首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first example of the synthesis of new dinucleotide cap analog containing 2,3-diacetyl group on m7guanosine moiety is described. The desired modified cap analog, m7,2,3–diacetylG[5]ppp[5]G has been obtained by the coupling reaction of triethylamine salt of m7,2,3–diacetylGDP with ImGMP in presence of ZnCl2 as a catalyst in 62% yield with high purity. The structure of new cap analog has been confirmed by 1H and 31P NMR and mass data.  相似文献   

2.
Ribopolymers of variable base composition and 5′-terminal structure were synthesized with polynucleotide phosphorylase. Under primer-dependent conditions, m7GpppGmpC (m7G-cap)2, its alkali-treated m7G ring-opened derivative, GpppGpC and ppGpC but not m7GpppGmpCp, m7GpppGm or GpppG were incorporated as 5′-termini. The ribopolymers were compared with reovirus mRNA, which contains m7G-cap, for their ability to form initiation complexes with wheat germ 40 S ribosomal subunits and 80 S ribosomes. The presence of 5′-terminal m7G was required for stable complex formation by some ribopolymers while for others binding was increased by two- to fourfold. The final level of binding observed was similar to that with reovirus mRNA. In addition to 5′-terminal m7G, the base composition of the ribopolymers markedly influenced binding. Some ribopolymers including m7G-cap (A)n did not bind significantly; m7G-cap (U)n formed 40 S complexes while m7G-cap (A,U)n bound to 80 S ribosomes. The ribopolymer m7G-cap (A2,U2,G)n directed protein synthesis as measured by amino acid incorporation into polypeptides, methionine tRNA association with 40 S complexes, and puromycin reactivity of 80 S-associated methionine and, like reovirus mRNA, its binding to ribosomes was inhibited by 7-methylguanosine 5′-monophosphate.  相似文献   

3.
Abstract

Hydrolysis of the following four cap analogs: m7G(5′)ppp(5′)A, m7G(5′)ppp(5′)m6A, m7G(5′)ppp(5′)m2′OG and m7G(5′)ppp(5′)2′dG catalyzed by homogeneous human Fhit protein and yellow lupin Ap3A hydrolase has been investigated. The hydrolysis products were identified by HPLC analysis and the Km and Vmax values calculated based on the data obtained by the fluorimetric method.  相似文献   

4.
The effect of 7-methylguanosine 5′-monophosphate (m7G5′ p) on translation of partially purified globin mRNA and of polysome-associated endogenous globin mRNA has been studied. Under identical experimental conditions, with 0.4 mM m7G5′ p, translation with partially purified globin mRNA is inhibited 50%; translation with endogenous globin mRNA is inhibited 10%. The inhibition of protein synthesis by m7G5′ p occurs at a step before the first peptide bond formation as evidenced by studies with pactamycin; 0.4 mM m7G5′ p inhibited the first dipeptide synthesis 43% when the partially purified globin mRNA was used whereas 15% inhibition was observed with the endogenous mRNA. The inhibition of m7G5′ p appears to be related to the structural integrity of globin mRNA.  相似文献   

5.
6.
Lipozyme® TL IM (Theremomyces lanuginosus lipase immobilized on silica) in toluene catalyzes the acylation of the 2 ′-OH over the 3 ′-OH group in 5 ′-O-(4,4 ′-dimethoxytrityl)-2 ′,3 ′-secouridine (5 ′-O-DMT-2 ′,3 ′-secouridine) in a highly selective fashion in moderate to almost quantitative yields. The turn over during benzoyl transfer reactions mediated by vinyl benzoate or benzoic anhydride was faster than in acyl transfer reactions with vinyl acetate or C1 to C5 acid anhydrides; except in the case of butanoic anhydride. The 2 ′-O-benzoyl-5 ′-O-DMT-2 ′,3 ′-secouridine obtained by Lipozyme® TL IM catalyzed benzoylation of 5 ′-O-DMT-2 ′,3 ′-secouridine was successfully converted into its 3 ′-O-phosphoramidite derivative in satisfactory yield, which is a building block for the preparation of oligonucleotides containing the uracil monomer of UNA (unlocked nucleic acid).  相似文献   

