首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Synopsis The three major types of glycoproteins present in animal cells, that is, the secretory, lysosomal and plasma membrane glycoproteins, were examined with regard to the sites of synthesis of their carbohydrate side chains and to their subsequent migration within cells.The site at which a monosaccharide is added to a growing glycoprotein depends on the position of that monosaccharide in the carbohydrate side-chain. Thus, radiauutography of thyroid cells within minutes of the intravenous injection of labelled mannose, a sugar located near the base of the larger side-chains, reveals that it is incorporated in rough endoplasmic reticulum, whereas the more distally located galactose and fucose are incorporated in the Golgi apparatus. Recently [3H]N-acetylmannosamine, a specific precursor for the terminally located sialic acid residues, was shown to be also added in the Golgi apparatus. Presumably synthesis of glycoproteins is completed in this organelle.Radioautographs of animals sacrificed a few hours after injection of [3H]N-acetylmannosamine show that, in many secretory cells, labelled glycoproteins pass into secretory products. In these cells, as well as in non-secretory cells, the label may also appear within lysosomes and at the cell surface. In the latter site, it is presumably included within the plasma membrane glycoproteins whose carbohydrate side-chains form the cell coat. The continual migration of glycoproteins from Golgi apparatus to cell surface implies turnover of plasma membrane glycoproteins. Radioautographic quantitation of [3H]fucose label at the surface of proximal tubule cells in the kidney of singly-injected adult mice have shown that, after an initial peak, cell surface labelling decreases at a rate indicating a half-life of plasma membrane glycoproteins of about three days.  相似文献   

2.
《The Journal of cell biology》1984,98(5):1777-1787
We examined epithelial cell surface polarity in subconfluent and confluent Madin-Darby canine kidney (MDCK) cells with monoclonal antibodies directed against plasma membrane glycoproteins of 35,000, 50,000, and 60,000 mol wt. The cell surface distribution of these glycoproteins was studied by immunofluorescence and immunoelectron microscopy. At the ultrastructural level, the electron-dense reaction product localizing all three glycoproteins was determined to be uniformly distributed over the apical and basal cell surfaces of subconfluent MDCK cells as well as on the lateral surfaces between contacted cells; however, after formation of a confluent monolayer, these glycoproteins could only be localized on the basal-lateral plasma membrane. The development of cell surface polarity was followed by assessing glycoprotein distribution with immunofluorescence microscopy at selected time intervals during growth of MDCK cells to form a confluent monolayer. These results were correlated with transepithelial electrical resistance measurements of tight junction permeability and it was determined by immunofluorescence that polarized distributions of cell surface glycoproteins were established just after electrical resistance could be detected, but before the development of maximal resistance. Our observations provide evidence that intact tight junctions are required for the establishment of the apical and basal- lateral plasma membrane domains and that development of epithelial cell surface polarity is a continuous process.  相似文献   

3.
The presence of 1.0mm-dibutyryl cyclic AMP (N(6),O(2')-dibutyryladenosine 3':5'-cyclic monophosphate) and 1.5mm-theophylline completely inhibits the growth of mouse neuroblastoma N2a cells by 24-36h. When compared with N2a cultures without inhibitors (controls), the proportion of cells in S phase, measured by radioautography with [(3)H]-thymidine, was decreased from 55 to 12%. In addition, the presence of the inhibitors decreased apparent [(3)H]fucose incorporation into glycoproteins by 50%, and removing the inhibitors resulted in a rapid recovery of both DNA synthesis and glycoprotein metabolism. Measurement of intracellular acid-soluble radioactive fucose revealed that decreased fucose uptake could account for the apparent change in incorporation. Removing dibutyryl cyclic AMP and theophylline from the medium resulted in a rapid uptake of radioactive fucose to within control values, which illustrated that the inhibitors decreased transport of the carbohydrate, although the cells remained viable. Treatment with dibutyryl cyclic AMP and theophylline also reversibly inhibited glycoprotein degradation. Plasma membranes isolated from growing cells and from growth-inhibited cells labelled with [(14)C]fucose and [(3)H]fucose respectively were co-electrophoresed on sodium dodecyl sulphate/polyacrylamide gels. These displayed no apparent differences in synthesis of specific membrane glycoproteins. Electrophoresis of plasma membranes isolated from cultures pulse-chased with [(14)C]fucose and [(3)H]fucose was used to discern turnover patterns of specific plasma-membrane glycoproteins. High-molecular-weight glycoproteins exhibited rapid rates of turnover in membranes from growing cells, but moderate turnover rates in growth-inhibited cells and cells reversed from growth inhibition. These data indicate that growth arrest of N2a cells results in alterations in the metabolic turnover of plasma-membrane glycoproteins.  相似文献   

