首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The chemokine receptor CCR7 and its ligands CCL19 and CCL21 play a crucial role for the homing of lymphocytes and dendritic cells to secondary lymphoid tissues. Nevertheless, how CCR7 senses the gradient of chemokines and how migration is terminated are poorly understood. In this study, we demonstrate that CCR7(-GFP) is endocytosed into early endosomes containing transferrin receptor upon CCL19 binding, but less upon CCL21 triggering. Internalization of CCR7 was independent of lipid rafts but relied on dynamin and Eps15 and was inhibited by hypertonic sucrose, suggesting clathrin-dependent endocytosis. After chemokine removal, internalized CCR7 recycled back to the plasma membrane and was able to mediate migration again. In contrast, internalized CCL19 was sorted to lysosomes for degradation, showing opposite fate for endocytosed CCR7 and its ligand.  相似文献   

2.
The aim of the study was to characterise CCR7+ and CCR7- memory T cells infiltrating the inflamed joints of patients with juvenile idiopathic arthritis (JIA) and to investigate the functional and anatomical heterogeneity of these cell subsets in relation to the expression of the inflammatory chemokine receptors CXCR3 and CCR5. Memory T cells freshly isolated from the peripheral blood and synovial fluid (SF) of 25 patients with JIA were tested for the expression of CCR7, CCR5, CXCR3 and interferon-gamma by flow cytometry. The chemotactic activity of CD4 SF memory T cells from eight patients with JIA to inflammatory (CXCL11 and CCL3) and homeostatic (CCL19, CCL21) chemokines was also evaluated. Paired serum and SF samples from 28 patients with JIA were tested for CCL21 concentrations. CCR7, CXCR3, CCR5 and CCL21 expression in synovial tissue from six patients with JIA was investigated by immunohistochemistry. Enrichment of CD4+, CCR7- memory T cells was demonstrated in SF in comparison with paired blood from patients with JIA. SF CD4+CCR7- memory T cells were enriched for CCR5+ and interferon-gamma+ cells, whereas CD4+CCR7+ memory T cells showed higher coexpression of CXCR3. Expression of CCL21 was detected in both SF and synovial membranes. SF CD4+ memory T cells displayed significant migration to both inflammatory and homeostatic chemokines. CCR7+ T cells were detected in the synovial tissue in either diffuse perivascular lymphocytic infiltrates or organised lymphoid aggregates. In synovial tissue, a large fraction of CCR7+ cells co-localised with CXCR3, especially inside lymphoid aggregates, whereas CCR5+ cells were enriched in the sublining of the superficial subintima. In conclusion, CCR7 may have a role in the synovial recruitment of memory T cells in JIA, irrespective of the pattern of lymphoid organisation. Moreover, discrete patterns of chemokine receptor expression are detected in the synovial tissue.  相似文献   

3.
4.
It remains to be clarified whether dendritic cells (DC) reach the rheumatoid arthritis (RA) synovium, considered an ectopic lymphoid organ, as mature cells or undergo local maturation. We characterized by immunohistochemistry the DC subsets and used tonsils as a control. Immature and mature DC were defined by CD1a and DC-lysosome-associated membrane protein/CD83 expression, respectively. Immature DC were mainly detected in the lining layer in RA synovium. Mature DC were exclusively detected in the lymphocytic infiltrates. The DC-lysosome-associated membrane protein/CD1a ratio was 1.1 in RA synovium and 5.3 in tonsils, suggesting the relative accumulation of immature DC in RA synovium. We then focused on the expression of CCL20/CCR6 and CCL19/CCR7, CCL21/CCR7 chemokine/receptor complex, which control immature and mature DC migration respectively. A close association was observed between CCL20-producing cells and CD1a(+) cells, suggesting the contribution of CCL20 to CCR6(+) cell homing. Conversely, CCL21 and CCL19 expression was only detected in perivascular infiltrates. The association among CCL19/21-producing cells, CCR7 expression, and mature DC accumulation is in line with the roles of these chemokines in mature CCR7(+) DC homing to lymphocytic infiltrates. The role of DC in disease initiation and perpetuation makes chemokines involved in DC migration a potential therapeutic target.  相似文献   

