首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Differential staining of sister chromatids with Giemsa after BrdU incorporation into DNA was performed in Allium cepa L. chromosomes. A treatment solution containing 10–7 M FdU, 10–4 M BrdU and 10–6 M Urd was found to ensure BrdU incorporation without affecting cell cycle duration. After several procedures before staining the slides with Giemsa had been tested, treatment with the fluorochrome compound 33258 Hoechst, exposure to UV light and heating at 55° C in 0.5×SSC, were found to be essential for good differentiation. The distribution of SCEs per chromosome agrees with the expected Poisson distribution. The mean value of SCEs per chromosome occurring when cells were exposed to the treatment solution for two consecutive rounds of replication (=5.5) was double the mean value observed when cells were exposed to the same treatment for only one round of replication (=2.8). SCEs were found to occur more frequently in those chromosome regions corresponding neither to C-bands nor to late replicating DNA-rich regions. Finally, the occurrence of SCEs involving less than the width of a chromatid is discussed.  相似文献   

2.
We measured the frequency of sister chromatid exchanges (SCEs) in human and mouse peripheral lymphocytes using doses of bromodeoxyuridine (BrdU) ranging from 30 nM to 100 microM (human) and from 10 nM to 10 microM (mouse). Heparinized peripheral blood was obtained from five healthy nonsmokers and from six C57B1/6 male mice. The blood was stimulated with PHA (human) or lipopolysaccharide (LPS, mouse) and grown for the first of two cell cycles in BrdU. Metaphase chromosomes were denatured and exposed to a monoclonal antibody reactive to single-stranded DNA containing BrdU. A second antibody was used to label the first antibody with fluorescein, and propidium iodide was used as a counterstain. Second-division metaphases were thus differentially stained red to indicate DNA content and yellow-green to indicate the presence of BrdU. The results indicate that the baseline SCE frequency in human and mouse peripheral lymphocytes is 3.6 and 2.4 SCEs per cell per generation, and that in the human these frequencies are invariant at the lowest BrdU levels. This suggests that SCEs are an integral part of DNA replication, even in the absence of agents known to induce SCEs. The distribution of SCEs per chromosome was analyzed and found to be Poisson-distributed in all 24 murine cultures and in 25 of 36 human cultures. The distribution of SCEs per chromosome may be due to either species-specific chromosome packaging or to karyotypic differences between the species.  相似文献   

3.
The frequency of sister chromatid exchanges (SCEs) induced by mitomycin C (MMC) in Indian Muntjac chromosomes was determined by the fluorescence plus Giemsa (FPG) technique. Using scanning cytophotometry the relative DNA content of each chromosome was measured with and without acid or alkali pretreatments for C-banding. During acid and alkali treatments, euchromatin lost 20 to 30% of its DNA, while heterochromatin lost less than 5%; an intermediate DNA loss was observed for the short arm of the X chromosome. After growth of cells in the presence of MMC during the first cycle and in the presence of bromodeoxyuridine (BrdU) during the first and second cycles of DNA replication, SCEs in the euchromatin were proportional to DNA content. SCEs at the junctions between the neck of the X chromosome and the long and short arms occurred more frequently than expected. A threshold effect for the induction of SCEs was observed in regions resistant to DNA extraction by acid and alkali treatments (i.e., the neck and short arm of the X chromosome). At high concentrations of MMC, the frequency of SCE at each junction appears to plateau at 0.5.  相似文献   

