首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: The 13 cell antigen receptor (BCR) is a multimeric protein complex consisting of an antigen recognition structure (membrane immunoglobulin) and two associated proteins, lg-alpha and Ig-beta It has been proposed that signalling through the BCR involves Ig-alpha and Ig-beta. Both of these proteins contain within their cytoplasmic domains an amino-acid motif that is present in a number of immune recognition receptors, including the BCR, T-cell antigen receptor and Fc receptor complexes. This motif, termed the antigen-receptor homology motif (ARH1), appears to have signal transduction ability. RESULTS: We now show that the presence of cytoplasmic regions containing the ARM motif from either Ig-alpha or Ig-beta is sufficient to confer signalling capability on an otherwise non-functional fusion protein. Both Ig-alpha- and Ig-beta-containing chimeras induced, in an apparently redundant fashion, signalling events seen upon membrane immunoglobulin crosslinking, including tyrosine phosphorylation of particular proteins, phosphoinositicle breakdown and calcium mobilization. Furthermore, crosslinking of the chimeras resulted in tyrosine phosphorylation of the Ig-alpha and Tg-beta tails and their association with the tyrosine kinases PTK72, p53/56(lyn) and p59(fyn). CONCLUSIONS: These observations indicate that Ig-alpha and Ig-beta are responsible for coupling membrane immunoglobulin to intracellular signalling components. Moreover, they demonstrate that a number of tyrosine kinases associate directly with the cytoplasmic domains of both Ig-alpha and Ig-beta. Stimulation of the chimeras, which results in tyrosine phosphorylation of the ig-alpha and Ig-beta tails, is a prerequisite for some of these associations. The implications of these findings for the mechanism by which the BCR initiates the signalling reactions are discussed.  相似文献   

2.
E Katz  E J Wolffe    B Moss 《Journal of virology》1997,71(4):3178-3187
The outer envelope of the extracellular form of vaccinia virus (EEV) is derived from the Golgi membrane and contains at least six viral proteins. Transfection studies indicated that the EEV protein encoded by the B5R gene associates with Golgi membranes when synthesized in the absence of other viral products. A domain swapping strategy was then used to investigate the possibility that the B5R protein contains an EEV targeting signal. We constructed chimeric genes encoding the human immunodeficiency virus (HIV) type 1 glycoprotein with the cytoplasmic and transmembrane domains replaced by the corresponding 42-amino-acid C-terminal segment of the B5R protein. Recombinant vaccinia viruses that stably express a chimeric B5R-HIV protein or a control HIV envelope protein with the original cytoplasmic and transmembrane domains were isolated. Cells infected with recombinant vaccinia viruses that expressed either the unmodified or the chimeric HIV envelope protein formed syncytia with cells expressing the CD4 receptor for HIV. However, biochemical and microscopic studies demonstrated that the HIV envelope proteins with the B5R cytoplasmic and transmembrane domains were preferentially targeted to the EEV. These data are consistent with the presence of EEV localization signals in the cytoplasmic and transmembrane domains of the B5R protein.  相似文献   

3.
In mammalian cells and yeasts, amino acid motifs in the cytoplasmic tails of transmembrane proteins play a prominent role in protein targeting in the early secretory pathway by mediating localization to or rapid export from the endoplasmic reticulum (ER). However, early sorting events are poorly characterized in protozoan parasites. Here, we show that a C-terminal QKTT sequence mediates the ER localization of chimeric reporter constructs consisting of bacterial alkaline phosphatase (BAP) fused to the transmembrane domain (TMD) and truncated cytoplasmic tail of the human low-density lipoprotein receptor (LDL) receptor or of murine lysosome-associated membrane protein (lamp-1) in Toxoplasma gondii . The cytoplasmic tail of human TGN46 also determines ER localization of BAP chimeras in the parasite, but this can be overcome by the addition at the C-terminus of the tail of an acidic patch, which functions as an ER export signal in conjunction with an upstream tyrosine motif. These results suggest that COPI-dependent ER retrieval and COPII-dependent export mechanisms mediated by KKXX and DXE motifs of mammalian cells are generally conserved in T. gondii . In contrast, the failure of the QKTT motif and TGN46 cytoplasmic tail to induce steady-state ER localization of vesicular stomatitis virus glycoprotein (VSVG) chimeras in HeLa and NRK cells indicates that significant differences in early secretory trafficking also exist.  相似文献   

