首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Since the early days of mitochondrial medicine, it has been clear that optic atrophy is a very common and sometimes the singular pathological feature in mitochondrial disorders. The first point mutation of mitochondrial DNA (mtDNA) associated with the maternally inherited blinding disorder, Leber's hereditary optic neuropathy (LHON), was recognized in 1988. In 2000, the other blinding disorder, dominant optic atrophy (DOA) Kjer type, was found associated with mutations in the nuclear gene OPA1 that encodes a mitochondrial protein. Besides these two non-syndromic optic neuropathies, optic atrophy is a prominent feature in many other neurodegenerative diseases that are now recognized as due to primary mitochondrial dysfunction.We will consider mtDNA based syndromes such as LHON/dystonia/Mitochondrial Encephalomyopahty Lactic Acidosis Stroke-like (MELAS)/Leigh overlapping syndrome, or nuclear based diseases such as Friedreich ataxia (mutations in FXN gene), deafness-dystonia-optic atrophy (Mohr-Tranebjerg) syndrome (mutations in TIMM8A), complicated hereditary spastic paraplegia (mutations in SPG7), DOA “plus” syndromes (mutations in OPA1), Charcot-Marie-Tooth type 2A (CMT2A) with optic atrophy or hereditary motor and sensory neuropathy type VI (HMSN VI) (mutations in MFN2), and Costeff syndrome and DOA with cataract (mutations in OPA3). Thus, genetic errors in both nuclear and mitochondrial genomes often lead to retinal ganglion cell death, a specific target for mitochondrial mediated neurodegeneration. Many mechanisms have been studied and proposed as the bases for the pathogenesis of mitochondrial optic neuropathies including bioenergetic failure, oxidative stress, glutamate toxicity, abnormal mitochondrial dynamics and axonal transport, and susceptibility to apoptosis.  相似文献   

3.
Hereditary optic neuropathies comprise a group of clinically and genetically heterogeneous disorders, which can be divided into 2 subgroups: isolated hereditary optic atrophies and optic neuropathies as part of complex disorders. In the first group of isolated hereditary optic neuropathies, optic nerve dysfunction is typically the only manifestation of the disease. This group comprises autosomal dominant, autosomal recessive and X-linked recessive optic atrophy, and the mitochondrial inherited Leber’s hereditary optic neuropathy (LHON). In the second group of complex disorders, various neurologic and other systemic abnormalities are regularly observed. The most frequent cause in this group are mitochondrial DNA (mtDNA) mutations, inherited peripheral neuropathies, Charcot–Marie–Tooth disorders (CMT2A2, CMTX5), hereditary sensory neuropathy type 3 (HSAN3), Friedreich ataxia, leukodystrophies, sphingolipidoses, ceroid-lipofuscinoses, and neurodegeneration with brain iron accumulation (NBIA). In the present article, the clinical phenotypes and underlying genetic predispositions are described.  相似文献   

4.
Mitochondria and Neurodegeneration   总被引:2,自引:0,他引:2  
Many lines of evidence suggest that mitochondria have a central role in ageing-related neurodegenerative diseases. However, despite the evidence of morphological, biochemical and molecular abnormalities in mitochondria in various tissues of patients with neurodegenerative disorders, the question “is mitochondrial dysfunction a necessary step in neurodegeneration?” is still unanswered. In this review, we highlight some of the major neurodegenerative disorders (Alzheimer’s disease, Parkinson’s disease, Amyotrophic lateral sclerosis and Huntington’s disease) and discuss the role of the mitochondria in the pathogenetic cascade leading to neurodegeneration.  相似文献   

5.
Alterations in mitochondrial function may have a central role in the pathogenesis of many neurodegenerative diseases. The study of mitochondrial dysfunction has typically focused on ATP generation, calcium homeostasis and the production of reactive oxygen species. However, there is a growing appreciation of the dynamic nature of mitochondria within cells. Mitochondria are highly motile organelles, and also constantly undergo fission and fusion. This raises the possibility that impairment of mitochondrial dynamics could contribute to the pathogenesis of neuronal injury. In this review we describe the mechanisms that govern mitochondrial movement, fission and fusion. The key proteins that are involved in mitochondrial fission and fusion have also been linked to some inherited neurological diseases, including autosomal dominant optic atrophy and Charcot–Marie–Tooth disease 2A. We will discuss the evidence that altered movement, fission and fusion are associated with impaired neuronal viability. There is a growing collection of literature that links impaired mitochondrial dynamics to a number of disease models. Additionally, the concept that the failure to deliver a functional mitochondrion to the appropriate site within a neuron could contribute to neuronal dysfunction provides an attractive framework for understanding the mechanisms underlying neurologic disease. However, it remains difficult to clearly establish that altered mitochondrial dynamics clearly represent a cause of neuronal dysfunction.  相似文献   