7.
The messenger RNA for silk fibroin, labeled with 32PO4 and methyl-3H L-methionine, was purified to near homogeneity from the posterior silk gland of the silkworm Bombyx mori, and the sequence of a methylated, RNAase T2-resistant structure was determined. This sequence is similar structurally to 5′ terminal blocked and methylated sequences found on the total populations of polyadenylated eucaryotic cellular and certain viral mRNAs. The RNAase T2-resistant oligomer from fibroin mRNA was cleaved by nuclease P1 into three components: a blocked and methylated sequence containing three phosphates; a 2′-0-methyl UMP residue (pUm), and an unmethylated CMP (pC). The blocked and methylated sequence comigrated in three chromatographic systems with the blocked and methylated terminus of silkworm cytoplasmic polyhedrosis virus mRNA, which has the structure m7GpppAm. The fibroin mRNA cap was cleaved by nucleotide pyrophosphatase to yield 7-methyl GMP (pm7G) and 2′-0-methyl AMP (pAm). This sequence also appeared to be terminally located, with the m7G joined by a 5′-5′ pyrophosphate linkage to the Am. It was concluded that the 5′ terminal sequence of fibroin mRNA molecules is m7G(5′)ppp(5′)AmpUmpCp. The regulation of expression of the highly specialized gene for fibroin is discussed in light of this finding.  相似文献   

8.
Eukaryotic and viral messenger RNAs contain a CAP structure that plays an important role in the initiation of translation and several other cellular processes that involve mRNAs. In this paper, we report a convenient chemical approach to the preparation of milligram quantities of short, capped RNA oligonucleotides, which overcomes some of the limitations of previous approaches. The method is based on the use of a reactive precursor, m7GppQ [P1‐7‐methylguanosine‐5′‐O‐yl, P2‐O‐8‐(5‐chloroquinolyl) pyrophosphate]. The precursor reacts smoothly with 5′‐phosphorylated unprotected short RNA in the presence of CuCl2 in organic media. The feasibility of this approach was demonstrated by the synthesis of the capped pentaribonucleotide m7GpppGpApCpU. The synthesized capped oligonucleotide was isolated and purified by reverse phase and ion exchange HPLC with a final yield of 37%. The structure of the m7GpppGpApCpU was confirmed by 31P NMR, mass‐spectrometry and enzymatic hydrolysis.  相似文献   

9.
This study deals with the synthesis of benzophenone sulfonamides hybrids (131) and screening against urease enzyme in vitro. Studies showed that several synthetic compounds were found to have good urease enzyme inhibitory activity. Compounds 1 (N′-((4′-hydroxyphenyl)(phenyl)methylene)-4′′-nitrobenzenesulfonohydrazide), 2 (N′-((4′-hydroxyphenyl)(phenyl)methylene)-3′′-nitrobenzenesulfonohydrazide), 3 (N′-((4′-hydroxyphenyl)(phenyl)methylene)-4′′-methoxybenzenesulfonohydrazide), 4 (3′′,5′′-dichloro-2′′-hydroxy-N′-((4′-hydroxyphenyl)(phenyl)methylene)benzenesulfonohydrazide), 6 (2′′,4′′-dichloro-N′-((4′-hydroxyphenyl)(phenyl)methylene)benzenesulfonohydrazide), 8 (5-(dimethylamino)-N′-((4-hydroxyphenyl)(phenyl)methylene)naphthalene-1-sulfono hydrazide), 10 (2′′-chloro-N′-((4′-hydroxyphenyl)(phenyl)methylene)benzenesulfonohydrazide), 12 (N′-((4′-hydroxyphenyl)(phenyl)methylene)benzenesulfonohydrazide) have found to be potently active having an IC50 value in the range of 3.90–17.99?µM. These compounds showed superior activity than standard acetohydroxamic acid (IC50?=?29.20?±?1.01?µM). Moreover, in silico studies on most active compounds were also performed to understand the binding interaction of most active compounds with active sites of urease enzyme. Structures of all the synthetic compounds were elucidated by 1H NMR, 13C NMR, EI-MS and FAB-MS spectroscopic techniques.  相似文献   