4.
Inheriting a BRCA1 or BRCA2 gene mutation can cause a deficiency in repairing complex DNA damage. This step leads to genomic instability and probably contributes to an inherited predisposition to breast and ovarian cancer. Complex DNA damage has been viewed as an integral part of DNA replication before cell division. It causes temporary replication blocks, replication fork collapse, chromosome breaks and sister chromatid exchanges (SCEs). Chemical modification of DNA may also occur spontaneously as a byproduct of normal processes. Pathways containing BRCA1 and BRCA2 gene products are essential to repair spontaneous complex DNA damage or to carry out SCEs if repair is not possible. This scenario creates a theoretical limit that effectively means there are spontaneous BRCA1/2-associated cancers that cannot be prevented or delayed. However, much evidence for high rates of spontaneous DNA mutation is based on measuring SCEs by using bromodeoxyuridine (BrdU). Here we find that the routine use of BrdU has probably led to overestimating spontaneous DNA damage and SCEs because BrdU is itself a mutagen. Evidence based on spontaneous chromosome abnormalities and epidemiologic data indicates strong effects from exogenous mutagens and does not support the inevitability of cancer in all BRCA1/2 mutation carriers. We therefore remove a theoretical argument that has limited efforts to develop chemoprevention strategies to delay or prevent cancers in BRCA1/2 mutation carriers.  相似文献   

5.
The induction of sister chromatid exchanges (SCEs) inVicia faba root-tip cells after short-term (2 h) and long-term (24 h) treatments with alkylating agents (N-methyl-N-nitrosourea, ethyl methanesulphonate) and maleic hydrazide was studied. The primary roots were treated with mutagens before or after 5-bromodeoxyuridine (BrdU) incorporation into DNA and the influence of mutagen application on SCE induction in the cells with non- and BrdU-substituted chromosomal DNA. On the contrary, application of maleic hydrazide after the incorporation of BrdU into DNA strongly increased the rate of SCEs. The lowest limit concentrations of mutagens capable of significantly increasing SCE frequency in the cells with non-substituted DNA after the long-term treatment were estimated.  相似文献   

6.
C. Gutiérrez  A. Calvo 《Chromosoma》1981,83(5):685-695
In the present paper we have developed a new rationale and an experimental schedule to approximate the frequency of SCEs which occur independently of BrdU incorporation, namely, the baseline frequency of SCEs. The method used includes the analysis of SCE yields in second and third division chromosomes after BrdU-substitution for 1, 2, and/or 3 successive replication rounds in the presence of this thymidine analogue, leading to a set of ten different experimental results. As a result of formulating various mathematical equations and applying them to the data, an accurate estimation of the frequency of baseline (BrdU-independent) and BrdU-induced SCEs, can be made, thus avoiding the difficulties inherent in the current extrapolation methods. The conclusions are that 1) SCEs seem to be formed after DNA synthesis (by exchanging post-replicative DNA portions), but, obviously, very near to the replication fork and 2) that under our experimental conditions about 0.065 SCEs per picogram of DNA per cell cycle occur as a consequence of chromosome replication, this frequency being increased by BrdU-substitution. The methodology seems to be reliable enough to be used in other species and systems in order to compare baseline SCE frequencies.Abbreviations SCEs sister-chromatid exchanges - BrdU(BrdUrd) 5-bromodeoxyuridine - dTh(dThd) thymidine - 3H-dTh(3H-dThd) tritiated thymidine - FdU(FdUrd) 5-fluorodeoxyuridine - Urd uridine - FPG fluorescent plus Giemsa  相似文献   

7.
The frequency of sister chromatid exchanges (SCEs) was determined for the chromosomes (except Y2) of the Indian muntjac stained by the fluorescence plus Giemsa (FPG) or harlequin chromosome technique. The relative DNA content of each of the chromosomes was also measured by scanning cytophotometry. After growth in bromodeoxyuridine (BrdU) for two DNA replication cycles. SCEs were distributed according to the Poisson formula in each of the chromosomes. The frequency of SCE in each of the chromosomes was directly proportional to DNA content. A more detailed analysis of SCEs was performed for the three morphologically distinguishable regions of the X-autosome composite chromosome. The SCE frequency in the euchromatic long arm and short arm were proportional to the amount of DNA. In contrast, the constitutive heterochromatin in the neck of this chromosome contained far fewer SCEs than expected on the basis of the amount of DNA in this region. A high frequency of SCE, however, was observed at the point junctions between the euchromatin and heterochromatin.  相似文献   