6.
Fusion and fission of mitochondria maintain the functional integrity of mitochondria and protect against neurodegeneration, but how mitochondrial dysfunctions trigger neuronal loss remains ill-defined. Prohibitins form large ring complexes in the inner membrane that are composed of PHB1 and PHB2 subunits and are thought to function as membrane scaffolds. In Caenorhabditis elegans, prohibitin genes affect aging by moderating fat metabolism and energy production. Knockdown experiments in mammalian cells link the function of prohibitins to membrane fusion, as they were found to stabilize the dynamin-like GTPase OPA1 (optic atrophy 1), which mediates mitochondrial inner membrane fusion and cristae morphogenesis. Mutations in OPA1 are associated with dominant optic atrophy characterized by the progressive loss of retinal ganglion cells, highlighting the importance of OPA1 function in neurons. Here, we show that neuron-specific inactivation of Phb2 in the mouse forebrain causes extensive neurodegeneration associated with behavioral impairments and cognitive deficiencies. We observe early onset tau hyperphosphorylation and filament formation in the hippocampus, demonstrating a direct link between mitochondrial defects and tau pathology. Loss of PHB2 impairs the stability of OPA1, affects mitochondrial ultrastructure, and induces the perinuclear clustering of mitochondria in hippocampal neurons. A destabilization of the mitochondrial genome and respiratory deficiencies manifest in aged neurons only, while the appearance of mitochondrial morphology defects correlates with tau hyperphosphorylation in the absence of PHB2. These results establish an essential role of prohibitin complexes for neuronal survival in vivo and demonstrate that OPA1 stability, mitochondrial fusion, and the maintenance of the mitochondrial genome in neurons depend on these scaffolding proteins. Moreover, our findings establish prohibitin-deficient mice as a novel genetic model for tau pathologies caused by a dysfunction of mitochondria and raise the possibility that tau pathologies are associated with other neurodegenerative disorders caused by deficiencies in mitochondrial dynamics.  相似文献   

7.
Ocular involvement is a prevalent feature in mitochondrial diseases. Leber’s hereditary optic neuropathy (LHON) and dominant optic atrophy (DOA) are both non-syndromic optic neuropathies with a mitochondrial etiology. LHON is associated with point mutations in the mitochondrial DNA (mtDNA), which affect subunit genes of complex I. The majority of DOA patients harbor mutations in the nuclear-encoded protein OPA1, which is targeted to mitochondria and participates to cristae organization and mitochondrial network dynamics. In both disorders the retinal ganglion cells (RGCs) are specific cellular targets of the degenerative process. We here review the clinical features and the genetic bases, and delineate the possible common pathomechanism for both these disorders.  相似文献   

8.
Disorders caused by mitochondrial respiratory chain deficiency due to mutations in mitochondrial DNA have varied phenotypes but many involve neurological features often associated with cell loss within specific brain regions. These disorders, along with the increasing evidence of decline in mitochondrial function with ageing, have raised speculation that primary changes in mitochondria could have an important role in age-related neurodegenerative diseases such as Parkinson's disease (PD) and Alzheimer's disease (AD). Evidence supporting a role for mitochondria in common neurodegenerative diseases comes from studies with the toxin MPP+ and familial PD, which has been shown to involve proteins such as DJ-1 and Pink1 (both of which are predicted to have a role in mitochondrial function and oxidative stress). Mutations within the mitochondrial genome have been shown to accumulate with age and in common neurodegenerative diseases. Mitochondrial DNA haplogroups have also been shown to be associated with certain neurodegenerative conditions. This review covers the primary mitochondrial diseases but also discuss the potential role of mitochondria and mitochondrial DNA mutations in mitochondrial and neurodegenerative diseases, in particular in PD and in AD.  相似文献   

