production of inositol phosphates among which inositol 1,4,5-triphosphate may mediate the mobilization of Ca2+ from intracellular stores. Evidence is presented in favor of the occurrence of a capacitative calcium entry mechanism. Results suggest that transduction of the AKH signal occurs through stimulatory G protein-coupled receptor(s). A tentative model is presented for the interactions between the AKH signaling pathways in the locust fat body cell. AKH-induced lipid mobilization during flight requires the presence in the insect blood of high-density lipophorin (HDLp) particles and apolipophorin III (apoLp-III). Both protein components are synthesized in the fat body. In the locust, the two integral, nonexchangeable HDLp apolipophorins (apoLp-I and -II) were shown to originate from a common precursor; an mRNA of 10.3 kb seems to code for this precursor protein. The models proposed for lipophorin assembly and secretion in a number of insects are not in agreement. The exchangeable apoLp-III may occur in two or more isoforms; locust apoLp-III is secreted from the fat body as one of the two isoforms and in the hemolymph converted into the truncated second one. The rationale for this process is as yet unknown.  相似文献   

4.
Lipophorin structure analyzed by in vitro treatment with lipases.   总被引:1,自引:0,他引:1  
Adult Manduca sexta high density lipophorin (HDLp-A) is composed of three apolipoproteins (apoLp-I, -II, and -III) and 52% lipid. The flight-specific low density lipophorin (LDLp) contains 62% lipid and is associated with several additional molecules of apoLp-III. The amount of phospholipid remains constant in lipophorin (140 mol/mol of lipophorin), while the diacylglycerol content varies between different lipophorin species (310 mol/mol HDLp up to 1160 mol/mol LDLp). Both lipophorin particles were enzymatically depleted of phospholipid or diacylglycerol by in vitro incubation with either phospholipase A2 or triacylglycerol lipase. Albumin was used to remove free fatty acids generated during the reaction. Treatment with phospholipase A2 removed all phospholipids (except sphingomyelin) and the resulting particles were stable. Triacylglycerol lipase hydrolyzed large fractions of diacylglycerol. The resulting particles were smaller in size, higher in density, and devoid of apoLp-III. The particles retained apoLp-I and -II and the other lipid components, including a substantial amount of diacylglycerol. Structural integrity of diacylglycerol-depleted lipophorin was confirmed by electron microscopical analysis. When treated with both phospholipase A2 and triacylglycerol lipase, lipophorin precipitated. From these results we conclude that: 1) all phospholipid and apoLp-III are located at the surface of lipophorin, whereas diacylglycerol is partitioned between the sublayers and the surface of the particle; 2) both diacylglycerol and phospholipid play a role in stabilizing lipophorin in the aqueous medium; and 3) lipophorin can be extensively unloaded and still retain its basic structure, a necessary feature for its function as a reusable lipid shuttle.  相似文献   

5.
Binding of high-density lipophorin (HDLp) to a plasma membrane preparation of locust flight muscle tissue was studied using a radiolabelled ligand binding assay and ligand blotting techniques. Analysis at 33 degrees C of the concentration-dependent total binding of tritium-labelled HDLp ([3H]HDLp) to the membrane preparation revealed the presence of a single specific binding site with an equilibrium dissociation constant of Kd = 9 (+/- 2) X 10(-7) M and a maximal binding capacity of 84 (+/- 10) ng X (micrograms protein)-1. Unlabelled HDLp as well as unlabelled low-density lipophorin (LDLp) competed with [3H]HDLp for binding to the identified binding site. In addition, ligand blotting demonstrated that both HDLp and LDLp bind specifically to a 30-kDa protein in the plasma membrane preparation, suggesting the involvement of this protein in the binding of lipophorins to the isolated membranes. A possible relationship between the identified binding of lipophorins and the observed co-purification of lipophorin lipase activity with the plasma membranes is discussed.  相似文献   

