首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The distribution of filamentous actin around the maturing sperm head and in spermatozoa of four species of Australian conilurine rodents was investigated at the light and electron microscopic levels. Similar results were obtained for all the species studied. Mechanically isolated spermatids had NBD-phallacidin-positive longitudinal bands of fluorescence over the dorsolateral surface and, in late spermatids, bands of bright fluorescence passed perpendicularly from the dorsal convex to ventral concave surface. TEM observations indicated that these regions corresponded to filaments of ectoplasmic specializations and granular filamentous material around the tubulobulbar complexes, respectively. In testicular and cauda spermatozoa NBD-phallacidin fluorescent material was present in the two ventral processes that extended from the upper concave surface of the sperm head; also fainter material occurred along the concave border and as a dorsocaudal spur. Its distribution was identical for testicular and cauda spermatozoa. TEM of late spermatids showed that in the ventral process closest to the apical hook there were between 170 and 245 filaments, which attached to the inner surface of the postacrosomal dense lamina; in the more caudal ventral process about 70 filaments occurred. No filaments were, however, visible in the mature spermatozoon but, after immunocytochemical labelling for actin, deposition of gold particles was evident over ventral processes of both late spermatids and cauda spermatozoa. Within the female tract these ventral processes made contact with the zona matrix and were taken into the egg cytoplasm unchanged in morphology. The possible functional significance of the filamentous actin in these structures is discussed.  相似文献   

2.
The sperm head of the plains rat, an Australian hydromyine rodent, is highly complex in structure and contains, in addition to an apical hook, two large ventral processes (VPs) that extend from its upper concave surface and that are largely composed of a huge extension of the sperm head cytoskeleton surrounded by postacrosomal dense lamina. In this study we have attempted to determine their protein composition. For this, the VPs were isolated, the proteins within them separated by SDS-PAGE, and the resultant polypeptide bands Western blotted and probed with antibodies against laboratory rat perforatorial and bull perinuclear theca sperm proteins. Antibodies were also used to determine the perforatorial and perinuclear theca proteins by immunogold labeling of transmission electron microscopic sections. The results indicate that the material within the VPs is largely composed of perforatorial cross-reacting proteins together with F-actin with the dominant protein being PERF 15. The perinuclear theca proteins are, by contrast, restricted to a narrow region adjacent to the acrosomal and nuclear membranes. In conclusion, this study has shown that the VPs of the spermatozoa of Australian rodents are perforatorial-like appendages that contain similar proteins to the perforatorium of the apical hook together with F-actin; their functional significance remains unknown.  相似文献   

3.
Actin in the sperm head of Talpa europaea was observed by immunofluorescence and immunoelectron microscopy. The indirect immunofluorescence technique, using both anti-actin and DNase anti-DNase methods, showed a shining fluorescent band around the sperm head in some spermatozoa, whereas in others the fluorescence was found in the postacrosomal region. Since no labeling was detected in sperms treated with NBD-phallacidin, it is likely that mature mole sperms contain G-actin but not F-actin. The results of electron microscopy indicated the deposition of the anti-actin antibodies in two places in mole spermatozoa: the postacrosomal region and the nuclear segment of the acrosome. In the first case, the actin was localized in the space between the outer surface of the postacrosomal sheath and the plasma membrane; in the second one, the actin was localized in the space between the outer acrosomal membrane and the plasma membrane. The significance of the presence of actin and its role(s) during fertilization are discussed.  相似文献   