8.
Chromosome aberrations and sister-chromatid exchanges (SCEs) were examined in 4 ataxia telangiectasia (AT)-derived B-lymphoblastoid cell lines (B-LCLs) (AT-S, AT-SHI, AT-SHI B13A and AsHa) following treatments with neocarzinostatin (NCS) and bleomycin. All of these cell lines exhibited extremely high frequencies of chromosome aberrations with the NCS and bleomycin treatments. Among them, AsHa, a mutant B-LCL originating from an AT patient, showed high frequencies of SCEs under high bromodeoxyuridine (BrdU) concentrations retaining hypersensitivity to NCS and bleomycin with regard to chromosome aberrations. A clear BrdU dose-dependent increase in SCEs (9.85 SCEs/cell at 40 μg/ml, 36.65 SCEs/cell at 100 μg/ml on average) in this mutant was observed. When AsHa mutant cells were treated with NCS (0.02 μg/ml) and/or bleomycin (5.0 μg/ml) under 40 μg/ml BrdU (minimum BrdU concentration for sister-chromatid differential staining), SCE levels increased from 9.85 (baseline level) to 21.1 with NCS and 20.5 with bleomycin, in a dose-dependent manner. These observations indicate that AsHa is a unique AT-derived mutant cell clone with a high SCE character retaining the original hypersensitivity to bleomycin and NCS.  相似文献   

9.
When the thymidine analog BrdU was incorporated into the DNA of a fibroblast cell line derived from the cactus mouse Peromyscus eremicus, a chromosome region with an increased frequency of gaps and breaks was observed. Nearly a third of the chromatid aberrations found at this site were associated with a sister-chromatid exchange (SCE) although this chromosome region showed no increase in sister-chromatid exchange in the absence of a gap or break. SCEs were significantly decreased in the remainder of the chromosome arm when it contained an aberration at the unstable site. This BrdU-sensitive region, unlike others reported, was found not to be late-replicating. — In this chromosome complement, the frequency of sisterchromatid exchange in C-band positive regions was significantly lower than that in C-band negative regions.  相似文献   

10.
The fluorescence-plus-Giemsa (FPG) technique for analysis of sister chromatid exchange (SCE) is widely used as an assay for mutagenic carcinogens. There is very little information, however, on whether incorporation of the bromodeoxyuridine (BrdU) necessary for visualization of SCEs affects the sensitivity of the SCE test system to different chemical agents. We have investigated the effect of BrdU incorporation on SCE induction by labeling cells with BrdU for either the first cell cycle or the first and second cell cycles. The cells were then treated with bleomycin, which produces DNA strand breakage; proflavine, which intercalates into DNA; mitomycin C, which produces monoadducts and DNA crosslinks; or aphidicolin, which inhibits DNA polymerase . Chemicals were added before BrdU exposure or during the first, second, or both cell cycles. Only mitomycin C, which induces long-lived lesions, elevated the SCE frequency when cells were treated before BrdU labeling. When bleomycin, proflavine, or mitomycin C was present concurrently with BrdU, the frequency of SCEs was increased independently of the BrdU labeling protocol. Aphidicolin, on the other hand, induced more SCEs when present for the second cell cycle, when DNA replicates on a template DNA strand containing BrdU. We also examined the induction of SCEs in the first cell cycle (twins) and in the second cell cycle (singles) after continuous treatment of cells with BrdU and the test chemicals. Only aphidicolin increased SCE frequency in the second cell cycle. These results indicate that aphidicolin, but not bleomycin, proflavine, or mitomycin C, affects BrdU-substituted DNA and unsubstituted DNA differently. This type of interaction should be taken into consideration when the SCE test is used as an assay system.  相似文献   

