首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Strains of Mycobacterium bovis, M. bovis BCG, and M. tuberculosis, including a so-called Canetti strain, were analyzed by means of two-dimensional immunoelectrophoresis (2D-IE), 2D-IE combined with enzyme staining, and multilocus enzyme electrophoresis (MEE). The results demonstrated a close antigentic and enzymatic resemblance among all the strains tested, even though the BCG strains could be divided into two groups based on the presence of one precipitinogen. Eight of the precipitinogens were shown to correspond to enzymes in M. bovis BCG and 10 in M. tuberculosis. Thus, catalase, isocitrate dehydrogenase, malate dehydrogenase, peroxidase, and several others were identified. By means of MEE the strains of M. tuberculosis, M. bovis, and M. bovis BCG could be differentiated. The analyses further indicated that the M. tuberculosis strain Canetti was more closely related to M. bovis than to M. tuberculosis.  相似文献   

3.
4.
The Rv0679c gene in Mycobacterium tuberculosis H37Rv encodes a protein with a predicted molecular mass of 16,586 Da consisting of 165 amino acids which contains a putative N-terminal signal sequence and a consensus lipoprotein-processing motif. Globomycin treatment, Triton X-114 separation and mass spectrometry analyses clarified a property of the Rv0679c protein as a lipoprotein. In addition, trifluoromethanesulphonic acid treatment of the lysate revealed an association of the recombinant Rv0679c protein with carbohydrates. The Rv0679c protein homolog of Mycobacterium bovis BCG was also expressed as the protein associated with lipids and carbohydrates. In Western blot analysis, each of the protein homolog and Lipoarabinomannan (LAM) was detected as a similar pattern by anti-Rv0679c and anti-LAM antibodies, respectively. Interestingly, the Rv0679c protein was detected in commercially available LAM purified from M. tuberculosis. Inhibition assay of LAM synthesis in M. bovis BCG by ethambutol showed an altered migration pattern of the Rv0679c protein to low molecular mass similar to that of LAM. The results suggest that the Rv0679c protein exists as a tight complex with LAM in M. tuberculosis/M. bovis BCG.  相似文献   

5.

Background  

Pathogenic mycobacteria such as M. tuberculosis, M. bovis or M. leprae are characterised by their extremely slow growth rate which plays an important role in mycobacterial virulence and eradication of the bacteria. Various limiting factors influence the generation time of mycobacteria, and the mycobacterial DNA-binding protein 1 (MDP1) has also been implicated in growth regulation. Our strategy to investigate the role of MDP1 in mycobacterial growth consisted in the generation and characterisation of a M. bovis BCG derivative expressing a MDP1-antisense gene.  相似文献   

6.
Mycobacterium tuberculosis and Mycobacterium bovis are pathogenic bacterial species in the genus Mycobacterium and the causative agents of most cases of tuberculosis (TB). Detection of M. tuberculosis and M. bovis using conventional culture- and biochemical-based assays is time-consuming and laborious. Therefore, a simple and sensitive method for rapid detection has been anxiously awaited. In the present study, a visual loop-mediated isothermal amplification (LAMP) assay was designed from the rimM (encoding 16S rRNA-processing protein) gene sequence and used to rapidly detect M. tuberculosis and M. bovis from clinical samples in South China. The visual LAMP reaction was performed by adding calcein and manganous ion, allowing the results to be read by simple visual observation of color change in a closed-tube system, and which takes less than 1 h at 65 °C. The assay correctly identified 84 M. tuberculosis isolates, 3 M. bovis strains and 1 M. bovis BCG samples, but did not detect 51 non-tuberculous mycobacteria (NTM) isolates and 8 other bacterial species. Sensitivity of this assay for detection of genomic DNA was 1 pg. Specific amplification was confirmed by the ladder-like pattern of gel electrophoresis and restriction enzyme HhaI digestion. The assay successfully detected M. tuberculosis and M. bovis not only in pure bacterial culture but also in clinical samples of sputum, pleural fluid and blood. The speed, specificity, sensitivity of the rimM LAMP, the lack of a need for expensive equipment, and the visual readout show great potential for clinical detection of M. tuberculosis and M. bovis.  相似文献   