4.
The rat perforatorium is the part of the perinuclear theca that underlies the acrosomic system. It appears to be composed of several polypeptides. The main objective of this study was to determine the distribution of seven of these perforatorial polypeptides in the head of the rat spermatozoon. For this purpose, polyclonal antibodies were affinity purified from these polypeptides and tested 1) for their distribution on electron-microscope sections of late spermatids and spermatozoa by immunogold labeling and 2) for their specificity on Western blots of denatured perforatorial polypeptides by immunoblotting. Immunoblotting showed that all seven of the prominent perforatorial polypeptides had epitopes in common. Immunogold labeling of spermatozoa showed that antibodies against the 13, 13.4, and 16 kDa polypeptides were restricted in their localization to the thicker apical portion of the perforatorium and to the inner zone of the ventral spur. However, antibodies against the 34, 43, 57, and 63 kDa polypeptides reacted with the entire perforatorium but, in addition, reacted with the inner part of the ventral spur and with a portion of the "outer periacrosomal layer" lying between the plasma membrane and the outer acrosomal membrane. These results suggest 1) that there are regional differences in protein composition of the perforatorium, of the outer periacrosomal layer, and of the postacrosomal dense lamina; and 2) that perforatorial polypeptides may not necessarily be restricted to the subacrosomal region, but may also compose portions of the outer periacrosomal layer and postacrosomal dense lamina. Based on both immunoblotting and immunocytochemical results, using an antiactin monoclonal antibody that recognizes all known isoforms of actin, actin was not detected in the perforatorium of step 19 spermatids or spermatozoa. Actin, however, together with the seven perforatorial polypeptides tested, was present in the subacrosomal space of elongating spermatids before the process of condensation of the perforatorium takes place.  相似文献   

5.
The perinuclear theca is a novel cytoskeletal consisting of a densely layered lamina that surrounds the nucleus of mammalian sperm. Using antibodies specific for the multiple band polypeptides present in the perinuclear theca of bull sperm, we show that a heterogeneous group of immunological related proteins are present in the sperm heads of other mammals with greatly different morphologies, including guinea pig, hamster, rat, and mouse. In none of the species were identical groups of immunoreactive polypeptides found, although immunoreactive proteins of molecular weights 65,000 to 80,000 were present in the sperm heads of all species examined. Immunoreactive proteins less than Mr 55,000 were prominent in rat sperm heads and mouse sperm: guinea pig, hamster, and rat sperm heads and mouse sperm had one band in common at approximately Mr 50,000. Different immunoreactive proteins were present in isolated sperm tails. The perinuclear theca first appeared in the subacrosomal space of round to elongating spermatids. Later, with the caudal movement of the manchette, the postacrosomal segment of the perinuclear theca was deposited in a cephalad to caudal direction along the sperm nucleus. Concomitantly, the cytoplasmic space between the nuclear envelope and the plasma membrane narrowed such that only the theca occupied this portion of the sperm head. Immunoreactivity accompanied the ultrastructural appearance of the subacrosomal layer and the postacrosomal segment. The periods of spermiogenesis, in which sub- and post-acrosomal components of the perinuclear theca are formed and the morphogenesis of sperm organelles with which these elements are associated, suggest that components of this cytoskeletal structure function to join the acrosome and the postacrosomal plasma membrane to the nucleus.  相似文献   

6.
The sperm head of many Australian hydromyine rodents has three curved hooks projecting from its anterior margin; the structure of the hooks has been characterized, but their function is unknown. In this study, we have investigated whether the hooks might have evolved to assist sperm penetration through more formidable egg vestments, particularly the zona pellucida. Cumulus-oocyte complexes were obtained from two species that possess a three-hooked sperm head (Pseudomys australis and P. nanus) and one species that does not (Notomys alexis) and examined by light and electron microscopy. After fixation in the presence of ruthenium red, the zona pellucida was found to consist of a fibrillar meshwork, but there were no interspecific structural differences. A corona radiata was absent, and the cumulus extracellular matrix was composed of filaments and electron-dense granules in each species. Measurements of the zona thickness in freshly ovulated, unfixed oocytes revealed that it was thinnest (7.8 μm) in P. australis. Which has a three-hooked sperm head, and thickest (11.4 μm) in N. alexis, the species in which the ventral hooks are absent. Hence, no correlation was found between the thickness of the zona pellucida or the structure of the cumulus-oocyte complex, and the presence of three hooks on the sperm head. We conclude, therefore, that it is unlikely that the evolution of the three-hooked sperm head is an adaptation for penetration of increased barriers around the oocyte.  相似文献   