4.
The macrophage LDL receptor and LDL receptor-related protein (LRP, CD91) mediate the phagocytic-like uptake of atherogenic lipoproteins and apoptotic cells, yet the structural basis of their phagocytic functions is not known. To address this issue, we transfected macrophages with chimeric proteins containing the cytoplasmic tails and transmembrane regions of the LDL receptor or LRP and the ectodomain of CD2, which can bind non-opsonized sheep red blood cells (SRBCs). Macrophages expressing receptors containing the LDL receptor domains were able to bind but not internalize SRBCs. In contrast, macrophages expressing receptors containing the cytoplasmic tail of LRP were able to bind and internalize SRBCs. Chimeras in which the LRP cytoplasmic tail was mutated in two di-leucine motifs and a tyrosine in an NPXYXXL motif were able to endocytose anti-CD2 antibody and bind SRBCs, but SRBC phagocytosis was decreased by 70%. Thus, the phagocytic-like functions of LRP, but not those of the LDL receptor, can be explained by the ability of the LRP cytoplasmic tail to trigger phagocytosis. These findings have important implications for atherogenesis and apoptotic cell clearance and for a fundamental cell biological understanding of how the LDL receptor and LRP function in internalization processes.  相似文献   

5.
Coronavirus budding at the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) requires accumulation of the viral envelope proteins at this point in the secretory pathway. Here we demonstrate that the spike (S) protein from the group 3 coronavirus infectious bronchitis virus (IBV) contains a canonical dilysine endoplasmic reticulum retrieval signal (-KKXX-COOH) in its cytoplasmic tail. This signal can retain a chimeric reporter protein in the ERGIC and when mutated allows transport of the full-length S protein as well as the chimera to the plasma membrane. Interestingly, the IBV S protein also contains a tyrosine-based endocytosis signal in its cytoplasmic tail, suggesting that any S protein that escapes the ERGIC will be rapidly endocytosed when it reaches the plasma membrane. We also identified a novel dibasic motif (-KXHXX-COOH) in the cytoplasmic tails of S proteins from group 1 coronaviruses and from the newly identified coronavirus implicated in severe acute respiratory syndrome. This dibasic motif also retained a reporter protein in the ERGIC, similar to the dilysine motif in IBV S. The cytoplasmic tails of S proteins from group 2 coronaviruses lack an intracellular localization signal. The inherent differences in S-protein trafficking could point to interesting variations in pathogenesis of coronaviruses, since increased levels of surface S protein could promote syncytium formation and direct cell-to-cell spread of the infection.  相似文献   

6.
Lysosomal acid phosphatase (LAP) is synthesized as a transmembrane protein with a short carboxy-terminal cytoplasmic tail of 19 amino acids, and processed to a soluble protein after transport to lysosomes. Deletion of the membrane spanning domain and the cytoplasmic tail converts LAP to a secretory protein, while deletion of the cytoplasmic tail as well as substitution of tyrosine 413 within the cytoplasmic tail against phenylalanine causes accumulation at the cell surface. A chimeric polypeptide, in which the cytoplasmic tail of LAP was fused to the ectoplasmic and transmembrane domain of hemagglutinin is rapidly internalized and tyrosine 413 of the LAP tail is essential for internalization of the fusion protein. A chimeric polypeptide, in which the membrane spanning domain and cytoplasmic tail of LAP are fused to the ectoplasmic domain of the Mr 46 kd mannose 6-phosphate receptor, is rapidly transported to lysosomes, whereas wild type receptor is not transported to lysosomes. We conclude that a tyrosine containing endocytosis signal in the cytoplasmic tail of LAP is necessary and sufficient for targeting to lysosomes.  相似文献   

7.
Membrane-bound immunoglobulin (mIg) is the antigen receptor on B lymphocytes mediating early events in antigen presentation and signal transduction. Wild-type human mIgM constructs transfected into the murine B-cell lymphoma A20 are expressed as transmembrane proteins with antigen presentation and signaling functions comparable to the endogenous mIgG2A; the transfected wild-type mIgM is internalized rapidly after anti-Ig cross-linking. Transfected constructs lacking the normal three-amino acid cytoplasmic tail are expressed exclusively as phosphatidylinositol-linked proteins, lack both antigen presentation and signal transduction functions, and are internalized slowly following anti-Ig binding. The molecular mass of the cytoplasmic tail-deleted phosphatidylinositol-linked Ig molecule is consistent with cleavage of the transmembrane residues during processing. Cytoplasmic domains may therefore regulate the mode of expression of membrane proteins and thereby influence their functional capabilities.  相似文献   