6.
Injection of heat-killed bacteria into larvae of the greater wax moth Galleria mellonella is followed by changes in lipoprotein composition in the hemolymph. Density gradient centrifugation experiments revealed that within the first four hours after injection, a part of larval lipoprotein, high-density lipophorin (HDLp), was converted into a lipoprotein of lower density. SDS-polyacrylamide gel electrophoresis analysis of the gradient fractions and sequencing of protein fragments, established that the exchangeable apolipoprotein apolipophorin III (apoLp-III), a potent immune-activator, was associated with this newly formed lipophorin. To investigate further the influence of lipophorin-associated apoLp-III on immune-related reactions, we performed in vitro studies with isolated hemocytes from G. mellonella and lipophorins from the sphinx moth Manduca sexta, as a natural source of high amounts of low-density lipophorin (LDLp) and HDLp. The hemocytes were activated to form superoxide radicals upon incubation with LDLp, but not with HDLp. Fluorescence-labeled LDLp was specifically taken up by granular cells. This process was inhibited by adding an excess of unlabeled LDLp, but not by HDLp. We hypothesize that larval lipophorin formed in vivo is an endogenous signal for immune activation, specifically mediated by the binding of lipid-associated apoLp-III to hemocyte membrane receptors.  相似文献   

7.
The mature flightless grasshopper Barytettix psolus shows a very small adipokinetic response when injected with extracts of its own corpora cardiaca, although the fat body contains enough lipid for a strong response. When these extracts were injected into Melanoplus differentialis, a grasshopper capable of flight, or the moth Manduca sexta, much stronger adipokinetic responses were observed. Upon analysis of B. psolus extracts by HPLC, two components with adipokinetic activity were obtained. The major component appears to be identical to locust adipokinetic hormone (AKH) I. Extracts of B. psolus corpora cardiaca also activated fat body glycogen phosphorylase in B. psolus. This activation, however, did not result in an increase in hemolymph sugar, probably because of low levels of glycogen in the fat body. B. psolus hemolymph contains a high-density lipophorin (HDLp) consisting of the apolipophorins (apoLp) I and II and lipid. Both apoproteins are glycosylated. The hemolymph also contains apoLp-III, although this apoprotein apparently does not associate with HDLp to form a low-density lipophorin (LDLp) following AKH or corpora cardiaca extract injections. When B. psolus lipophorin and AKH were injected into Schistocerca americana, lipophorin took up lipids and combined with apoLp-III, forming LDLp. ApoLp-III from B. psolus injected into S. americana can also form LDLp, demonstrating that the components are functional. A lipid transfer particle isolated from M. sexta and injected into B. psolus does not improve the adipokinetic response. Thus, it appears that the adipokinetic response of B. psolus is not deficient because of the lack of AKH or functional lipophorins, but may be caused by the lack of a full response to AKH by fat body or the deficiency in hemolymph of some as yet unknown factor.  相似文献   

8.
《Insect Biochemistry》1990,20(8):793-799
Twenty monoclonal antibodies raised against locust native lipophorin were screened by testing their capacity to inhibit diacylglycerol (DG) uptake from fat body by lipophorin in vitro. One of the monoclonal antibodies clearly inhibits the loading of DG by lipophorin from the fat body. This antibody cross reacts only with apolipophorin-II(apoLp-II), one of the two apoproteins of lipophorin. By using proteolytic apoLp-II fragments, we have shown that the epitope for the antibody against apoLp-II contains lysine. Furthermore, both the apoproteins, apoLp-I and apoLp-II, were almost equally labeled with biotin when the native lipophorin was incubated with modified biotin-reagent. These observations strongly suggest that apoLp-II, at least in part, is localized on the outer surface of lipophorin and may contribute to the lipid loading process from fat body.  相似文献   