7.
Mycobacterium tuberculosis and Mycobacterium bovis are responsible for tuberculosis in humans and animals, respectively. Both species are closely related and belong to the Mycobacterium tuberculosis complex (MTC). M. tuberculosis is the most ancient species from which M. bovis and other members of the MTC evolved. The genome of M. bovis is over >99.95% identical to that of M. tuberculosis but with seven deletions ranging in size from 1 to 12.7 kb. In addition, 1200 single nucleotide mutations in coding regions distinguish M. bovis from M. tuberculosis. In the present study, we assessed 75 M. tuberculosis genomes and 23 M. bovis genomes to identify non‐synonymous mutations in 202 coding sequences of regulatory genes between both species. We identified species‐specific variants in 20 regulatory proteins and confirmed differential expression of hypoxia‐related genes between M. bovis and M. tuberculosis.  相似文献   

8.
Macrophages act as a reservoir for Mycobacterium tuberculosis, producing latent infection in approximately 90% of infected people. In this study, J774A.1 mouse macrophage cell line response and microRNA (miRNA) expression during infection with the most relevant mycobacterial strains for humans (M. tuberculosis, M. bovis and M. bovis BCG) was explored. No significant differences in bacillary loads were observed between activate and naive macrophages infected with M. tuberculosis and M. bovis. Nitrite production inhibition and infection control were in accordance with the virulence of the strain. Expression of let‐7e, miR‐21, miR‐155, miR‐210 and miR‐223 was opposite in the two species and miR‐146b* and miR‐1224 expression seemed to be part of the general response to infection.  相似文献   

9.

Background  

Exported proteases are commonly associated with virulence in bacterial pathogens, yet there is a paucity of information regarding their role in Mycobacterium tuberculosis. There are five genes (mycP1-5) present within the genome of Mycobacterium tuberculosis H37Rv that encode a family of secreted, subtilisin-like serine proteases (the mycosins). The gene mycP1 (encoding mycosin-1) was found to be situated 3700 bp (four ORF's) from the RD1 deletion region in the genome of the attenuated vaccine strain M. bovis BCG (bacille de Calmette et Guérin) and was selected for further analyses due to the absence of expression in this organism.  相似文献   

10.
Humans vary widely in their susceptibility to tuberculosis. While only a minority will progress to disease, the majority of healthy individuals exposed to Mycobacterium tuberculosis mount an immune response that can clear or contain the infection in a quiescent form. Using immunofluorescence on human clinical samples, we identified natural killer (NK) cells infiltrating granulomatous pulmonary lesions during active disease. In order to compare the NK cell ability to react to free mycobacteria in the context of tuberculosis infection and Mycobacterium bovis BCG vaccination, NK cells were isolated from the peripheral blood of anonymous healthy human donors, and stimulated with M. tuberculosis H37Rv or M. bovis BCG. Extracellular M. tuberculosis and M. bovis BCG could equally trigger the release of IFNγ and TNFα from NK cells in the presence of IL‐2. However, we found that this response varied 1000‐fold between individuals (n = 52), with differences in KIR haplotype providing a significant criterion to distinguish between low and high responders. Our findings suggest that variations at the KIR locus and therefore of the NK cell repertoire may affect cytokine production in response to mycobacteria and we propose that this innate variability couldsustain different levels of susceptibility to M. tuberculosis infection.  相似文献   

11.
12.
Tuberculosis (TB) is caused by Mycobacterium tuberculosis. TB is highly prevalent, characterized by the constant occurrence of drug-resistant cases, and confounded by the incidence of respiratory disease caused by non-tuberculous mycobacteria (NTB). Expanding the spectrum of drugs for the treatment of TB is indispensable. Loperamide, an antidiarrhoeal drug, enhances immune-driven antimycobacterial activity, and we aimed to evaluate its bactericidal activity against M. tuberculosis, Mycobacterium bovis BCG, Mycobacterium terrae and Mycobacterium smegmatis. Loperamide exhibited an inhibitory effect against all mycobacterial species tested, with MICs of 100 and 150 μg ml−1. Thus, loperamide is a mycobactericidal drug with potential as adjunctive therapy for TB and NTB infections.  相似文献   