8.
The cytoplasmic domains of the transducing subunits associated with B and T cell antigen receptors contain a common amino acid motif consisting of two precisely spaced Tyr-X-X-Leu/Ile sequences (where X corresponds to a variable residue). Expression of a single copy of this motif suffices to initiate B or T cell activation. The bovine leukaemia virus (BLV) is a B cell lymphotropic retrovirus which causes a non-neoplasic proliferation of B cells. The cytoplasmic domain of the BLV transmembrane envelope glycoprotein, gp30, possesses two overlapping copies of the Tyr-X-X-Leu/Ile-containing motif which could participate in the induction of B cell activation. Similarly, the N-terminal cytoplasmic domain of the latent membrane protein 2A (LMP2A) of the Epstein-Barr virus (EBV) contains a single copy of the Tyr-X-X-Leu/Ile-containing motif which could play a critical role in B cell transformation. To determine whether these two virus-encoded cytoplasmic domains are endowed with signalling functions, we constructed chimeric proteins by replacing the cytoplasmic tail of CD8-alpha with that of either BLV gp30 or EBV LMP2A. We show here that, once separately expressed in B or T cell lines, these chimeras are capable of triggering both calcium responses and cytokine production when cross-linked with an antibody to CD8-alpha. Furthermore, using site-directed mutagenesis, we demonstrated unequivocally that this signalling function may be accounted for by the Tyr-X-X-Leu/Ile motifs they contain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Nipah virus (NiV), a highly pathogenic member of the family Paramyxoviridae, encodes the surface glycoproteins F and G. Since internalization of the NiV envelope proteins from the cell surface might be of functional importance for viral pathogenesis either by regulating cytopathogenicity or by modulating recognition of infected cells by the immune system, we analyzed the endocytosis of the NiV F and G proteins. Interestingly, we found both glycoproteins to be internalized in infected and transfected cells. As endocytosis is normally mediated by tyrosine- or dileucine-dependent signals in the cytoplasmic tails of transmembrane proteins, all potential internalization signals in the NiV glycoproteins were mutated. Whereas the G protein appeared to be constitutively internalized with the bulk flow during membrane turnover, uptake of the F protein was found to be signal mediated. F endocytosis clearly depended on a membrane-proximal YXXPhi motif and was found to be of functional importance for the biological activity of the protein.  相似文献   

10.
Expression of the UL16 glycoprotein leads to down-regulation of NKG2D-ligands from the surface of the human cytomegalovirus (HCMV)-infected cell. The molecular elements responsible for UL16 trafficking and intracellular localization were investigated by preparing various chimeric proteins and mutants, using CD8 as a reporter molecule. A YQRL motif, present in UL16's cytoplasmic tail was functional for internalization, but the presence of the transmembrane domain modified the fate of the molecule after internalization. Various elements of the transmembrane domain that affected the trafficking of the protein were identified; however, their influence was modified in turn by the presence of the cytoplasmic tail of UL16. Strikingly, the extremely slow maturation rate of the native viral protein was only reproduced by the chimera that contained both transmembrane and cytoplasmic regions of UL16. These findings add data to a topic of increasing interest and importance: the role of the transmembrane domain of a protein in controlling its intracellular trafficking. In addition, they provide a new insight into the mechanism of action of the viral immunoevasin UL16.  相似文献   

11.
It was previously reported that truncation or proteolytic removal of the C-terminal 16 amino acids (the R peptide) from the cytoplasmic tail of the murine leukemia virus (MuLV) envelope protein greatly increases its fusion activity. In this study, to investigate the specificity of the effect of the R peptide on the fusion activity of viral envelope proteins, we expressed simian immunodeficiency virus (SIV)-MuLV chimeric proteins in which the entire cytoplasmic tail of the SIV envelope protein was replaced by either the full-length MuLV cytoplasmic tail or a truncated MuLV cytoplasmic tail with the R peptide deleted. Extensive fusion of CD4-positive cells with the chimeric protein containing a truncated MuLV cytoplasmic tail was observed. In contrast, no cell fusion activity was found for the chimeric protein with a full-length MuLV cytoplasmic tail. We constructed another SIV-MuLV chimeric protein in which the MuLV R peptide was added to an SIV envelope protein cytoplasmic tail 17 amino acids from its membrane-spanning domain. No fusion activity was observed within this construct, while the corresponding truncated SIV envelope protein lacking the R peptide showed extensive fusion activity. No significant difference in the transport or surface expression was observed among the various SIV-MuLV chimeric proteins and the truncated SIV envelope protein. Our results thus demonstrate that the MuLV R peptide has profound inhibitory effects on virus-induced cell fusion, not only with MuLV but also in a distantly related retroviral envelope protein which utilizes a different receptor and fuses different cell types.  相似文献   