9.
Biosynthesis of high density lipophorin (HDLp) was studied in larvae and adults of the migratory locust, Locusta migratoria. In an in vitro system, fat bodies were incubated in a medium containing a mixture of tritiated amino acids. Using SDS-PAGE and immunoblotting, it was shown that larval and adult fat bodies secreted both HDLp apoproteins, apolipophorin I (apoLp-I) and apolipophorin II (apoLp-II). Radiolabel was recovered in both apoproteins, indicative of de novo synthesis. The density of the fractions containing the apoproteins synthesized and secreted by larval and adult fat bodies was determined by density gradient ultracentrifugation. A radiolabeled protein fraction was found at density 1.12 g/ml. Using an enzyme-linked immunosorbent assay for detecting apoLp-I and apoLp-II, it was demonstrated that both apoproteins were present in this fraction, which had a density identical to that of circulating HDLp in hemolymph. Lipid analysis revealed that it contained phospholipid, diacylglycerol, sterol, and hydrocarbons. From these results it is concluded that the fat body of the locust synthesizes both apoLp-I and apoLp-II, which are combined with lipids to a lipoprotein particle that is released into the medium as HDLp.  相似文献   

10.
The formation of low-density lipophorin (LDLp) in insect hemolymph, resulting from association of high-density lipophorin (HDLp) with both lipid and apolipophorin III, is considered to provide a reutilizable lipid shuttle for flight muscle energy supply. The changes in lipid and apolipoprotein composition of LDLp, isolated after flight activity, compared to that of HDLp in the hemolymph at rest, were studied in two evolutionary divergent insects, the hawkmoth Acherontia atropos and the migratory locust, Locusta migratoria. Using FPLC on Superose 6 prep grade as a novel technique to separate the apolipophorins of HDLp and LDLp, the ratio of apolipoprotein I, II, and III in HDLp of both species was demonstrated to be 1:1:1, whereas flight activity resulted in a ratio of 1:1:10 in LDLp. Injection of adipokinetic hormone into resting moths showed that, depending on the dose, the number of apolipophorin III molecules in LDLp can exceed that recovered after the physiological condition of flight. Analysis of the lipophorin lipids demonstrated that in addition to the considerable increase in diacylglycerol in the LDLp particle, which is consistent with the role LDLp in energy supply, particularly the hydrocarbons were increased compared to HDLp, rendering the mechanism of LDLp formation from HDLp even more complex.  相似文献   

11.
A novel reaction, catalyzed by Manduca sexta lipid transfer particle (LTP), transforms low density lipophorin (LDLp) into two distinct lipoprotein species. A population of LDLp particles serves as lipid donor or acceptor in LTP-catalyzed production of a very low density lipophorin (VLDLp) and a high density lipophorin (HDLp) product. The products result from facilitated net transfer of lipid mass from donor LDLp particles to acceptor LDLp particles. Transfer of apolipophorin III (apoLp-III) from donor to acceptor lipoprotein occurs during the reaction to produce a lipid- and apoLp-III-enriched VLDLp species and lipid- and apoLp-III-depleted HDLp species. The VLDLp produced in this in vitro reaction contains more lipid and apoLp-III than any previous lipophorin species reported and further demonstrates the scope of the lipid binding capacity of lipophorin. Lipid analysis and radiolabeling studies confirmed that unidirectional net transfer of lipid mass and apoLp-III from donor to acceptor occurs. When 3H-lipid-LDLp was used as substrate in the LTP-catalyzed disproportionation reaction the density distribution of radioactivity and protein provided evidence of vectorial transfer of diacylglycerol, phospholipid, and free fatty acids. Electron micrographs of the original LDLp population and of the LTP-induced product lipoprotein population provided further support for the interpretation derived from biochemical studies. This LTP-catalyzed disproportionation was observed only with apoLp-III-rich LDLp suggesting that the presence of increased amounts of this apoprotein dramatically affects the properties of the particle and appears to be directly related to the capacity of the lipoprotein to bind lipid.  相似文献   

12.
The mechanism of the conversion of low-density lipophorin (LDLp) to high-density lipophorin (HDLp) in long-distance flight insects was investigated using a lipoprotein lipase from a bacterium, Alcaligenes sp. Diacylglycerol of LDLp was steadily hydrolyzed in vitro by the lipase, resulting in a 90% loss of diacylglycerol from LDLp during incubation. The "lipase-treated LDLp" thus obtained still contained associated apolipophorin-III (apoLp-III). These data suggest that the dissociation of apoLp-III is independent of the depletion of diacylglycerol from LDLp, and that the decrease in particle diameter caused by the depletion of diacylglycerol does not force the dissociation of apoLp-III from the lipophorin particle. Some physico-chemical properties of the lipase-treated LDLp were measured.  相似文献   