10.
The methyl ester of m7G5′ p was synthesized by a carbodiimide-catalyzed reaction of G5′ p with methanol followed by dimethylsulfate alkylation. Comparative spectral analyses indicated that m7Gp · methyl ester retained the rigid conformation characteristic of the messenger RNA cap analog, m7G5′ p but not its strong inhibitory activity against initiation of capped mRNA translation. Attachment of reovirus mRNA to wheat germ ribosomes, crosslinking of capbinding protein to the 5′-end of oxidized mRNA, and stimulation by this protein of capped mRNA translation in HeLa cell extract were all several-fold more sensitive to inhibition by m7G5′ p than to m7Gp · methyl ester. Conversion of the esterified analog to m7G5′ p by digestion with venom phosphodiesterase restored completely the ability to inhibit initiation complex formation. The results indicate that structural features of the 5′-terminal m7G cap of mRNA over and above preferred conformation are recognized during eukaryotic protein synthesis.  相似文献   

11.
Cyclic nucleotide phosphodiesterase was extracted from intact chloroplasts and partially purified. Peak 1c activity from Sephadex G-200 was resolved by electrophoresis into two major bands (MWs 1.87 × 105 and 3.7 × 105). Both also possessed acid phosphatase, ribonuclease, nucleotidase and ATPase. The chloroplast peak 1c cyclic nueleotide phosphodiesterase was located in the envelope. Peak 1m cyclic nucleotide phosphodiesterase obtained from the microsomal fraction had a MW of 2.63 × 105. Electrophoresis separated 1m into two bands of cyclic nucleotide phosphodiesterase activity (MWs 2.63 × 105 and 1.28 × 105). Both contain ATPase, ribonuclease, nucleotidase, but not acid phosphatase. Peak 1c has high activity towards 3′:5′-cyclic AMP and 3′:5′-cyclic GMP but little towards 2′:3′-cyclic nucleotides. Peak 1m showed most activity towards 2′:3′-cyclic AMP, 2′:3′-cyclic GMP and 2′:3′-cyclic CMP with little activity towards 3′:5′-cyclic nucleotides. With 1c, 3′:5′-cyclic AMP and 3′:5′-cyclic GMP exhibit mixed-type inhibition towards one another. The 2′:3′-cyclic AMP phosphodiesterase 1m was competitively inhibited by 2′:3′-cyclic GMP. p-Chloromercuribenzoate inhibits 1c but not 1m. Electrophoresis after dissociation indicates that 1c and 1m are both enzyme complexes. After dissociation, the 1c complex but not that of 1m could be reassociated. The ribonuclease of the 1m complex hydrolyses RNA to yield 2′:3′-cyclic nucleotides as the main products. These results are compatible with the 1c cyclic nucleotide phosphodiesterase complex being involved in the metabolism of 3′:5′-cyclic AMP, and the 1m complex being concerned with RNA catabolism.  相似文献   

12.
Abstract— The de novo synthesis of phosphatidylcholine and phosphatidylethanolamine in isolated neuronal and glial cells from adult rabbit brain cortex was investigated in vitro, using labelled phosphorylcholine (phosphorylethanolamine) or cytidine-5′-phosphate choline (cytidine-5′-phosphate ethanolamine), as lipid precursors. Synthesis of phospholipid from phosphorylcholine and phosphorylethanolamine in both fractions was extremely low when compared to that derived from the corresponding cytidine nucleotides. The neuronal cell-enriched fraction was found to possess a much higher rate of synthesis of both lipids from all precursors. Neuronal/glial ratios of about 5–9 were found for the synthesis of phosphatidylcholine and phosphatidylethanolamine from cytidine-5′-phosphate choline and cytidine-5′-phosphate ethanolamine, respectively. Several kinetic properties of the choline-phosphotransferase (EC 2.7.8.2) and ethanolaminephosphotransferase (EC 2.7.8.1) were found to be similar both in neurons and in glia (e.g. Km of cytidine-5′-phosphate ethanolamine, Km of diacyl glycerol, pH optimum, need for divalent cations), but the Km value for cytidine-5′-phosphate choline in glial cells was much lower (2.3 × 10?4m ) than in neurons (1 × 10?3m ). The Kmfor cytidine-5′-phosphate ethanolamine in both cells was much lower than in whole brain microsomes. It is concluded that the cytidine-dependent enzymic system for phosphatidylcholine and phosphatidylethanolamine synthesis is concentrated mostly in the neuronal cells, as compared to glia.  相似文献   