13.
Most cases of tuberculosis are due to reactivation of endogenous infection which may have lain quiescent or dormant for decades. How Mycobacterium tuberculosis survives for this length of time is unknown, but it is hypothesized that reduced oxygen tension may trigger the tubercle bacillus to enter a state of dormancy. Mycobacterium bovis BCG and M. tuberculosis H37Rv were cultured under aerobic, microaerobic, and anaerobic conditions. Their ultrastructural morphology was analyzed by transmission electron microscopy (TEM), and protein expression profiles were compared by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). TEM revealed that the microaerobically and anaerobically cultured bacilli but not the aerobically cultured bacilli developed a strikingly thickened cell wall outer layer. The thickening was not observed in aerobically cultured stationary-phase bacilli or in anaerobically cultured Mycobacterium smegmatis. A highly expressed protein was detected by SDS-PAGE in microaerobic and anaerobic cultures and was identified as the 16-kDa small heat shock protein or α-crystallin homolog. Immunolocalization by colloidal gold immunoelectron microscopy identified three patterns of protein distribution in M. bovis BCG cultured under low oxygen tension. The 16-kDa protein was strongly associated with the cell envelope, fibrous peptidoglycan-like structures, and intracellular and peripheral clusters. These results suggest that tubercle bacilli may adapt to low-oxygen conditions by developing a thickened cell wall and that the 16-kDa protein may play a role in stabilizing cell structures during long-term survival, thus helping the bacilli survive the low oxygen tension in granulomas. As such, the cell wall thickening and the 16-kDa protein may be markers for the dormant state of M. tuberculosis.  相似文献   

14.
PCR primers specific for the Mycobacterium tuberculosis complex were used to detect the presence of Mycobacterium bovis BCG (Pasteur) in soil microcosms and Mycobacterium bovis in environmental samples taken from a farm in Ireland with a history of bovine tuberculosis. M. bovis genes were detected in soil at 4 and 21 months after possible contamination. Gene levels were found in the range of 1 × 103 to 3.6 × 103 gene copies g of soil−1, depending on the sampling area. Areas around badger setts had the highest levels of detectable genes and were shown to have the highest levels of gene persistence. M. bovis-specific 16S rRNA sequences were detected, providing evidence of the presence of viable cells in Irish soils. Studies of DNA turnover in soil microcosms proved that dead cells of M. bovis BCG did not persist beyond 10 days. Further microcosm experiments revealed that M. bovis BCG survival was optimal at 37°C with moist soil (−20 kPa; 30% [vol/wt]). This study provides clear evidence that M. bovis can persist in the farm environment outside of its hosts and that climatic factors influence survival rates.  相似文献   

15.

Background  

Mycobacteriophage Ms6 integrates into Mycobacterium smegmatis and M. bovis BCG chromosome at the 3' end of tRNAala genes. Homologous recombination occurs between the phage attP core and the attB site located in the T-loop. Integration-proficient vectors derived from Ms6 are useful genetic tools, but their insertion sites in the BCG chromosome remain poorly defined. The primary objective of this study was to identify Ms6 target genes in M. smegmatis and BCG. We then aimed to modify the attP site in Ms6-derived vectors, to switch integration to other tRNAala loci. This provided the basis for the development of recombinant M. bovis BCG strains expressing several reporter genes inserted into different tRNAala genes.  相似文献   

16.
17.
A microplate-based rapid, inexpensive and robust technique is developed by using tetrazolium salt 2, 3-bis [2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide (XTT) and menadione to determine the viability of Mycobacterium tuberculosis, Mycobacterium bovis BCG and Mycobacterium smegmatis bacilli in microplate format. In general, XTT reduction is an extremely slow process which takes almost 24 h to produce a detectable signal. Menadione could drastically induce this reduction to an almost equal extent within a few minutes in a dose dependent manner. The reduction of XTT is directly proportional to the cell concentration in the presence of menadione. The standardized protocol used 200 μM of XTT and 60 μM of menadione in 250 μl of cell suspension grown either in aerobic or anaerobic conditions. The cell suspension of M. bovis BCG and M. tuberculosis were incubated for 40 min before reading the optical density at 470 nm whereas M. smegmatis was incubated for 20 min. Calculated Signal/Noise (S/N) ratios obtained by applying this protocol were 5.4, 6.4 and 9.4 using M. bovis BCG, M. tuberculosis and M. smegmatis respectively. The calculated Z′ factors were > 0.8 for all mycobacterium bacilli indicating the robustness of the XTT Reduction Menadione Assay (XRMA) for rapid screening of inhibitors. The assay protocol was validated by applying 10 standard anti-tubercular agents on M. tuberculosis, M. bovis BCG and M. smegmatis. The Minimum Inhibitory Concentration (MIC) values were found to be similar to reported values from Colony Forming Unit (CFU) and REMA (resazurin microplate assay) assays. Altogether, XRMA is providing a novel anti-tubercular screening protocol which could be useful in high throughput screening programs against different physiological stages of the bacilli.  相似文献   