9.
Mitochondrial quality control: a matter of life and death for neurons   总被引:1,自引:0,他引:1  
Rugarli EI  Langer T 《The EMBO journal》2012,31(6):1336-1349
Neuronal survival critically depends on the integrity and functionality of mitochondria. A hierarchical system of cellular surveillance mechanisms protects mitochondria against stress, monitors mitochondrial damage and ensures the selective removal of dysfunctional mitochondrial proteins or organelles. Mitochondrial proteases emerge as central regulators that coordinate different quality control (QC) pathways within an interconnected network of mechanisms. A failure of this system causes neuronal loss in a steadily increasing number of neurodegenerative disorders, which include Parkinson's disease, spinocerebellar ataxia, spastic paraplegia and peripheral neuropathies. Here, we will discuss the role of the mitochondrial QC network for neuronal survival and neurodegeneration.  相似文献   

10.
Mitochondria play a key role in the maintenance of neuronal function by continuously providing energy. Here, we will give a detailed review about the recent developments in regards to dynamin-related protein 1 (Drp1) induced unbalanced mitochondrial dynamics, excessive mitochondrial division, and neuronal injury in neural system dysfunctions and neurodegenerative diseases, including the Drp1 knockout induced mice embryonic death, the dysfunction of the Drp1-dependent mitochondrial division induced neuronal cell apoptosis and impaired neuronal axonal transportation, the abnormal interaction between Drp1 and amyloid β (Aβ) in Alzheimer's disease (AD), the mutant Huntingtin (Htt) in Huntington's disease (HD), and the Drp1-associated pathogenesis of other neurodegenerative diseases such as Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). Drp1 is required for mitochondrial division determining the size, shape, distribution, and remodeling as well as maintaining of mitochondrial integrity in mammalian cells. In addition, increasing reports indicate that the Drp1 is involved in some cellular events of neuronal cells causing some neural system dysfunctions and neurodegenerative diseases, including impaired mitochondrial dynamics, apoptosis, and several posttranslational modification induced increased mitochondrial divisions. Recent studies also revealed that the Drp1 can interact with Aβ, phosphorylated τ, and mutant Htt affecting the mitochondrial shape, size, distribution, axonal transportation, and energy production in the AD and HD neuronal cells. These changes can affect the health of mitochondria and the function of synapses causing neuronal injury and eventually leading to the dysfunction of memory, cognitive impairment, resting tremor, posture instability, involuntary movements, and progressive muscle atrophy and paralysis in patients.  相似文献   

11.
Mitochondria are highly specialized in function, but mitochondrial and, therefore, cellular integrity is maintained through their dynamic nature. Through the frequent processes of fusion and fission, mitochondria continuously change in shape and adjust function to meet cellular requirements. Abnormalities in fusion/fission dynamics generate cellular dysfunction that may lead to diseases. Mutations in the genes encoding mitochondrial fusion/fission proteins, such as MFN2 and OPA1, have been associated with an increasing number of genetic disorders, including Charcot-Marie-Tooth disease type 2A (CMT2A) and autosomal dominant optic atrophy. In this review, we address the mitochondrial dynamic changes in several important genetic diseases, which will bring the new insight of clinical relevance of mitochondrial genetics.  相似文献   

12.
Mitochondrial dysfunction is a prominent feature of various neurodegenerative diseases. A deeper understanding of the remarkably dynamic nature of mitochondria, characterized by a delicate balance of fission and fusion, has helped to fertilize a recent wave of new studies demonstrating abnormal mitochondrial dynamics in neurodegenerative diseases. This review highlights mitochondrial dysfunction and abnormal mitochondrial dynamics in Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, and Huntington disease and discusses how these abnormal mitochondrial dynamics may contribute to mitochondrial and neuronal dysfunction. We propose that abnormal mitochondrial dynamics represents a key common pathway that mediates or amplifies mitochondrial dysfunction and neuronal dysfunction during the course of neurodegeneration.  相似文献   

13.
In human mitochondria, polyadenylation of mRNA, undertaken by the nuclear-encoded mitochondrial poly(A) RNA polymerase, is essential for maintaining mitochondrial gene expression. Our molecular investigation of an autosomal-recessive spastic ataxia with optic atrophy, present among the Old Order Amish, identified a mutation of MTPAP associated with the disease phenotype. When subjected to poly(A) tail-length assays, mitochondrial mRNAs from affected individuals were shown to have severely truncated poly(A) tails. Although defective mitochondrial DNA maintenance underlies a well-described group of clinical disorders, our findings reveal a defect of mitochondrial mRNA maturation associated with human disease and imply that this disease mechanism should be considered in other complex neurodegenerative disorders.  相似文献   