13.
Histone mRNA, labeled with 32P or 3H-methionine during the S phase of partially synchronized HeLa cells, was isolated from the polyribosomes and purified as a “9S” component by sucrose gradient sedimentation. We identified two types of 5′ terminals, m7G(5′)pppNmpN and m7G(5′)pppNm-pNmpN, in which the first methylated nucleoside is 7-methylguanosine, the second is either N6,2′-O-dimethyladenosine, 2′-O-methyladenosine, or 2′-O-methylguanosine, and the third is 2′-O-methyluridine, 2′-O-methylcytidine, or 2′-O-methyladenosine. Approximately 1.7% of the 32P label was present in the 5′ terminal structures. Assuming a similar specific radioactivity for all phosphates, this percentage corresponds to an average of one terminal per 335 nucleotides. Histone mRNA differed from bulk polyadenylylated mRNA of HeLa cells in lacking significant amounts of 2′-O-methyluridine or 2′-O-methylcytidine in the second position of the 5′ terminal oligonucleotide and in lacking N6-methyladenosine residues at internal positions.  相似文献   

14.
We report synthesis and properties of a pair of new potent inhibitors of translation, namely two diastereomers of 7-methylguanosine 5′-(1-thiotriphosphate). These new analogs of mRNA 5′cap (referred to as m7GTPαS (D1) and (D2)) are recognized by translational factor eIF4E with high affinity and are not susceptible to hydrolysis by Decapping Scavenger pyrophosphatase (DcpS). The more potent of diastereomers, m7GTPαS (D1), inhibited cap-dependent translation in rabbit reticulocyte lysate ~8-fold and ~15-fold more efficiently than m7GTP and m7GpppG, respectively. Both analogs were also significantly more stable in RRL than unmodified ones.  相似文献   

15.
Abstract

A single step chemical synthesis of N7-methyl-2′-deoxyguanosine (m7dG), N1-methyl-2′-deoxyguanosine (m1dG) and O6-methyl-2′-deoxyguanosine (m6dG) is described. The products were separated on the silical gel plates and characterized by nuclear magnetic resonance and mass spectrometry.  相似文献   

16.
The thermodynamic parameters, ΔH′, ΔG′, and ΔS′, and the stoichiometry for the binding of the substrate 2′-deoxyuridine-5′-phosphate (dUMP) and the inhibitor 5-fluoro-2′-deoxyuridine-5′-phosphate (FdUMP) to Lactobacillus casei thymidylate synthetase (TSase) have been investigated using both direct calorimetric methods and gel filtration methods. The data obtained show that two ligand binding sites are available but that the binding of the second mole of dUMP is extremely weak. Binding of the first mole of dUMP can best be illustrated by dUMP + TSase + H+?(dUMP-TSase-H+). [1] The enthalpy, ΔH1′, for reaction [1] was measured directly on a flow modification of a Beckman Model 190B microcalorimeter. Experiments in two different buffers (I = 0.10 m) show that ΔH1′ = ?28 kJ mol?1 and that 0.87 mol of protons enters into the reaction. Analysis of thermal titrations for reaction [1] indicates a free energy change of ΔG1′ = ?30 kJ mol?1 (K1 = 1.7 × 105 m?1). From these parameters, ΔS1′ was calculated to be +5 J mol?1 degree?1, showing that the reaction is almost totally driven by enthalpy changes. Gel filtration experiments show that at very high substrate concentrations, binding to a second site can be observed. Gel filtration experiments performed at low ionic strength (I = 0.05 m) reveal a stronger binding, with ΔG1′ = ?35 kJ mol?1 (K1 = 1.2 × 106 m?1), suggesting that the forces driving the interaction are, in part, electrostatic. Addition of 2-mercaptoethanol (0.10 m) had the effect of slightly increasing the dUMP binding constant. Binding of FdUMP to TSase is best illustrated by 2FdUMP + TSase + nHH+?FdUMP2 ? TSase ? (H+)nH. [2] The enthalpy for this reaction, ΔH2, was also measured calorimetrically and found to be ?30 kJ mol?1 with nH = 1.24 at pH 7.4 Assuming two FdUMP binding sites per dimer as established by Galivan et al. [Biochemistry15, 356–362 (1976)] our calorimetric results indicate different binding energies for each site. Based on the binding data, a thermodynamic model is presented which serves to rationalize much of the confusing physical and chemical data characterizing thymidylate synthetase.  相似文献   