5.
CC chemokine receptor 7 (CCR7), which regulates the trafficking of leucocytes to the secondary lymphoid organs, has two endogenous chemokine ligands: CCL19 and CCL21. Although both ligands possess similar affinities for the receptor and similar abilities to promote G protein activation and chemotaxis, they share only 25% sequence identity. Here, we show that substituting N-terminal six amino acids of CCL21 (SDGGAQ) for the corresponding N-terminal domain of CCL19 (GTNDAE) results in a chimeric chemokine that exhibits high affinity binding and G protein activation of CCR7. These data demonstrate that despite dissimilar sequences, the amino terminal hexapeptide of these two chemokines is capable of performing similar roles resulting in receptor activation.  相似文献   

6.
CCL21 (SLC/6Ckine) is constitutively expressed by secondary lymphoid tissue and attracts CCR7-expressing mature dendritic cells and naive T cells. Recent studies demonstrated that intra-tumoral delivery of CCL21 induces tumor regression in a T cell dependent manner. CCL21 is known to mediate T cell trafficking but little is known about its function as a costimulatory molecule. Herein, we demonstrate that CCL21 costimulates expansion of CD4+ and CD8+ T cells and induces Th1 polarization. These effects were specific for naive T cells, and we show that CD4+CD25+ regulatory T cells were hyporesponsive to CCL21 induced migration, and unresponsive to CCL21 costimulation. These unique functions of CCL21 to both attract naive T cells as well as costimulate their proliferation and differentiation, suggests that CCL21 is a pivotal molecule for priming T cell responses and has therapeutic implications for local delivery of CCL21. The coordinated effects of CCL21 on T cell migration and activation may also represent a more comprehensive paradigm for the activity of other chemokines as well.  相似文献   

7.
During human immunodeficiency virus (HIV) infection, enhanced migration of infected cells to lymph nodes leads to efficient propagation of HIV-1. The selective chemokine receptors, including CXCR4 and CCR7, may play a role in this process, yet the viral factors regulating chemokine-dependent T cell migration remain relatively unclear. The functional cooperation between the CXCR4 ligand chemokine CXCL12 and the CCR7 ligand chemokines CCL19 and CCL21 enhances CCR7-dependent T cell motility in vitro as well as cell trafficking into the lymph nodes in vivo. In this study, we report that a recombinant form of a viral CXCR4 ligand, X4-tropic HIV-1 gp120, enhanced the CD4 T cell response to CCR7 ligands in a manner dependent on CXCR4 and CD4, and that this effect was recapitulated by HIV-1 virions. HIV-1 gp120 significantly enhanced CCR7-dependent CD4 T cell migration from the footpad of mice to the draining lymph nodes in in vivo transfer experiments. We also demonstrated that CXCR4 expression is required for stable CCR7 expression on the CD4 T cell surface, whereas CXCR4 signaling facilitated CCR7 ligand binding to the cell surface and increased the level of CCR7 homo- as well as CXCR4/CCR7 hetero-oligomers without affecting CCR7 expression levels. Our findings indicate that HIV-evoked CXCR4 signaling promotes CCR7-dependent CD4 T cell migration by up-regulating CCR7 function, which is likely to be induced by increased formation of CCR7 homo- and CXCR4/CCR7 hetero-oligomers on the surface of CD4 T cells.  相似文献   

8.
A key feature of the immune system is its ability to induce protective immunity against pathogens while maintaining tolerance towards self and innocuous environmental antigens. Recent evidence suggests that by guiding cells to and within lymphoid organs, CC-chemokine receptor 7 (CCR7) essentially contributes to both immunity and tolerance. This receptor is involved in organizing thymic architecture and function, lymph-node homing of naive and regulatory T cells via high endothelial venules, as well as steady state and inflammation-induced lymph-node-bound migration of dendritic cells via afferent lymphatics. Here, we focus on the cellular and molecular mechanisms that enable CCR7 and its two ligands, CCL19 and CCL21, to balance immunity and tolerance.  相似文献   