13.
The in vitro study was performed in order to demonstrate the structural changes of lipophorin induced in vivo by the injection of adipokinetic hormone (AKH) into adult locusts. After many unsuccessful attempts, we have established the reconstructed incubation system in which purified lipophorin and apolipophorin-III (9 mol/mol lipophorin) are incubated with the fat body in the presence of AKH under a supply of excess oxygen. In this system, high density lipophorin (HDLp) originally present in the incubation medium can be transformed entirely into low density lipophorin (LDLp) due to the loading of an increased amount of diacylglycerol from the fat body. The LDLp formed in this incubation system was exactly the same as the LDLp formed in vivo by the injection of AKH, in terms of density, particle size, diacylglycerol content, and the association with apolipophorin-III (apoLp-III). In the absence of apoLp-III, AKH did not exhibit its function to any extent. It was also demonstrated that the transformation of HDLp to LDLp requires calcium ions. Moreover, it appears that, up to a certain limit, the increase of diacylglycerol content of lipophorin and the amount of apoLp-III associated with lipophorin is nearly proportional to the amount of apoLp-III added to the incubation medium.  相似文献   

14.
Summary The mechanism of long-distance flight in insects was investigated by comparing lipid mobilization and transport in gregarious- and solitary-phase locusts and in the American cockroach. Unlike the gregarious-phase locust, both the American cockroach and the solitary locust were unable to form low-density lipophorin (loaded with increased amount of diacylglycerol) even when injected with adipokinetic hormone (AKH). The cockroach fat body responded to AKH. However, not only does the American cockroach lack apolipophorin-III (apoLp-III) in the haemolymph, but the fat body contains only an extremely small amount of diacylglycerol and a relatively large triacylglycerol pool. By contrast, the solitary-phase locust had apoLp-III in the haemolymph, but the fat body was only one-seventh or less in weight of the fat body of the gregarious locust. Furthermore, the fat body of the solitary locust contains a very small amount of triacylglycerol (1/20 or less of that of the gregarious locust) with only a trace of diacylglycerol. It was concluded that in the American cockroach and the solitary locust, the stores of fuel in the fat body are insufficient to maintain prolonged flight.Abbreviations AKII adipokinetic hormone - apoLp-III apolipophorin III - HDLp high-density lipophorin - LDLp low-density lipophorin - LTP lipid transfer particle - MW molecular weight - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis  相似文献   

15.
Insects transport lipid for flight in the form of diacylglycerol-rich low-density lipoproteins (low-density lipophorin, LDLp), which in the hemolymph are produced from high-density lipophorin (HDLp) by reversible association with several molecules of an apolipoprotein, apolipophorin III (apoLp-III, Mr approximately 18,000-20,000) during lipid loading. Two isoforms of apoLp-III (a and b) were purified both from adult Locusta migratoria migratorioides hemolymph and LDLp, which have identical apparent Mr but differ in amino acid composition, NH2-terminal amino acid sequence, and isoelectric points (5.35 +/- 0.01 for apoLp-IIIa, 5.10 +/- 0.01 for apoLp-IIIb). The NH2-terminal sequence of apoLp-IIIb is identical to the primary structure of apoLp-III deduced from cloned cDNA [Kanost et al. (1988) J. Biol. Chem. 263, 10,568-10,573], whereas the NH2-terminal sequence of apoLp-IIIa is identical to that of apoLp-IIIb but preceded by Arg-Pro-, which is the C-terminal of the putative signal peptide coded by cDNA upstream from that coding for apoLp-IIIb. The ratio apoLp-IIIa apoLp-IIIb free in hemolymph is identical to that in LDLp (5:9); since 14 molecules of apoLp-III appear to be bound in one molecule of LDLp, an average of 5 molecules of apoLp-IIIa and 9 of apoLp-IIIb are involved in formation of each LDLp particle. In vivo studies using 35S-labeled apoLp-IIIa and b demonstrate that each of the isoforms can associate with HDLp to produce LDLp reversibly; in an in vitro system, production of LDLp containing exclusively apoLp-IIIa or apoLp-IIIb demonstrates independent participation of each isoform in LDLp formation.  相似文献   