7.
Summary The postacrosomal region (PAC) of the head and the neck membranes of rabbit spermatozoa have been reinvestigated with the use of en bloc uranyl acetate staining. The fine structure of the PAC and neck membranes is visualized with great clarity and departs from that seen in rabbit sperm prepared by other methods. In cells so treated, the PAC contains a heavily enfolded nuclear envelope, a dense lamina attached to the plasmalemma by periodic connecting links and scattered dense material between the lamina and nuclear envelope. Evidence is presented that the dense lamina is a discrete structure, separated from the plasmalemma by the connecting links. The latter may be of a different composition from both the lamina and the plasmalemma. The lamina is a homogenous structure which resists degeneration under conditions which affect other components of the PAC. The membranes of the neck are a complex labyrinth of nuclear envelope, individual membranes, and membranes coursing through a matrical gound substance.This investigation was supported by Ford Foundation Grant 67–650.  相似文献   

8.
The ultrastructure of the sperm head of the plains mouse, Pseudomys australis, and the effects of chemical treatments on the sperm head components has been investigated to determine the nature of the material in the hooks on the apical margine of the sperm head. Ultrastructural studies indicated that the dorsal hook contained nuclear, subacrosomal, and acrosomal material, whereas the two ventral hooks were largely composed of an extention of the subacrosomal material with two thin acrosomal projections at their base. Acrosomal material was dispersed by mild detergent treatment, where as the bulk of the material in the ventral hooks were generally found to be similar to the subacrosomal material in the dorsal hook in their resistance to the various chemical treatments. Treatment of sperm with NaOH or guanidine-hydrochloride and DTT revealed two layers of material in the ventral hooks.  相似文献   

9.
The three-dimensional organization of the cytoplasm of randomly migrating neutrophils was studied by stereo high-voltage electron microscopy. Examination of whole-mount preparations reveals with unusual clarity the structure of the cytoplasmic ground substance and cytoskeletal organization; similar clarity is not observed in conventional sections. An extensive three-dimensional network of fine filaments (microtrabeculae) approximately 7 to 17 nm in diameter extends throughout the cytoplasm and between the two cell cortices; it also comprises the membrane ruffles and filopodia. The granules are dispersed within the lattice and are surrounded by microtrabeculae. The lattice appears to include dense foci from which the microtrabeculae emerge. Triton X-100 dissolves the plasma membrane, most of the granules, and many of the microtrabecular strands and leaves as a more stable structure a cytoskeletal network composed of various filaments and microtubules. Heavy meromyosin-subfragment 1 (S1) decoration discloses actin filaments as the major filamentous component present in membrane ruffles and filopodia. Actin filaments, extending from the leading edge of the cells, are of uniform polarity, with arrowheads pointing towards the cell body. Likewise, the filaments forming the core of filopodia have the barbed end distal. End-to-side associations of actin filaments as well as fine filaments (2--3 nm) which are not decorated with S1 and link actin filaments are observed. The ventral cell cortex includes numerous substrate-associated dense foci with actin filaments radiating from the dense center. Virtually all the microtubules extend from the centrosome. An average of 35 +/- 7 microtubules originate near the pair of centrioles and radiate towards the cell periphery; microtubule fragments are rare. Intermediate filaments form an open network of single filaments in the perinuclear space. Comparison of Triton-extracted and unextracted cells suggest that many of the filamentous strands seen in unextracted cells have as a core a stable actin filament.  相似文献   

10.
Using a monoclonal antibody as a highly specific probe and a seminal particle-free fraction of rabbit ejaculated spermatozoa, actin has been localized in the postacrosomal region of mature rabbit spermatozoa. The sperm actin has been extracted and identified on two-dimensional PAGE immunoblots as a single spot of pI = 5.45 and Mr = 43,000. Rabbit sperm actin is present in a nonfilamentous form and is not removed by removing the plasma membrane. Unlike mature spermatozoa, however, filamentous actin is present in spermatogenic cells, as determined by rhodamine phalloidin staining. Starting as diffusely distributed in spermatocytes, actin accumulates in the subacrosomal space and appears as a band in conjunction with the developing acrosome. This band lengthens throughout the spermatid stage and becomes continuous with the postacrosomal region staining in testicular spermatozoa. Actin may therefore function during spermatogenesis to both shape the acrosome to the nucleus and to anchor inner acrosomal membrane proteins.  相似文献   