9.
CCR7 directs the migration of thymocytes into the thymic medulla   总被引:9,自引:0,他引:9  
Developing thymocytes migrate from the cortex to the medulla of the thymus as a consequence of positive selection. This migration is likely to be essential for tolerance because it allows the developing cells to move into an environment that is optimal for negative selection. Guidance mechanisms that draw positively selected thymocytes into the medulla have not been clarified, but several studies have implicated chemokines in the process. CCR7, the receptor for the medullary chemokines CCL19 and CCL21, is induced on thymocytes during their positive selection. In this study we show that premature expression of CCR7 repositions CD4(+)CD8(+) double-positive cells into the medulla of transgenic mice. This repositioning of the thymocytes is accompanied by impairment of their development. The data show the involvement of CCR7 in medullary migration and emphasize the importance of proper thymocyte positioning for efficient T cell development.  相似文献   

10.
In hepatitis C virus (HCV) infection the immune response is ineffective, leading to chronic hepatitis and liver damage. Primed CD8 T cells are critical for antiviral immunity and subsets of circulating CD8 T cells have been defined in blood but these do not necessarily reflect the clonality or differentiation of cells within tissue. Current models divide primed CD8 T cells into effector and memory cells, further subdivided into central memory (CCR7+, L-selectin+), recirculating through lymphoid tissues and effector memory (CCR7-, L-selectin-) mediating immune response in peripheral organs. We characterized CD8 T cells derived from organ donors and patients with end-stage HCV infection to show that: 1) all liver-infiltrating CD8 T cells express high levels of CD11a, indicating the effective absence of naive CD8 T cells in the liver. 2) The liver contains distinct subsets of primed CD8+ T cells including a population of CCR7+ L-selectin- cells, which does not reflect current paradigms. The expression of CCR7 by these cells may be induced by the hepatic microenvironment to facilitate recirculation. 3) The CCR7 ligands CCL19 and CCL21 are present on lymphatic, vascular, and sinusoidal endothelium in normal liver and in patients with HCV infection. We suggest that the recirculation of CCR7+/L-selectin- intrahepatic CD8 T cells to regional lymphoid tissue will be facilitated by CCL19 and CCL21 on hepatic sinusoids and lymphatics. This centripetal pathway of migration would allow restimulation in lymph nodes, thereby promoting immune surveillance in normal liver and renewal of effector responses in chronic viral infection.  相似文献   

11.
CCR7 and its ligands, CCL19 and CCL21, are responsible for directing the migration of T cells and dendritic cells into lymph nodes, where these cells play an important role in the initiation of the immune response. Recently, we have shown that systemic application of CCL19-IgG is able to inhibit the colocalization of T cells and dendritic cells within secondary lymphoid organs, resulting in pronounced immunosuppression with reduced allograft rejection after organ transplantation. In this study, we demonstrate that the application of sustained high concentrations of either soluble or immobilized CCL19 and CCL21 elicits an inhibitory program in T cells. We show that these ligands specifically interfere with cell proliferation and IL-2 secretion of CCR7(+) cells. This could be demonstrated for human and murine T cells and was valid for both CD4(+) and CD8(+) T cells. In contrast, CCL19 had no inhibitory effect on T cells from CCR7 knockout mice, but CCR7(-/-) T cells showed a proliferative response upon TCR-stimulation similar to that of CCL19-treated wild-type cells. Furthermore, the inhibition of proliferation is associated with delayed degradation of the cyclin-dependent kinase (CDK) inhibitor p27(Kip1) and the down-regulation of CDK1. This shows that CCR7 signaling is linked to cell cycle control and that sustained engagement of CCR7, either by high concentrations of soluble ligands or by high density of immobilized ligands, is capable of inducing cell cycle arrest in TCR-stimulated cells. Thus, CCR7, a chemokine receptor that has been demonstrated to play an essential role during activation of the immune response, is also competent to directly inhibit T cell proliferation.  相似文献   