4.
A single intravenous injection of L-[3H]fucose, a specific glycoprotein precursor, was given to young 35–45 g rats which were sacrificed at times varying between 2 min and 30 h later. Radioautography of over 50 cell types, including renewing and nonrenewing cells, was carried out for light and electron microscope study. At early time intervals (2–10 min after injection), light microscope radioautography showed a reaction over nearly all cells investigated in the form of a discrete clump of silver grains over the Golgi region. This reaction varied in intensity and duration from cell type to cell type. Electron microscope radioautographs of duodenal villus columnar cells and kidney proximal and distal tubule cells at early time intervals revealed that the silver grains were restricted to Golgi saccules. These observations are interpreted to mean that glycoproteins undergoing synthesis incorporate fucose in the saccules of the Golgi apparatus. Since fucose occurs as a terminal residue in the carbohydrate side chains of glycoproteins, the Golgi saccules would be the site of completion of synthesis of these side chains. At later time intervals, light and electron microscope radioautography demonstrated a decrease in the reaction intensity of the Golgi region, while reactions appeared over other parts of the cells: lysosomes, secretory material, and plasma membrane. The intensity of the reactions observed over the plasma membrane varied considerably in various cell types; furthermore the reactions were restricted to the apical surface in some types, but extended to the whole surface in others. Since the plasma membrane is covered by a "cell coat" composed of the carbohydrate-rich portions of membrane glycoproteins, it is concluded that newly formed glycoproteins, after acquiring fucose in the Golgi apparatus, migrate to the cell surface to contribute to the cell coat. This contribution implies turnover of cell coat glycoproteins, at least in nonrenewing cell types, such as those of kidney tubules. In the young cells of renewing populations, e.g. those of gastro-intestinal epithelia, the new glycoproteins seem to contribute to the growth as well as the turnover of the cell coat. The differences in reactivity among different cell types and cell surfaces imply considerable differences in the turnover rates of the cell coats.  相似文献   

5.
A major periodate--Schiff-positive component from milk-fat-globule membrane of human breast milk has been purified by selectively extracting the membrane glycoproteins, followed by lectin affinity chromatography and gel filtration on Sephadex G-200 in the presence of protein-dissociating agents. The purified glycoprotein, termed epithelial membrane glycoprotein (EMGP-70), has an estimated mol.wt. of 70 000 and yields a single band under reducing conditions on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. The glycoprotein contains 13.5% carbohydrate by weight, with fucose, mannose, galactose, N-acetylglucosamine and sialic acid 17.2, 17.0, 21.1, 7.9 and 36.6% respectively of the carbohydrate moiety. Aspartic and glutamic acid and serine are the major amino acid residues.  相似文献   

6.
We have documented previously that glucocorticoid hormones modulate the posttranslational localization of cell surface mouse mammary tumor virus (MMTV) glycoproteins in the viral-infected M1.54 rat HTC hepatoma cell line. To determine whether glucocorticoids affect the trafficking of individually synthesized MMTV glycoproteins, HTC cells were transfected with a constitutively expressed MMTV glycoprotein gene lacking the viral phosphoprotein and polymerase genes. This construct also allows equivalent levels of MMTV glycoproteins to be compared in the presence or absence of glucocorticoids. Indirect immunofluorescence and immunoprecipitation of radiolabeled cells revealed that in transfected cells the transmembrane MMTV glycoproteins are efficiently expressed, transported to the cell surface, and proteolytically cleaved in the presence or in the absence of the synthetic glucocorticoid dexamethasone. Cell surface immunoprecipitation of [35S]methionine-labeled cells showed that the level of plasma membrane gp78 appeared to be stimulated 2-fold after dexamethasone treatment, even though fluorescence-activated cell sorting revealed no discernible change in the total concentration of cell surface MMTV glycoproteins. Analysis of oligosaccharide side chain maturation through a pulse-chase radiolabeling revealed that the rate of rough endoplasmic reticulum-Golgi transport was essentially identical in dexamethasone-treated and untreated transfected cells and was similar to that observed in dexamethasone-treated M1.54 cells. Thus, in contrast to viral-infected hepatoma cells, mostly constitutive cellular machinery mediates the trafficking and maturation of cell surface MMTV glycoproteins expressed outside of the proviral context. Taken together, our results suggest that the glucocorticoid-stimulated synthesis of nonglycosylated viral components may contribute to or be responsible for the regulated trafficking of MMTV glycoproteins observed in viral-infected rat hepatoma cells.  相似文献   