11.
During the elongation phase of spermiogenesis in the mouse, a layer of electron-dense material appears just below the posterior portion of the acrosomal zonule. Subsequently this material accumulates on the outer side of the nuclear envelope immediately subjacent to the caudal tip of the acrosomal zonule--the anlage of the future postnuclear band--as well as on the inner side of the plasma membrane vis-à-vis to this region--the anlage of the future postacrosomal dense lamina (PADL). Corresponding to further development the postacrosomal region of the nucleus becomes directly enveloped by the plasma membrane, and the PADL, situated on its inner side, grows adequately. The postnuclear band, however, staying the same size as in the preceding elongation phase, gets shifted to the caudal end of the PADL, where it closes the perinuclear space. Since the anlagen and the mature PADL and postnuclear band show the same cytochemical reactions as the dense basal plaque of the acrosomal zonule and the thin layer on the nuclear envelope vis-à-vis to it, a relationship between these structures can be assumed. Furthermore, the demonstration of ribonucleoproteins in all these structures is discussed in connection with a possible nucleolar genesis.  相似文献   

12.
The fine structure distribution of non-specific acid phosphatase was determined in the head region of mouse spermatozoa from the testes, the caput, corpus and cauda epididymidis and the ductus deferens. Enzymatic localization was achieved by the Gomori technique. The postacrosomal dense lamina, the nuclear side of the inner acrosomal membrane and the space between the plasmalemma and the outer acrosomal membrane showed reaction product in spermatozoa from the testis and caput epididymidis. Spermatozoa from the cauda epididymidis exhibited reaction product only between the plasmalemma and the outer acrosomal membrane. Spermatozoa from the corpus epididymidis and from the ductus deferens showed no reaction product in the head region. The changes observed in the distribution of acid phosphatase in the sperm head during epididymal transport may reflect maturational events.  相似文献   

13.
Heads of spermatozoa were sonically separated from tails and treated in 1 N NaOH until the perforatoria were partially detached from the nucleus. Their complete detachment was then assured by repeatedly passing the suspension through a 22-gauge needle. The perforatoria were then separated from nuclei on sucrose gradients and the purity of the fraction was verified by electron microscopy. The isolated perforatoria were denatured and used to raise antibodies or run on polycrylamide gels. Such gels revealed many polypeptide bands, six of which were most prominent (Mr approximately 13,000, 13,400, 16,000, 33,000, 35,000, and 43,000). Of these, the 16,000 Mr polypeptide was major. Anti-perforatorium serum reacted with the perforatoria of fixed spermatozoa, with a substance found between the plasmalemma and the outer acrosomal membrane of the acrosomal head cap and with the inner component of the ventral spur, but not with the postacrosomal dense lamina. This observation indicated that the perforatorium and dense lamina, although structurally continuous to form the perinuclear theca, are biochemically distinct. On Western blots, the anti-perforatorium serum reacted with the prominent polypeptides of the perforatorium and cross-reacted with some less prominent polypeptides of the fibrous sheath (FS) and outer dense fibers (ODF), most notably with a 16,000 Mr polypeptide found in both. Likewise anti-FS or anti-ODF serum cross-reacted with some major and minor polypeptides of the perforatorium, again most notably with a major 16,000 Mr polypeptide. The immunocross-reactions observed on Western blots were confirmed by immunocytochemical methods applied to spermatozoa. These results demonstrate that the perforatorium is composed of several polypeptides, is immunologically distinct from the postacrosomal dense lamina, may be immunologically similar to a substance found between the plasmalemma and outer acrosomal membrane and to a substance found on the inner aspect of the ventral spur, has antigenic determinants in common with the FS and ODF, and may share a 16,000 Mr polypeptide with these two cytoskeletal structures of the flagellum.  相似文献   