12.
Internalization of ligand bound G protein-coupled receptors, an important cellular function that mediates receptor desensitization, takes place via distinct pathways, which are often unique for each receptor. The C-C chemokine receptor (CCR7) G protein-coupled receptor is expressed on naive T cells, dendritic cells, and NK cells and has two endogenous ligands, CCL19 and CCL21. Following binding of CCL21, 21 +/- 4% of CCR7 is internalized in the HuT 78 human T cell lymphoma line, while 76 +/- 8% of CCR7 is internalized upon binding to CCL19. To determine whether arrestins mediated differential internalization of CCR7/CCL19 vs CCR7/CCL21, we used small interfering RNA (siRNA) to knock down expression of arrestin 2 or arrestin 3 in HuT 78 cells. Independent of arrestin 2 or arrestin 3 expression, CCR7/CCL21 internalized. In contrast, following depletion of arrestin 3, CCR7/CCL19 failed to internalize. To examine the consequence of complete loss of both arrestin 2 and arrestin 3 on CCL19/CCR7 internalization, we examined CCR7 internalization in arrestin 2(-/-)/arrestin 3(-/-) murine embryonic fibroblasts. Only reconstitution with arrestin 3-GFP but not arrestin 2-GFP rescued internalization of CCR7/CCL19. Loss of arrestin 2 or arrestin 3 blocked migration to CCL19 but had no effect on migration to CCL21. Using immunofluorescence microscopy, we found that arrestins do not cluster at the membrane with CCR7 following ligand binding but cap with CCR7 during receptor internalization. These are the first studies that define a role for arrestin 3 in the internalization of a chemokine receptor following binding of one but not both endogenous ligands.  相似文献   

13.
The release of chemokines by intrinsic renal cells is an important mechanism for the regulation of leukocyte trafficking during renal inflammation. The expression of chemokine receptors by intrinsic renal cells such as mesangial cells (MC) suggests an expanded role for chemokine-chemokine receptor biology in local immunomodulation and potentially glomerular homeostasis. By immunohistochemistry we found the chemokine receptor CCR7 expressed in a mesangial pattern while the CCR7 ligand SLC/CCL21 showed a podocyte-specific expression. CCR7 expression was further characterized by RT-PCR, RNase protection assays, and FACS analysis of cultured human MC, and was found to be constitutively present. Real-time PCR of microdissected glomeruli confirmed the expression of SLC/CCL21. A functional role for CCR7 was demonstrated for human MC migration and proliferation. A protective effect of SLC/CCL21 was shown for MC survival in Fas Ab-induced apoptosis. Finally, "wound healing" was enhanced in the presence of SLC/CCL21 in an in vitro injury model. The constitutive glomerular expression of CCR7 and its ligand SLC/CCL21 in adjacent cell types of the human kidney suggests novel biological functions of this chemokine/chemokine receptor pair and a potential role in processes involved in glomerular homeostasis and regeneration.  相似文献   

14.
Chemokines constitute a group of over 40 secreted peptides that are important for the control of leukocyte migration both during homeostasis and inflammation. Recent studies have implicated the ligands CCL19 and CCL21 and their receptor, CCR7, in the specific migration of na?ve lymphocytes and mature dendritic cells to secondary lymphoid organs during immune homeostasis. However, the role that these molecules play during immune priming is not well understood. In this study, using CCL19((8-83)), a novel N-terminal truncation mutant, we have investigated the role of CCL19 in a primary allogeneic immune response, a response of particular relevance to transplant rejection. This antagonist specifically inhibited wild type CCL19-induced chemotaxis and intracellular calcium mobilization without affecting that of CCL21. The treatment of mice with CCL19((8-83)) did not globally inhibit the recruitment of cells into lymph nodes; however, it inhibited the generation of cytotoxic T lymphocytes toward allogeneic dendritic cells. This is the first evidence that CCL19 plays a role in immune priming.  相似文献   