11.
From an X-irradiated human B-lymphoblastoid cell line (CCRF-SB), we have isolated a unique mutant clone (CCRF-SB-T1) which reveals high frequencies of sister-chromatid exchanges (SCEs) and chromosomal fragilities in the C-band regions of chromosomes Nos. 1, 9 and 16, when exposed to high concentrations of bromodeoxyuridine (BrdU). A clear BrdU dose-dependent increase of SCEs (9.6 SCEs/cell at 0.05 mM, 40 SCEs/cell at 0.37 mM on average) in this mutant was observed. Relative contributions of nucleoside and a thymidine (dT) analog of BrdU to high SCEs were studied, since an unusual SCE response to BrdU led us to suspect the significance of BrdU incorporation into DNA and dT pool disturbances. Addition of deoxycytidine (dC), dT or both dC and dT causes an increase of SCEs. On the other hand, deoxyadenosine (dA) and deoxyguanosine (dG) did not have significant effects on SCEs in SB-T1 cells. These results suggest that disturbances of pyrimidine-nucleotide synthesis, including gross imbalance of nucleotide pools, play a pivotal role in the high SCE induction of SB-T1 cells by BrdU.  相似文献   

12.
The frequency of sister chromatid exchanges (SCEs) has been determined for C band and non-C band regions of chromosomes of the kangaroo rat after staining with the fluorescence plus giemsa (FPG) technique. After one complete round of DNA synthesis in the presence of bromodeoxyuridine (BrdU) staining of the C band regions revealed simple or complex asymmetries between chromatids. After two complete rounds of DNA synthesis in the presence of BrdU harlequin chromosomes were observed. Analysis of the distribution of SCE in chromosomes at their 1st and 2nd mitosis showed that relatively few exchanges occur within C band regions, although the frequency of SCEs is high at the junction between C band and non-C band chromosome regions.  相似文献   

13.
Cells in third mitosis treated during the first cell cycle with 3H-TdR and during the next two cycles with BrdU (without 3H-TdR) show a typical pattern of chromosome differentiation which allows identification of sister chromatid exchanges occurring during the first (SCE1, second (SCE2) and third cycles (SCE3). Chromosomes labeled only with 3H-TdR had the most SCEs; those labeled only with BrdU, the second highest number; and those labeled with 3H-TdR plus BrdU, the fewest. Since BrdU and 3H-TdR are well known inducers of SCEs, the relatively low frequency of exchanges produced by the combined action of these two compounds is paradoxical. — It is assumed that SCEs are generated by the abnormal recombination of double-strand DNA breaks occurring at the junctions between completely and partially duplicated replicon clusters. Thus, agents that induce absolute blocks to DNA fork displacement will favor the appearance of SCEs because double-strand breaks have more time to occur at junctions. Conversely, agents that inhibit the initiation of replication will decrease the probability of SCEs. Ionizing radiation delays the onset of cluster replication. Therefore, in 3H-TdR plus BrdU-substituted chromosomes the radiation from tritium may inhibit the appearance of BrdU-induced SCEs. Since the inhibition does not exist in chromosomes substituted only with BrdU, the frequency of SCEs in these elements is higher than in double-substituted chromosomes. During the first cell cycle the onset of cluster replication is normal. However, the incorporation of 3H-TdR in the replication fork may enhance the appearance of double-strand breaks, thus inducing a high frequency of SCEs.  相似文献   

14.
The DNA lesions responsible for the formation of sister chromatid exchanges (SCEs) have been the object of research for a long time. SCEs can be visualized by growing cells for either two rounds of replication in the presence of 5-bromo-2'-deoxyuridine (BrdU) or for one round with BrdU and the next without. If BrdU is added after cells were treated with a DNA-damaging agent, the effect on SCEs can only be analyzed in the second post-treatment mitosis. If one wishes to analyze the first post-treatment mitosis, cells unifilarily labeled with BrdU must be treated. Due to the highly reactive bromine atom, BrdU interacts with such agents like ionizing and UV radiation enhancing the frequency of SCEs. However, its precise role in this process was difficult to assess for a long time, because no alternative technique existed that allowed differential staining of chromatids. We have recently developed a method to differentially label sister chromatids with biotin-16-2'-deoxyuridine-5'-triphosphate (biotin-dUTP) circumventing the disadvantage of BrdU. This technique was applied to study the SCEs induced by ionizing and UV radiation as well as by mitomycin C, DNaseI and AluI. This article is a review of the results and conclusions of our previous studies.  相似文献   