14.
Fluorescence microscopy of caudal epididymal spermatozoa stained with 3, 3' dihexyloxacarbocyanine iodide (DiOC6(3)) showed intense fluorescence along the concave surface of the apical hook of spermatozoa of Rattus species and along the upper concave margin of the sperm head in Mus musculus In the spermatozoa of Hydromys chrysogaster, Melomys cervinipes, and Pseudomys australis, the two ventral processes also fluoresced brightly. In P. australis, fluorescence in the apical hook of sperm heads was largely localized to its upper and lower surfaces. The sperm of N. alexis did not show consistent positive fluorescence. The localization of fluorescence in these spermatozoa after staining with DiOC6(3) was mainly restricted to regions where a large accumulation of perinuclear theca material lies beneath the plasmalemma. The reason for this remains to be determined, but DiOC6(3) may be useful for quickly demonstrating areas of abundant perinuclear thecal material in sperm heads of eutherian mammals by light microscopy.  相似文献   

15.
Fluorescence microscopy of caudal epididymal spermatozoa stained with 3, 3′ dihexyloxacarbocyanine iodide (DiOC6(3)) showed intense fluorescence along the concave surface of the apical hook of spermatozoa of Rattus species and along the upper concave margin of the sperm head in Mus musculus In the spermatozoa of Hydromys chrysogaster, Melomys cervinipes, and Pseudomys australis, the two ventral processes also fluoresced brightly. In P. australis, fluorescence in the apical hook of sperm heads was largely localized to its upper and lower surfaces. The sperm of N. alexis did not show consistent positive fluorescence. The localization of fluorescence in these spermatozoa after staining with DiOC6(3) was mainly restricted to regions where a large accumulation of perinuclear theca material lies beneath the plasmalemma. The reason for this remains to be determined, but DiOC6(3) may be useful for quickly demonstrating areas of abundant perinuclear thecal material in sperm heads of eutherian mammals by light microscopy.  相似文献   

16.
The polarity of the actin filaments which assemble from the nucleating body or actomere of Thyone and Pisaster sperm was determined using myosin subfragment 1 decoration. The polarity was found to be unidirectional with the arrowheads pointing towards the cell center. When polymerization is induced at low temperature with concentrations of actin near the critical concentration for polymerization, elongation of filaments occurs preferentially off the apical end. If the sperm are induced to undergo the acrosomal reaction with an ionophore, the polarity of the actin filaments attached to the actomere is the same as that already described, but the filaments which polymerize parallel to, but peripheral to, those extending from the actomere are randomly polarized. These randomly polarized filaments appear to result from spontaneous nucleation. When sperm are induced to undergo the acrosomal reaction with eggs, the polarity of the actin filaments is also unidirectional with the arrowheads pointing towards the cell center. From these results we conclude: (a) that the actomere, by nucleating the polymerization of actin filaments, controls the polarity of the actin filaments in the acrosomal process, (b) that the actomere recognizes a surface of the actin monomer that is different from that surface recognized by the dense material attached to membranes, and (c) that egg myosin could not act to pull the sperm into the egg. Included is a discussion of how the observation that monomers add largely to one end of a decorated filament in vitro relates to these in vivo observations.  相似文献   

17.
The nucleus of mammalian spermatozoa is surrounded by a rigid layer, the perinuclear theca, which is divided into a subacrosomal layer and a postacrosomal calyx. Among the proteins characterized in the perinuclear theca, calicin is one of the main components of the calyx. Its sequence contains three kelch repeats and a BTB/POZ domain. We have studied the association of boar calicin with F-actin and the distribution of boar and human calicin during spermiogenesis compared with the distribution of actin. Calicin was purified from boar sperm heads under nondenaturating conditions. The molecule bound actin with high affinity (K(d) = approximately 5 nM), and a stoichiometry of approximately one calicin per 12 actin monomers was observed. Gel filtration studies showed that calicin forms homomultimers (tetramers and higher polymers). According to immunocytochemical results, calicin is present (together with actin) in the acrosomal region of round spermatids and is mainly localized in the postacrosomal region of late spermatids and spermatozoa. Taken together, the results suggest that the affinity of calicin to F-actin allows targeting of calicin at the subacrosomal space of round spermatids, and that its ability to form homomultimers contributes to the formation of a rigid calyx.  相似文献   