16.
This study was designed to resolve basic questions concerning the nature of low density lipophorin (LDLp) which is induced by adipokinetic hormone (AKH). For this purpose, lipophorin was fractionated by density gradient ultracentrifugation and each fraction containing lipophorin was analyzed for diacylglycerol and associated apolipophorin-III (apoLp-III). The diacylglycerol content of LDLp fractions increased significantly as the density of the fraction decreased (116 micrograms/100 micrograms protein at a high density to 209 micrograms/100 micrograms protein at a lower density). On the other hand, the content of diacylglycerol in each fraction of HDLp remained almost constant (33 micrograms/100 micrograms protein). It was also found that the number of apoLp-III molecules associated with LDLp increased as the density decreased (from 6.9 mol/mol LDLp to 13.2 mol/mol LDLp). However, electron microscopic observation showed that LDLp particles in each of the fractions were extremely heterogeneous in size with diameters of 29.4 +/- 6.8 nm, 27.1 +/- 5.5 nm, and 26.3 +/- 5.7 nm for low, medium, and high density fraction, respectively. HDLp particles were very homogeneous in size irrespective of the fraction (15.9 +/- 1.5 nm, 15.6 +/- 1.5 nm, and 15.6 +/- 1.3 nm for the respective fractions). A theoretical analysis based on all the experimental data strongly supports the hypothesis that the heterogeneity in the size of LDLp particles does not reflect different densities, but rather, heterogeneity is the result of intermolecular fusion between LDLp particles of the same density.  相似文献   

17.
Lipid mobilization in long-distance flying insects has revealed a novel concept for lipid transport in the circulatory system during exercise. Similar to energy generation for sustained locomotion in mammals, the work accomplished by non-stop flight activity is powered by oxidation of free fatty acids (FFA) derived from endogenous reserves of triacylglycerol. The transport form of the lipid, however, is diacylglycerol (DAG), which is delivered to the flight muscles associated with lipoproteins. In the insect system, the multifunctional lipoprotein, high-density lipophorin (HDLp) is loaded with DAG while additionally, multiple copies of the exchangeable apolipoprotein, apoLp-III, associate with the expanding particle. As a result, lipid-enriched low-density lipophorin (LDLp) is formed. At the flight muscles, LDLp-carried DAG is hydrolyzed and FFA are imported into the muscle cells for energy generation. The depletion of DAG from LDLp results in the recovery of both HDLp and apoLp-III, which are reutilized for another cycle of DAG transport. A receptor for HDLp, identified as a novel member of the vertebrate low-density lipoprotein (LDL) receptor family, does not seem to be involved in the lipophorin shuttle mechanism operative during flight activity. In addition, endocytosis of HDLp mediated by the insect receptor does not seem to follow the classical mammalian LDL pathway.Many structural elements of the lipid mobilization system in insects are similar to those in mammals. Domain structures of apoLp-I and apoLp-II, the non-exchangeable apolipoprotein components of HDLp, are related to apoB100. ApoLp-III is a bundle of five amphipathic -helices that binds to a lipid surface very similar to the four-helix bundle of the N-terminal domain of human apoE. Despite these similarities, the functioning of the insect lipoprotein in energy transport during flight activity is intriguingly different, since the TAG-rich mammalian lipoproteins play no role as a carrier of mobilized lipids during exercise and besides, these lipoproteins are not functioning as a reusable shuttle for lipid transport. On the other hand, the deviant behavior of similar molecules in a different biological system may provide a useful alternative model for studying the molecular basis of processes related to human disorders and disease.  相似文献   