15.
5-Bromodeoxyuridine (BrdU)-induced sister chromatid exchanges (SCEs) are mainly determined during replication on a BrdU-substituted template. The BrdU, once incorporated, is rapidly excised as uracil (U), and the gap is repaired with the incorporation of BrdU from the medium, which leads to further repair. During the second S period in BrdU medium, this process continues as the strand acts as template. Experiments suggest that 3-amino-benzamide (3AB) delays the ligation of the gaps formed after U excision, resulting in enhanced SCE levels during the second cycle of BrdU incorporation. When normal templates of G1 cells are treated before BrdU introduction with methyl methanesulphonate (MMS), 3AB in the first cycle doubles the MMS-induced SCEs but has no effect on them during the second cycle. When the BrdU-substituted template is treated with MMS in G1 of the second cycle, 3AB again doubles the SCEs due to MMS and also enhances the SCEs resulting from delays in ligation of the gaps following U excision in the BrdU-substituted template. The repair processes of MMS lesions that are sensitive to 3AB and lead to SCEs take place rapidly, while the repair process of late repairing lesions that lead to SCEs appear to be insensitive to 3AB. A model for SCE induction is proposed involving a single-strand break or gap as the initial requirement for SCE initiation at the replicating fork. Subsequent events represent natural stages in the repair process of a lesion, ensuring replication without loss of genetic information. G1 cells treated with methylnitrosourea (MNU) and grown immediately in BrdU medium rapidly lose the O6-methylguanine from their DNA and the rate of loss is BrdU-dose dependent. The rapid excision of the U lesions can explain the effect of BrdU concentration on SCE reduction following both MNU or MMS treatment.  相似文献   

16.
The magnitude of DNA modulation in rat 9L gliosarcoma cells after a brief exposure to bromodeoxyuridine (BrdU) was studied by assaying colony-forming efficiency (CFE) and the number of sister chromatid exchanges (SCEs) per metaphase. The CFE assay showed that a 1-hr exposure to BrdU, at concentrations ranging from 10 to 1000 microM, produced a maximum cell kill of 5%. After a 2-hr exposure to 20 microM BrdU, the surviving fraction was 0.99, and even at a BrdU concentration of 1000 microM, 77% of the 9L cells survived. Compared with control cultures, the relative number of SCEs per metaphase in treated cultures was increased after a 1-hr exposure to BrdU at concentrations of 100 microM or more and after a 2-hr exposure to concentrations of 20 microM or more; no increase was observed in cells treated for 30 min with BrdU at concentrations up to 1000 microM. When the treated cells were allowed to grow in BrdU-free growth medium, the number of SCEs per metaphase returned to the control level within 24 hr, even after exposure to BrdU at concentrations as high as 1000 microM. These results demonstrate that exposure to BrdU at concentrations of up to 1000 microM for 30 min, 100 microM for 1 hr, and 20 microM for 2 hr causes little modulation of DNA.  相似文献   

17.
In the present paper we have used a rationale based on the development of theoretical equations that define sister-chromatid exchange (SCE) frequencies as a function of two variables, namely the baseline (BrdU-independent) and the BrdU-dependent SCE frequencies. The experimental design includes the estimation of SCE frequencies in second division chromosomes when both cycles occurred in the presence of BrdU and when BrdU incubation took place only during the first cycle in a wide range of BrdU concentrations. The final SCE yields in second division chromosomes could be separated into three different components: (1) The BrdU-independent, ‘spontaneous’ or baseline SCEs, whose low but biologically significant frequency was calculated to be about 0.06 SCEs per pg of DNA; this figure could be similar for most of the cell types; (2) the BrdU-dependent SCEs whose frequency increases with BrdU dose, probably as a result of BrdU substitution for thymidine; (3) the BrdU-dependent SCEs as a consequence of other cellular factors such as disturbance of nucleotide pool sizes. At high BrdU concentrations (300 μM upward) the three components appear to have a significant value in the final SCE yield, whereas at lower BrdU doses the third component seems to be negligible.  相似文献   