15.
Although the spleen plays an important role in host defense against infection, the mechanism underlying the migration of the innate immune cells, plasmacytoid dendritic cells (pDCs), into the spleen remains ill defined. In this article, we report that pDCs constitutively migrate into the splenic white pulp (WP) in a manner dependent on the chemokine receptors CCR7 and CXCR4. In CCR7-deficient mice and CCR7 ligand-deficient mice, compared with wild-type (WT) mice, substantially fewer pDCs were found in the periarteriolar lymphoid sheath of the splenic WP under steady-state conditions. In addition, the migration of adoptively transferred CCR7-deficient pDCs into the WP was significantly worse than that of WT pDCs, supporting the idea that pDC trafficking to the splenic WP requires CCR7 signaling. WT pDCs responded to a CCR7 ligand with modest chemotaxis and ICAM-1 binding in vitro, and priming with the CCR7 ligand enabled the pDCs to migrate efficiently toward low concentrations of CXCL12 in a CXCR4-dependent manner, raising the possibility that CCR7 signaling enhances CXCR4-mediated pDC migration. In agreement with this hypothesis, CCL21 and CXCL12 were colocalized on fibroblastic reticular cells in the T cell zone and in the marginal zone bridging channels, through which pDCs appeared to enter the WP. Furthermore, functional blockage of CCR7 and CXCR4 abrogated pDC trafficking into the WP. Collectively, these results strongly suggest that pDCs employ both CCR7 and CXCR4 as critical chemokine receptors to migrate into the WP under steady-state conditions.  相似文献   

16.
The chemokine receptor CCR7 and its ligands CCL19 and CCL21 control a diverse array of migratory events in adaptive immune function. Most prominently, CCR7 promotes homing of T cells and DCs to T cell areas of lymphoid tissues where T cell priming occurs. However, CCR7 and its ligands also contribute to a multitude of adaptive immune functions including thymocyte development, secondary lymphoid organogenesis, high affinity antibody responses, regulatory and memory T cell function, and lymphocyte egress from tissues. In this survey, we summarise the role of CCR7 in adaptive immunity and describe recent progress in understanding how this axis is regulated. In particular we highlight CCX-CKR, which scavenges both CCR7 ligands, and discuss its emerging significance in the immune system.  相似文献   

17.
The CC chemokine receptor 7 (CCR7) and cognate CCR7 ligands, CCL19 and CCL21, help establish microenvironments in lymphoid tissue that can facilitate encounters between naive T cells and mature dendritic cells (DCs). This study was conducted to determine if CCR7 ligands can augment the immunogenicity of a DNA vaccine that expresses glycoprotein B (gB) of the pseudorabies virus (PrV). The genetic co-transfer of CCR7 ligands along with a PrV DNA vaccine increased the levels of serum PrV-specific immunoglobulin (Ig) G by 2- to 2.5-fold. In addition, the level of PrV-specific IgG2a isotype was significantly enhanced by co-injection of CCR7 ligand DNA, which indicates that CCR7 ligand biases the humoral immunity toward the Th1-type pattern. The co-injection of CCR7 ligand DNA consistently enhanced the level of Th1-type cytokines (IL-2 and IFN-gamma) produced by stimulated immune cells when compared with a group that was vaccinated with the PrV DNA vaccine. Also, the genetic co-transfer of CCR7 ligand DNAs with PrV DNA vaccine provided prolonged survival against a virulent challenge by PrV. Moreover, the co-administration of CCR7 ligand DNA increased the number of mature DCs into the secondary lymphoid tissues, which appeared to enhance the proliferation of PrV-immune CD4(+) T cells. Taken together, these findings indicate that CCR7 ligands are an attractive adjuvant for a PrV DNA vaccine that can offer protective immunity against the PrV.  相似文献   