12.
Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a distinct open reading frame called K15 at a position equivalent to the gene encoding LMP2A of Epstein-Barr virus (EBV). K15 isolates from body cavity-based lymphoma (BCBL) cells exhibited a dramatic sequence variation and a complex splicing pattern. However, all K15 alleles are organized similarly with the potential SH2 and SH3 binding motifs in their cytoplasmic regions. Northern blot analysis showed that K15 was weakly expressed in latently infected BCBL-1 cells, and the level of its expression was significantly induced by tetradecanoyl phorbol acetate stimulation. K15 encoded 40- to 55-kDa proteins, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and was localized at the cytoplasm and plasma membrane. To demonstrate the signal-transducing activity of the K15 protein, we constructed a chimeric protein in which the cytoplasmic tail of the human CD8alpha polypeptide was replaced with that of KSHV K15. While the CD8-K15 chimera was not capable of eliciting cellular signal transduction upon stimulation with an anti-CD8 antibody, it significantly inhibited B-cell receptor signaling, as evidenced by a suppression of tyrosine phosphorylation and intracellular calcium mobilization. This inhibition required the putative SH2 or SH3 binding motif in the cytoplasmic region of K15. Biochemical study of CD8-K15 chimeras showed that the cytoplasmic region of K15 was constitutively tyrosine phosphorylated and that the tyrosine residue within the putative SH2 binding motif of K15 was a primary site of phosphorylation. These results demonstrate that KSHV K15 resembles LMP2A in genomic location, splicing pattern, and protein structure and by the presence of functional signal-transducing motifs in the cytoplasmic region. Thus, KSHV K15 is likely a distant evolutionary relative of EBV LMP2A.  相似文献   

13.
Viral glycoproteins are highly variable in their primary structure, but on the other hand feature a high functional conservation to fulfil their versatile tasks during the pathogenic life cycle. Typically, all protein domains are optimized in that indispensable functions can be assigned to small conserved motifs or even individual amino acids. The cytoplasmic tail of many viral spike proteins, although of particular relevance for the virus biology, is often only insufficiently characterized. Hemagglutinin (HA), the receptor‐binding protein of the influenza virus comprises a short cytoplasmic tail of 13 amino acids that exhibits three highly conserved palmitoylation sites. However, the particular importance of these modifications and the tail in general for intracellular trafficking and lateral membrane organization remains elusive. In this study, we generated HA core proteins consisting of transmembrane domain, cytoplasmic tail and a minor part of the ectodomain, tagged with a yellow fluorescent protein. Different mutation and truncation variants of these chimeric proteins were investigated using confocal microscopy, to characterize the role of cytoplasmic tail and palmitoylation for the intracellular trafficking to plasma membrane and Golgi apparatus. In addition, we assessed raft partitioning of the variants by Foerster resonance energy transfer with an established raft marker. We revealed a substantial influence of the cytoplasmic tail length on the intracellular distribution and surface exposure of the proteins. A complete removal of the tail hampers a physiological trafficking of the protein, whereas a partial truncation can be compensated by cytoplasmic palmitoylations. Plasma membrane raft partitioning on the other hand was found to imperatively require palmitoylations, and the cysteine at position 551 turned out to be of most relevance. Our data shed further light on the tight interconnection between cytoplasmic elements and intracellular trafficking and suggest a function of HA palmitoylations in both lateral sorting and anterograde trafficking of the glycoprotein.  相似文献   

14.
The efficient release of many enveloped viruses from cells involves the coalescence of viral components at sites of budding on the plasma membrane of infected cells. This coalescence is believed to require interactions between the cytoplasmic tails of surface glycoproteins and the matrix (M) protein. For the paramyxovirus simian virus 5 (SV5), the cytoplasmic tail of the hemagglutinin-neuraminidase (HN) protein has been shown previously to be important for normal virus budding. To investigate a role for the cytoplasmic tail of the fusion (F) protein in virus assembly and budding, we generated a series of F cytoplasmic tail-truncated recombinant viruses. Analysis of these viruses in tissue culture indicated that the cytoplasmic tail of the F protein was dispensable for normal virus replication and budding. To investigate further the requirements for assembly and budding of SV5, we generated two double-mutant recombinant viruses that lack 8 amino acids of the predicted 17-amino-acid HN protein cytoplasmic tail in combination with truncation of either 10 or 18 amino acids from the predicted 20-amino-acid F protein cytoplasmic tail. Both of the double mutant recombinant viruses displayed a replication defect in tissue culture and a budding defect, the extent of which was dependent on the length of the remaining F cytoplasmic tail. Taken together, this work and our earlier data on virus-like particle formation (A. P. Schmitt, G. P. Leser, D. L. Waning, and R. A. Lamb, J. Virol. 76:3953-3964, 2002) suggest a redundant role for the cytoplasmic tails of the HN and F proteins in virus assembly and budding.  相似文献   