17.
In this paper, we discuss the usefulness of reductive amination of 5-formyl-2′,3′-O-isopropylidene(-2-thio)uridine with glycine or taurine esters in the presence of sodium triacetoxyborohydride (NaBH(OAc)3) for the synthesis of the native mitochondrial (mt) tRNA components 5-carboxymethylaminomethyl(-2-thio)uridine (cmnm5(s2)U) and 5-taurinomethyl(-2-thio)uridine (τm5(s2)U) with a blocked amino acid function. 2-(Trimethylsilyl)ethyl and 2-(p-nitrophenyl)ethyl esters of glycine and 2-(2,4,5-trifluorophenyl)ethyl ester of taurine were selected as protection of carboxylic and sulfonic acid residues, respectively. The first synthesis of 5-formyl-2′,3′-O-isopropylidene-2-thiouridine is also reported.  相似文献   

18.
Oligonucleotides containing the 5′ termini of adenovirus 2 mRNA are selectively retained on columns of dihydroxyboryl cellulose. When total late adenovirus 2 mRNA was treated with RNAase T1, a single 5′ terminal oligonucleotide was isolated, although in several states of methylation. This oligonucleotide has the general structure m7GS5′ppp5′AmCmU(C4,U3)G. Since at least twelve individual species of mRNA must be present late after infection, this finding was unexpected and its significance is discussed.  相似文献   

19.
Abstract

A procedure was developed for the chemical synthesis of P1,P2-dinucleoside-5′-diphosphates (N1(5′)pp(5′)N2) on a nanomolar scale Reaction conditions for activating purine-5′-monophosphates (pA, pG, and pm7G) by 1,1′-carbonyldiimidazole were studied and optimized in respect to solvents and amount of activating reagent used. Various dinucleoside-5′-diphosphates were synthesized in 62-98% yield by incubating activated and non-activated purine-5′-monophosphates. Two unexpected by-products were formed by competition reactions: the imidazolidate of the non-activated nucleotide and the corresponding symmetrically substituted dinucleoside-5′-diphosphate. A mechanism is proposed to explain the observed side reactions.  相似文献   

20.
We have developed four 99mTc(CO)3-labeled lipophilic tracers as potential radiolabeling agents for cells based on a hexadecyl tail. 99mTc(CO)3-hexadecylamino-N,N′-diacetic acid (negatively charged), 99mTc(CO)3-hexadecylamino-N-α-picolyl-N′-acetic acid (uncharged), 99mTc(CO)3-N,N′-dipicolylhexadecylamine (positively charged), 99mTc(CO)3-N-hexadecylaminoethyl-N′-aminoethylamine (positively charged) were prepared in a radiolabeling yield: >90%. Preliminary cell uptake studies were performed in mixed blood cells with or without plasma and were compared with 99mTc-d,l-HMPAO and [18F]FDG. In plasma-free blood cells, maximum uptake (78%) was obtained for 99mTc(CO)3-N-hexadecylaminoethyl-N′-aminoethylamine after 60 min incubation (compared to 55% and 23% for 99mTc-d,l-HMPAO and [18F]FDG, respectively) while in plasma-rich medium, 99mTc(CO)3-N,N′-dipicolylhexadecylamine was best bound (54%, similar to the binding of 99mTc-d,l-HMPAO). Biodistribution in normal mice showed mainly hepatobiliary clearance of the agents and initial high lung uptake. The radiolabeled compounds showed good blood clearance with maximally 7.9% injected dose per gram at 60 min post injection. While the least lipophilic agent (99mTc(CO)3-N,N′-dipicolylhexadecylamine, log P = 1.3) showed the best cell uptake, there appears to be no direct correlation between lipophilicity and tracer uptake in mixed blood cells. In view of its comparable cell uptake to well known cell labeling agent 99mTc-d,l-HMPAO, 99mTc(CO)3-N,N′-dipicolylhexadecylamine merits further evaluation as a potential cell labeling agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号