18.
Lipophorin of the larval honeybee, Apis mellifera L   总被引:2,自引:0,他引:2  
Most insects have a major lipoprotein species in the blood (hemolymph) that serves to transport fat from the midgut to the storage depots in fat body cells and from the fat body to peripheral tissues. The generic name lipophorin is used for this lipoprotein. In larvae of the honeybee, Apis mellifera, a lipophorin has been found with properties that correlate well with those of the only other lipophorin reported for an immature insect, that of the tobacco hornworm, Manduca sexta. The honeybee lipophorin (Mr = 530,000) has a density of 1.13 g/ml, contains approximately 41% lipid and 59% protein, and contains two apoproteins, apoLp-I, Mr = 250,000 and apoLp-II, Mr = 80,000, both of which are glycosylated. The lipids consist predominantly of polar lipids, of which phospholipids and diacylglycerols represent 60% of the total. When the intact lipophorin is treated with trypsin, apoLp-I is rapidly proteolyzed, while apoLp-II is resistant, indicating a difference in exposure of the two apoproteins to the aqueous environment. Honeybee apoLp-II cross-reacts with antibodies to M. sexta apoLp-II, but not to anti-M. sexta apoLp-I. No cross-reactivity of honeybee apoLp-I to anti-M. sexta apoLp-I was observed.  相似文献   

19.
Lipid transport in the hemolymph of Manduca sexta is facilitated by a high density lipophorin in the resting adult insect (HDLp-A, d approximately 1.109 g/ml) and by a low density lipophorin during flight (LDLp, d approximately 1.060 g/ml). Lipophorin presumably shuttles different lipids between sites of uptake or storage, and sites of utilization. In order to shuttle lipid, a lipid-depleted lipophorin should be able to reload with lipid. To test this hypothesis, we used HDLp-A particles that were artificially depleted of either phospholipid (d approximately 1.118 g/ml) or diacylglycerol (d approximately 1.187 g/ml) and subsequently radiolabeled in their protein moiety. Upon injection into adult moths, both particles shifted their density to that of native HDLp-A, indicating lipid loading. Also, upon subsequent injection of adipokinetic hormone, both particles shifted to a lower density (d approximately 1.060 g/ml) indicating diacylglycerol loading and conversion to LDLp. Both phospholipid and diacylglycerol loading were also studied using an in vitro system. The lipid-depleted particles were incubated with fat body that had been radiolabeled in either the phospholipid or the triacylglycerol fraction. Transfer of radiolabeled phospholipid and diacylglycerol from fat body to lipophorin was observed. During diacylglycerol loading, apoLp-III associated with lipophorin, whereas phospholipid loading occurred in the absence of apoLp-III. The results show the ability of lipid-depleted lipophorins to reload with lipid and therefore reaffirm the role of lipophorin as a reusable lipid shuttle.  相似文献   

20.
An insect high density lipoprotein, lipophorin, can be rapidly isolated from larval Manduca sexta (tobacco hornworm) hemolymph by single vertical spin density gradient ultracentrifugation. The two apolipoproteins (Mr = 245,000 and 78,000; designated apoLp-I and apoLp-II, respectively) were readily dissociated and separated in 6 M guanidine HCl by gel permeation chromatography. ApoLp-I and apoLp-II showed no immunological cross-reactivity on electrophoretic blots of sodium dodecyl sulfate-polyacrylamide gels. ApoLp-I and apoLp-II from lipophorin of adult M. sexta behaved identically to their larval counterparts. Amino acid compositions of larval apoLp-I and apoLp-II were similar except with respect to tryptophan and cysteine; apoLp-I contained 32 residues/mol of tryptophan (1.5 mol%) and 22 residues/mol (1.1 mol%) of cysteine; apoLp-II contained 2 residues/mol of tryptophan (0.2 mol%) and 14 residues/mol of cysteine (2.1 mol%). In double immunodiffusion tests, antiserum against apoLp-I or whole lipophorin strongly precipitated lipophorin, while antiserum against apoLp-II caused only minor precipitation. This indicates relatively greater exposure of apoLp-I to the aqueous environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号