15.
The B cell antigen receptor (BCR) is a multimeric protein complex consisting of the ligand binding immunoglobulin molecule and the Ig-alpha/beta heterodimer that mediates intracellular signalling by coupling the receptor to protein tyrosine kinases (PTKs). Transfection of the Ig-alpha deficient myeloma cell line J558L microns with expression vectors coding for mutated Ig-alpha allowed us to test the function of the tyrosines in the cytoplasmic region of Ig-alpha in the context of the BCR. Furthermore we expressed Ig-alpha mutations as chimeric CD8-Ig-alpha molecules on K46 B lymphoma cells and tested their signalling capacity in terms of PTK activation and release of calcium. We show here that the conserved tyrosine residues in the cytoplasmic portion of Ig-alpha have a dual role. First, they are required for efficient activation of PTKs during signal induction and second, one of them is subject to phosphorylation by activated src-related PTKs. Phosphorylation on tyrosine in the cytoplasmic portion of Ig-alpha is discussed as a possible mechanism to couple the BCR to SH2 domain-carrying molecules.  相似文献   

16.
Ward BM  Moss B 《Journal of virology》2000,74(8):3771-3780
The vaccinia virus B5R type I integral membrane protein accumulates in the Golgi network, from where it becomes incorporated into the envelope of extracellular virions. Our objective was to determine the domains of B5R responsible for Golgi membrane targeting in the absence of other viral components. Fusion of an enhanced green fluorescent protein to the C terminus of B5R allowed imaging of the chimeric protein without altering intracellular trafficking and Golgi network localization in transfected cells. Deletion or swapping of B5R domains with corresponding regions of the vesicular stomatitis virus G protein, which is targeted to the plasma membrane, indicated that (i) the N-terminal extracellular domain of B5R had no specific role in Golgi apparatus localization, (ii) the transmembrane domain of B5R was sufficient for exiting the endoplasmic reticulum, and (iii) removal of the cytoplasmic tail impaired Golgi network localization and increased the accumulation of B5R in the plasma membrane. Further experiments demonstrated that the cytoplasmic tail mediated internalization of B5R from the plasma membrane, suggesting a retrieval mechanism. Mutagenesis revealed residues required for Golgi membrane localization and efficient plasma membrane retrieval of the B5R protein: a tyrosine at residue 310 and two adjacent leucines at residues 315 and 316.  相似文献   

17.
Signal transduction by antigen receptors and some Fc receptors requires the activation of a family of receptor-associated transmembrane accessory proteins. One common feature of the cytoplasmic domains of these accessory molecules is the presence is at least two YXXA repeats that are potential sites for interaction with Src homology 2 domain-containing proteins. However, the degree of similarity between the different receptor-associated proteins varies from that of T-cell receptor (TCR) zeta and Fc receptor RIIIA gamma chains, which are homologous, to the distantly related Ig alpha and Ig beta proteins of the B-cell antigen receptor. To determine whether T- and B-cell antigen receptors are in fact functionally homologous, we have studied signal transduction by chimeric immunoglobulins bearing the Ig alpha or Ig beta cytoplasmic domain. We found that Ig alpha and Ig beta cytoplasmic domains were able to activate Ca2+ flux, interleukin-2 secretion, and phosphorylation of the same group of cellular substrates as the TCR in transfected T cells. Chimeric proteins were then used to examine the minimal requirements for activation of the Fyn, Lck, and ZAP kinases in T cells. Both Ig alpha and Ig beta were able to trigger Fyn, Lck, and ZAP directly without involvement of TCR components. Cytoplasmic tyrosine residues in Ig beta were required for recruitment and activation of ZAP-70, but these amino acids were not essential for the activation of Fyn and Lck. We conclude that Fyn and Lck are able to recognize a clustered nonphosphorylated immune recognition receptor, but activation of these kinases is not sufficient to induce cellular responses such as Ca2+ flux and interleukin-2 secretion. In addition, the molecular structures involved in antigen receptor signaling pathways are conserved between T and B cells.  相似文献   