18.
The acrosome reaction (AR) is an exocytotic process of spermatozoa, and an absolute requirement for fertilization. During AR, actin polymerization is necessary in the equatorial and postacrosomal regions of guinea pig sperm for spermatozoa incorporation deep into the egg cytoplasm, but not for plasma membrane (PM) fusion nor the early steps of egg activation. To identify the mechanisms involved in this sperm actin polymerization, we searched for the protein members, known to be involved in a highly conserved model, that may apply to any cellular process in which de novo actin polymerization occurs from G protein activation. WASP, Arp 2/3, profilins I and II, and Cdc42, RhoA and RhoB GTPases were localized by indirect immunofluorescence (IIF) in guinea pig spermatozoa and their presence corroborated by Western blotting. WASP and profilin II were translocated to the postacrosomal region (Arp2/3 already were there) in long-term capacitated and acrosome-reacted spermatozoa, at the same time as actin polymerization occurred. These events were inhibited by GDP-beta-S and promoted by lysophosphatidic acid (LPA) and GTP-gamma-S, a small GTPase inhibitor and two activators, respectively. By immunoprecipitation, Cdc42-WASp association was identified in capacitated but not in noncapacitated gametes. Polymerized actin in the postacrosomal region is apparently anchored both to the postacrosomal perinuclear theca region and the overlying PM. Results suggest that GTPases are involved in sperm actin polymerization, in the postacrosomal region and the mechanism for polymerization might fit a previously proposed model (Mullins, 2000: Curr Opin Cell Biol 12:91-96).  相似文献   

19.
Using a variety of preparative techniques for electron microscopy, we have obtained evidence for the disposition of actin and myosin in vertebrate smooth muscle. All longitudinal myofilaments seen in sections appear to be actin. Previous reports of two types of longitudinal filaments in sections are accounted for by technical factors, and by differentiated areas of opacity along individual filaments. Dense bodies with actin emerging from both ends have been identified in homogenates, and resemble Z discs from skeletal muscle (Huxley, 1963). In sections, short, dark-staining lateral filaments 15–25 A in diameter link adjacent actin filaments within dense bodies and in membrane dense pataches. They appear homologous with Z-disc filaments. Similar lateral filaments connect actin to plasma membrane. Dense bodies and dense patches, therefore, are attachment points and denote units analogous to sarcomeres. In glycerinated, methacrylate-embedded sections, lateral processes different in length and staining characteristics from lateral filaments in dense bodies exist at intervals along actin filaments. These processes are about 30 A wide and resemble heavy meromyosin from skeletal muscle. They also resemble heads of whole molecules of myosin in negatively stained material from gizzard homogenates. Intact single myosin molecules and dimers have been found, both free and attached to actin, even in media of very low ionic strength. Myosin can, therefore, exist in relatively disaggregated form. Models of the contraction mechanism of smooth muscle are proposed. The unique features are: (1) Myosin exists as small functional units. (2) Movement occurs by interdigitation and sliding of actin filaments.  相似文献   

20.
Between the acrosomal vacuole and the nucleus is a cup of amorphous material (profilactin) which is transformed into filaments during the acrosomal reaction. In the center of this cup in untreated Thyone sperm is a dense material which I refer to as the actomere; it is composed of 20-25 filaments embedded in a dense matrix. To visualize the substructure of the actomere, the profilactin around it must be removed. This is achieved either by demembranating the sperm with Triton X-100 and then raising the pH to 8.0, or by adding inophores to intact sperm at pH 8.0. Under these conditions, the actomere remains as a unit while the rest of the profilactin is solubilized or polymerized. When demembranated sperm are incubated under conditions in which the actin should polymerize, filaments grow from the end of the actomere: the actomere thus appears to behave as a nucleating body. This observation is strengthened by experiments in which untreated sperm are incubated in seawater or isotonic NaCl at pH 7.0 and the ionophore X537A is added; in this case, only a partial polymerization of the actin occurs and the acrosomal vacuole does not fuse with the cell surface. The actin filaments that do form, however, are attached to the apical end of the actomere. In fact, the elongating filaments push their way into and frequently through the acrosomal vacuole. Thus, it appears that the sperm organizes the actin filaments by controlling their nucleation. My model is that the cell controls the ammount of unbound actin such that it is slightly above the critical concentration for polymerization. Then, spontaneous nucleation is unfavored and polymerization would proceed from existing nuclei such as the actomer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号