18.
Chemokines and their receptors fulfill specialized roles in inflammation and under homeostatic conditions. CCR7 and its ligands, CCL19 and CCL21, are involved in lymphocyte recirculation through secondary lymphoid organs and additionally navigate lymphocytes into distinct tissue compartments. The role of CCR7 in the migration of polarized T effector/memory cell subsets in vivo is still poorly understood. We therefore analyzed murine and human CD4(+) cytokine-producing cells developed in vivo for their chemotactic reactivity to CCR7 ligands. The responses of cells producing cytokines, such as IFN-gamma, IL-4, and IL-10, as well as of subsets defined by memory or activation markers were comparable to that of naive CD4(+) cells, with slightly lower reactivity in cells expressing IL-10 or CD69. This indicates that CCR7 ligands are able to attract naive as well as the vast majority of activated and effector/memory T cell stages. Chemotactic reactivity of these cells toward CCL21 was absent in CCR7-deficient cells, proving that effector cells do not use alternative receptors for this chemokine. Th1 cells generated from CCR7(-/-) mice failed to enter lymph nodes and Peyer's patches, but did enter a site of inflammation. These findings indicate that CD4(+) cells producing effector cytokines upon stimulation retain the capacity to recirculate through lymphoid tissues via CCR7.  相似文献   

19.
Dendritic cell (DC) migration from the site of infection to the site of T-cell priming is a crucial event in the generation of antiviral T-cell responses. Here we present to our knowledge the first functional evidence that human cytomegalovirus (HCMV) blocks the migration of infected monocyte-derived DCs toward lymphoid chemokines CCL19 and CCL21. DC migration is blocked by viral impairment of the chemokine receptor switch at the level of the expression of CCR7 molecules. The inhibition occurs with immediate-early-early kinetics, and viral interference with NF-kappaB signaling is likely to be at least partially responsible for the lack of CCR7 expression. DCs which migrate from the infected cultures are HCMV antigen negative, and consequently they do not stimulate HCMV-specific CD8(+) T cells, while CD4(+)-T-cell activation is not impaired. Although CD8(+) T cells can also be activated by alternative antigen presentation mechanisms, the spatial segregation of naive T cells and infected DCs seems a potent mechanism of delaying the generation of primary CD8(+)-T-cell responses and aiding early viral spread.  相似文献   

20.
The trafficking of effector cells to sites of infection is crucial for antiviral responses. However, the mechanisms of recruitment of the interferon-γ-producing and cytotoxic CD56(+) T cells are poorly understood. Human mast cells are sentinel cells found in the skin and airway and produce selected proinflammatory mediators in response to multiple pathogen-associated signals. The role of human mast cell-derived chemokines in T-cell recruitment to virus infection was examined. Supernatants from primary human cord blood-derived mast cells (CBMCs) infected with mammalian reovirus were examined for chemokine production and utilized in chemotaxis assays. Virus-infected CBMCs produced several chemokines, including CCL3, CCL4, and CCL5. Supernatants from reovirus-infected CBMCs selectively induced the chemotaxis of CD8(+) T cells (10±1%) and CD3(+)CD56(+) T cells (19±5%). CD56(+) T-cell migration was inhibited by pertussis toxin (65±9%) and met-RANTES (56±7%), a CCR1/CCR5 antagonist. CD56(+) T cells expressed CCR5, but little CCR1. The depletion of CCL3, CCL4, and CCL5 from reovirus-infected CBMC supernatants significantly (41±10%) inhibited CD56(+) T-cell chemotaxis. This study demonstrates a novel role for mast cells and CCR5 in CD56(+) T-cell trafficking and suggests that human mast cells enhance immunity to viruses through the selective recruitment of cytotoxic effector cells to virus infection sites. These findings could be exploited to enhance local T-cell responses in chronic viral infection and malignancies at mast cell-rich sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号