18.
It has recently been shown that the anti‐mycobacterial pro‐drug thiacetazone (TAC) inhibits the conversion of double bonds of mycolic acid precursors into cyclopropyl rings in Mycobacterium bovis var BCG, M. marimum and M. chelonae by affecting the cyclopropyl mycolic acid synthases (CMASs) as judged by the build‐up of unsaturated mycolate precursors. In our hands, TAC inhibits mycolic acid biosynthesis in Mycobacterium tuberculosis and M. kansasii with almost negligible accumulation of those precursors. Our observations that ‘de novo’ biosynthesis of all the mycolic acid families decreased upon TAC treatment prompted us to analyse the role of each one of the Type II Fatty Acid Synthase (FASII) enzymes. Overexpression of the hadABC operon, encoding the essential FASII dehydratase complex, but not of any of the remaining FASII genes acting on the elongation of fatty acyl chains leading to the synthesis of meromycolic acids, resulted in high level of resistance to TAC in M. tuberculosis. Spontaneous M. tuberculosis and M. kansasii TAC‐resistant mutants isolated during this work revealed mutations in the hadABC genes strongly supporting our proposal that these enzymes are new players in the resistance to this anti‐mycobacterial compound.  相似文献   

19.
Mycobacterium tuberculosis requires the enzyme isocitrate lyase (ICL) for growth and virulence in vivo. The demonstration that M. tuberculosis also requires ICL for survival during nutrient starvation and has a role during steady state growth in a glycerol limited chemostat indicates a function for this enzyme which extends beyond fat metabolism. As isocitrate lyase is a potential drug target elucidating the role of this enzyme is of importance; however, the role of isocitrate lyase has never been investigated at the level of in vivo fluxes. Here we show that deletion of one of the two icl genes impairs the replication of Mycobacterium bovis BCG at slow growth rate in a carbon limited chemostat. In order to further understand the role of isocitrate lyase in the central metabolism of mycobacteria the effect of growth rate on the in vivo fluxes was studied for the first time using 13C-metabolic flux analysis (MFA). Tracer experiments were performed with steady state chemostat cultures of BCG or M. tuberculosis supplied with 13C labeled glycerol or sodium bicarbonate. Through measurements of the 13C isotopomer labeling patterns in protein-derived amino acids and enzymatic activity assays we have identified the activity of a novel pathway for pyruvate dissimilation. We named this the GAS pathway because it utilizes the Glyoxylate shunt and Anapleurotic reactions for oxidation of pyruvate, and Succinyl CoA synthetase for the generation of succinyl CoA combined with a very low flux through the succinate – oxaloacetate segment of the tricarboxylic acid cycle. We confirm that M. tuberculosis can fix carbon from CO2 into biomass. As the human host is abundant in CO2 this finding requires further investigation in vivo as CO2 fixation may provide a point of vulnerability that could be targeted with novel drugs. This study also provides a platform for further studies into the metabolism of M. tuberculosis using 13C-MFA.  相似文献   

20.
Mannose‐capped lipoarabinomannan (ManLAM) is considered an important virulence factor of Mycobacterium tuberculosis. However, while mannose caps have been reported to be responsible for various immunosuppressive activities of ManLAMobserved in vitro, there is conflicting evidence about their contribution to mycobacterial virulence in vivo. Therefore, we used Mycobacterium bovis BCG and M. tuberculosis mutants that lack the mannose cap of LAM to assess the role of ManLAM in the interaction of mycobacteria with the host cells, to evaluate vaccine‐induced protection and to determine its importance in M. tuberculosis virulence. Deletion of the mannose cap did not affect BCG survival and replication in macrophages, although the capless mutant induced a somewhat higher production of TNF. In dendritic cells, the capless mutant was able to induce the upregulation of co‐stimulatory molecules and the only difference we detected was the secretion of slightly higher amounts of IL‐10 as compared to the wild type strain. In mice, capless BCG survived equally well and induced an immune response similar to the parental strain. Furthermore, the efficacy of vaccination against a M. tuberculosis challenge in low‐dose aerosol infection models in mice and guinea pigs was not affected by the absence of the mannose caps in the BCG. Finally, the lack of the mannose cap in M. tuberculosis did not affect its virulence in mice nor its interaction with macrophages in vitro. Thus, these results do not support a major role for the mannose caps of LAM in determining mycobacterial virulence and immunogenicity in vivo in experimental animal models of infection, possibly because of redundancy of function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号