18.
CD45 is a leukocyte specific transmembrane glycoprotein and a receptor-like protein tyrosine phosphatase (PTP). CD45 can be expressed as several alternatively spliced isoforms that differ in the extracellular domain. The isoforms are regulated in a cell type and activation state-dependent manner, yet their function has remained elusive. The Src family kinase members Lck and Lyn are key substrates for CD45 in T and B lymphocytes, respectively. CD45 lowers the threshold of antigen receptor signalling, which impacts T and B cell activation and development. CD45 also regulates antigen triggered Fc receptor signalling in mast cells and Toll-like receptor (TLR) signalling in dendritic cells, thus broadening the role of CD45 to other recognition receptors involved in adaptive and innate immunity. In addition, CD45 can affect immune cell adhesion and migration and can modulate cytokine production and signalling. Here we review what is known about the substrate specificity and regulation of CD45 and summarise its effect on immune cell signalling pathways, from its established role in T and B antigen receptor signalling to its emerging role regulating innate immune cell recognition and cytokine production.  相似文献   

19.
Maturation and release of human immunodeficiency virus type 1 (HIV-1) is targeted at the pseudopod of infected mononuclear cells. However, the intracellular mechanism or targeting signals leading to this polarized viral maturation are yet to be identified. We have recently demonstrated the presence of a functional YXXL motif for specific targeting of HIV-1 virions to the basolateral membrane surface in polarized epithelial Madin-Darby canine kidney cells (MDCK). Site-directed mutagenesis was used to demonstrate that the membrane-proximal tyrosine in the intracytoplasmic tail of the HIV-1 transmembrane glycoprotein (gp41) is an essential component of this signal. In the present study, immunolocalization of viral budding allowed us to establish that this tyrosine-based signal is involved in determining the exact site of viral release at the surface of infected mononuclear cells. Substitution of the critical tyrosine residue was also shown to increase the amount of envelope glycoprotein at the cell surface, supporting previous suggestions that the tyrosine-based motif can promote endocytosis. Although alteration of the dual polarization-endocytosis motif did not affect the infectivity of cell-free virus, it could play a key role in cell-to-cell viral transmission. Accordingly, chronically infected lymphocytes showed a reduced ability to transmit the mutant virus to a cocultivated cell line. Overall, our data indicate that the YXXL targeting motif of HIV is active in various cell types and could play an important role in viral propagation; this may constitute an alternative target for HIV therapeutics and vaccine development.  相似文献   

20.
To evade the anti-human immunodeficiency virus (HIV) immune response, the HIV Nef protein disrupts major histocompatibility complex class I (MHC-I) trafficking by recruiting the clathrin adaptor protein 1 (AP-1) to the MHC-I cytoplasmic tail. Under normal conditions AP-1 binds dileucine and tyrosine signals (YXX phi motifs) via physically separate binding sites. In the case of the Nef-MHC-I complex, a tyrosine in the human leukocyte antigen (HLA)-A2 cytoplasmic tail ((320)YSQA) and a methionine in Nef (Met(20)) are absolutely required for AP-1 binding. Also present in Nef is a dileucine motif, which does not normally affect MHC-I trafficking and is not needed to recruit AP-1 to the Nef-MHC-I-complex. However, evidence is presented here that this dileucine motif can be activated by fusing Nef to the HLA-A2 tail in cis. Thus, the inability of this motif to function in trans likely results from a structural change that occurs when Nef binds to the MHC-I cytoplasmic tail. The physiologically relevant tyrosine-dependent recruitment of AP-1 to MHC-I, which occurs whether Nef is present in cis or trans, was stabilized by the acidic and polyproline domains within Nef. Additionally, amino acids Ala(324) and Asp(327) in the cytoplasmic tails of HLA-A and (but not HLA-C and HLA-E) molecules also stabilized AP-1 binding. Finally, mutation of the tyrosine binding pocket in the mu subunit of AP-1 created a dominant negative inhibitor of Nef-induced down-modulation of HLA-A2 that disrupted binding of wild type AP-1 to the Nef-MHC-I complex. Thus, these data provide evidence that Nef binding to the MHC-I cytoplasmic tail stabilizes the interaction of a tyrosine in the MHC-I cytoplasmic tail with the natural tyrosine binding pocket in AP-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号