14.
Mitochondrial DNA disorders are an important cause of neurological disease, yet despite our awareness of the importance of these conditions, relatively little is known about the neuropathology of these disorders and even less about the mechanisms involved in neuronal dysfunction and death. In this review we detail important features from neuropathological studies available and highlight deficiencies that are currently limiting our understanding of mitochondrial DNA disease. We also discuss possible future approaches that might resolve some of these outstanding issues. Further study of these disorders is critical because mitochondria play a central role in neuronal survival and it is likely that an understanding of the mechanisms involved in neuronal dysfunction and cell death in mitochondrial DNA disease may have implications for other neurodegenerative diseases.  相似文献   

15.
Mitochondrial dysfunction and mitophagy are often hallmarks of neurodegenerative diseases such as autosomal dominant optic atrophy (ADOA) caused by mutations in the key mitochondrial dynamics protein optic atrophy 1 (Opa1). However, the second messengers linking mitochondrial dysfunction to initiation of mitophagy remain poorly characterized. Here, we show in mammalian and nematode neurons that Opa1 mutations trigger Ca2+-dependent mitophagy. Deletion or expression of mutated Opa1 in mouse retinal ganglion cells and Caenorhabditis elegans motor neurons lead to mitochondrial dysfunction, increased cytosolic Ca2+ levels, and decreased axonal mitochondrial density. Chelation of Ca2+ restores mitochondrial density in neuronal processes, neuronal function, and viability. Mechanistically, sustained Ca2+ levels activate calcineurin and AMPK, placed in the same genetic pathway regulating axonal mitochondrial density. Our data reveal that mitophagy in ADOA depends on Ca2+-calcineurin-AMPK signaling cascade.Subject terms: Cell biology, Neurological disorders  相似文献   

16.
Selective degeneration of the smallest fibers (papillo-macular bundle) of the human optic nerve occurs in a large number of optic neuropathies characterized primarily by loss of central vision. The pathophysiology that underlies this peculiar pattern of cell involvement probably reflects different forms of genetic and acquired mitochondrial dysfunction.Maternally inherited Leber's hereditary optic neuropathy (LHON), dominant optic atrophy (Kjer disease), the optic atrophy of Leigh's syndrome, Friedreich ataxia and a variety of other conditions are examples of inherited mitochondrial disorders with different etiologies. Tobacco-alcohol amblyopia (TAA), the Cuban epidemic of optic neuropathy (CEON) and other dietary (Vitamins B, folate deficiencies) optic neuropathies, as well as toxic optic neuropathies such as due to chloramphenicol, ethambutol, or more rarely to carbon monoxide, methanol and cyanide are probably all related forms of acquired mitochondrial dysfunction.Biochemical and cellular studies in LHON point to a partial defect of respiratory chain function that may generate either an ATP synthesis defect and/or a chronic increase of oxidative stress. Histopathological studies in LHON cases and a rat model mimicking CEON revealed a selective loss of retinal ganglion cells (RGCs) and the corresponding axons, particularly in the temporal-central part of the optic nerve. Anatomical peculiarities of optic nerve axons, such as the asymmetric pattern of myelination, may have functional implications on energy dependence and distribution of mitochondrial populations in the different sections of the nerve. Histological evidence suggests impaired axonal transport of mitochondria in LHON and in the CEON-like rat model, indicating a possible common pathophysiology for this category of optic neuropathies. Histological evidence of myelin pathology in LHON also suggests a role for oxidative stress, possibly affecting the oligodendrocytes of the optic nerves.  相似文献   

17.
Knowledge on the genetics of movement disorders has advanced significantly in recent years. It is now recognized that disorders of the basal ganglia have genetic basis and it is suggested that molecular genetic data will provide clues to the pathophysiology of normal and abnormal motor control. Progress in molecular genetic studies, leading to the detection of genetic mutations and loci, has contributed to the understanding of mechanisms of neurodegeneration and has helped clarify the pathogenesis of some neurodegenerative diseases. Molecular studies have also found application in the diagnosis of neurodegenerative diseases, increasing the range of genetic counseling and enabling a more accurate diagno-sis. It seems that understanding pathogenic processes and the significant role of genetics has led to many experiments that may in the future will result in more effective treatment of such diseases as Parkinson’s or Huntington’s. Currently used molecular diagnostics based on DNA analysis can identify 9 neurodegenerative diseases, including spinal cerebellar ataxia inherited in an autosomal dominant manner, dentate-rubro-pallido-luysian atrophy, Friedreich’s disease, ataxia with ocu-lomotorapraxia, Huntington''s disease, dystonia type 1, Wilson’s disease, and some cases of Parkinson''s disease.  相似文献   