18.
Abstract. The magnitude of DNA modulation in rat 9L gliosarcoma cells after a brief exposure to bromodeoxyuridine (BrdU) was studied by assaying colony-forming efficiency (CFE) and the number of sister chromatid exchanges (SCEs) per metaphase. The CFE assay showed that a 1-hr exposure to BrdU, at concentrations ranging from 10 to 1000 μ M, produced a maximum cell kill of 5%. After a 2-hr exposure to 20 μ M BrdU, the surviving fraction was 0.99, and even at a BrdU concentration of 1000 μ M, 77% of the 9L cells survived. Compared with control cultures, the relative number of SCEs per metaphase in treated cultures was increased after a 1-hr exposure to BrdU at concentrations of 100 μ M or more and after a 2-hr exposure to concentrations of 20 μ M or more; no increase was observed in cells treated for 30 min with BrdU at concentrations up to 1000 μ M. When the treated cells were allowed to grow in BrdU-free growth medium, the number of SCEs per metaphase returned to the control level within 24 hr, even after exposure to BrdU at concentrations as high as 1000 μ M. These results demonstrate that exposure to BrdU at concentrations of up to 1000 μ M for 30 min, 100 μ M for 1 hr, and 20 μ M for 2 hr causes little modulation of DNA.  相似文献   

19.
Frequency of sister chromatid exchanges (SCE) were recorded separately for different chromosomes from bone marrow cells of female mice of the two genetic strains (C3H/S and C57BL/6J). SCEs were evaluated following different doses of 5-bromo-2'-deoxyuridine (BrdU) as nine hourly i.p. injections. The SCE per cell increased with increasing BrdU doses which was slightly higher in C3H/S than in the C57BL/6J. SCEs per cell were variable at every treatment-strain combination, possibly reflecting the heterogeneous nature of the bone marrow cells. In general, there is a positive correlation between SCE per chromosome and the relative chromosome length. Total SCEs on one of the large chromosomes (most likely the X chromosome), however, are significantly higher than expected on the basis of relative length alone. Most of this increase is attributable to one of the homologues of this chromosome, which is not in synchrony with the rest of the chromosomes and may represent the late-replicating X. These results when viewed in the light of replication properties of the heterochromatinized X, suggest a direct involvement of DNA replication in SCE formation and may argue against the replication point as the sole site for the SCEs.  相似文献   

20.
The effect of cell fusion and deoxynucleosides (deoxyadenosine, dA; deoxyguanosine, dG; deoxycytidine, dC; thymidine, T) on sister-chromatid exchanges (SCEs) in Bloom syndrome (BS) was studied in two types of BrdU (bromodeoxyuridine)-sensitive and BrdU-resistant B-lymphoblastoid cell lines (LCLs) with respect to cellular proliferation in BrdU-labeled culture conditions. Cell fusion between BrdU-sensitive and BrdU-resistant BS B-LCLs did not exhibit complementation, although when any of the BS B-LCLs (retaining high SCE character) labeled with BrdU were fused with non-labeled normal cells, the hybrid cells had a normal level of SCE at the first mitosis after fusion. Deoxycytidine addition showed no effect on SCEs in normal cells but decreased SCEs in BS cells from the baseline level of 70 SCEs/cell to about 60 SCE/cell. Purine deoxyribonucleosides (dG and dA) caused a significant concentration-dependent increase in SCE frequency both in normal and BS cells. Although T caused a 2-fold increase in normal SCEs, it highly decreased BS SCE from 70 SCEs/cell to 35 SCEs/cell. FrdU did not greatly affect BS SCE in the presence of BrdU and T. These observations indicate strongly that BS cells may have a low thymidine pool compared with normal cells, which could account for a more efficient BrdU substitution in the DNA thus potentiating the template effect on SCE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号