18.
Alzheimer's disease and Parkinson's disease are neurodegenerative disorders characterised by the misfolding of proteins into soluble prefibrillar aggregates. These aggregate complexes disrupt mitochondrial function, initiating a pathophysiological cascade leading to synaptic and neuronal degeneration. In order to explore the interaction of amyloid aggregates with mitochondrial membranes, we made use of two in vitro model systems, namely: (i) lipid vesicles with defined membrane compositions that mimic those of mitochondrial membranes, and (ii) respiring mitochondria isolated from neuronal SH-SY5Y cells. External application of soluble prefibrillar forms, but not monomers, of amyloid-beta (Aβ42 peptide), wild-type α-synuclein (α-syn), mutant α-syn (A30P and A53T) and tau-441 proteins induced a robust permeabilisation of mitochondrial-like vesicles, and triggered cytochrome c release (CCR) from isolated mitochondrial organelles. Importantly, the effect on mitochondria was shown to be dependent upon cardiolipin, an anionic phospholipid unique to mitochondria and a well-known key player in mitochondrial apoptosis. Pharmacological modulators of mitochondrial ion channels failed to inhibit CCR. Thus, we propose a generic mechanism of thrilling mitochondria in which soluble amyloid aggregates have the intrinsic capacity to permeabilise mitochondrial membranes, without the need of any other protein. Finally, six small-molecule compounds and black tea extract were tested for their ability to inhibit permeation of mitochondrial membranes by Aβ42, α-syn and tau aggregate complexes. We found that black tea extract and rosmarinic acid were the most potent mito-protectants, and may thus represent important drug leads to alleviate mitochondrial dysfunction in neurodegenerative diseases.  相似文献   

19.
Mgm1 is a member of the dynamin family of GTP-binding proteins. Mgm1 was first identified in yeast, where it affects mitochondrial morphology. The human homologue of Mgm1 is called OPA1. Mutations in the OPA1 gene are the prevailing cause of dominant optic atrophy, a hereditary disease in which progressive degeneration of the optic nerve can lead to blindness. Here we investigate the properties of the Mgm1/OPA1 protein in mammalian cells. We find that Mgm1/OPA1 is localized to the mitochondrial intermembrane space, where it is tightly bound to the outer surface of the inner membrane. Overexpression of wild type or mutant forms of the Mgm1/OPA1 protein cause mitochondria to fragment and, in some cases, cluster near the nucleus, whereas the loss of protein caused by small interfering RNA (siRNA) leads to dispersal of mitochondrial fragments throughout the cytosol. The cristae of these fragmented mitochondria are disorganized. At early time points after transfection with Mgm1/OPA1 siRNA, the mitochondria are not yet fragmented. Instead, the mitochondria swell and stretch, after which they form localized constrictions similar to the mitochondrial abnormalities observed during the early stages of apoptosis. These abnormalities might be the earliest effects of losing Mgm1/OPA1 protein.  相似文献   

20.
Mitochondrial dysfunction in idiopathic Parkinson disease.   总被引:2,自引:0,他引:2       下载免费PDF全文
Disordered mitochondrial metabolism may play an important role in a number of idiopathic neurodegenerative disorders. The question of mitochondrial dysfunction is particularly attractive in the case of idiopathic Parkinson disease (PD), since Vyas et al. recognized in the 1980s that the parkinsonism-inducing compound N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine is a mitochondrial toxin. The unique genetic properties of mitochondria also make them worthy of consideration for a pathogenic role in PD, as well as in other late-onset, sporadic neurodegenerative disorders. Although affected persons occasionally do provide family histories that suggest Mendelian inheritance, the vast majority of the time these diseases appear sporadically. Because of unique features such as heteroplasmy, replicative segregation, and threshold effects, mitochondrial inheritance can allow for the apparent sporadic nature of these diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号