7.
In the course of herpes simplex virus 1 (HSV-1) replication in human epidermoid carcinoma no. 2 cells, the synthesis and glycosylation of host cell proteins ceases and is replaced by the synthesis and glycosylation of virus-specified polypeptides. Analyses of the synthesis of viral glycoproteins show that the glycosylation of viral polypeptides occurs late in the virus growth cycle and that certain of the precursors to major vital glycoproteins are members of the gamma group of polypeptides, i.e., polypeptides synthesized at increasing rates until 12 to 15 h postinfection. Viral glycoproteins are formed by stepwise additions of heterosaccharide chains to completed precursor polypeptides. The precursor and the highly glycosylated product are separable by gel electrophoresis and are localized in different fractions of infected cells. Within 15 min of their synthesis, precursor polypeptides acquire heterosaccharide chains of about 2,000 molecular weight, which contain glucosamine but little or nor fucose or sialic acid. Both precursor and product of this first stage of glycosylation are absent or present in low concentrations in the surface membranes of the infected cell and in the virion. The partially glycosylated product is then conjugated further in a slow, discontinuous process to form the mature glycoprotein of the virion and plasma membrane. These mature products bear large heterosaccharide units with molecular weights greater than 4,000 to 5,000; these contain fucose and sialic acid as well as glucosamine. Heterosaccharide chains from infected and uninfected cells are distributed among discrete size classes and the smallest chains consist of multiple saccharide residues.  相似文献   

8.
9.
Two inhibitors of glycosylation, glucosamine and tunicamycin, were utilized to examine the effect of glycosylation inhibition in mouse neuroblastoma N18 cells on the degradation of membrane glycoproteins synthesized before addition of the inhibitor. Treatment with 10 mM-glucosamine resulted in inhibition of glycosylation after 2h, as measured by [3H]fucose incorporation into acid-insoluble macromolecules, and in a decreased rate of glycoprotein degradation. However, these results were difficult to interpret since glucosamine also significantly inhibited protein synthesis, which in itself could cause the alteration in glycoprotein degradation [Hudson & Johnson (1977) Biochim. Biophys. Acta 497, 567-577]. N18 cells treated with 5 microgram of tunicamycin/ml, a more specific inhibitor of glycosylation, showed a small decrease in protein synthesis relative to its effect on glycosylation, which was inhibited by 85%. Tunicamycin-treated cells also showed a marked decrease in glycoprotein degradation in experiments with intact cells. The inhibition of glycoprotein degradation by tunicamycin was shown to be independent of alterations in cyclic AMP concentration. Polyacrylamide-gel electrophoresis of isolated membranes from N18 cells, double-labelled with [14C]fucose and [3H]fucose, revealed heterogeneous turnover rates for specific plasma-membrane glycoproteins. Comparisons of polyacrylamide gels of isolated plasma membranes from [3H]fucose-labelled control cells and [14C]fucose-labelled tunicamycin-treated cells revealed that both rapidly and slowly metabolized, although not all, membrane glycoproteins became resistant to degradation after glycosylation inhibition.  相似文献   

10.
Little is known about the ability of mammalian spermatogenic cells to synthesize plasma membrane components in the presence or absence of Sertoli cells. In this study, purified populations (greater than 90%) of pachytene spermatocytes or round spermatids were isolated by unit gravity sedimentation and cultured for 20-24 h in the presence of [35S]methionine or [3H]fucose. Cell viabilities remained over 90% during the course of these experiments. Plasma membranes were purified from these cells and analyzed by two-dimensional gel electrophoresis. Qualitatively, the same plasma membrane proteins were synthesized by both cell types with the exception of the major Concanavalin A-binding glycoprotein, p151; the synthesis of p151 is greatly diminished or inhibited after meiosis. [3H]Fucose was incorporated into at least 6 common glycoproteins of both cells. Eight components fucosylated with molecular weights from 35,000 to 120,000 were specific to pachytene spermatocyte membranes. One fast-migrating fucosylated component may represent an uncharacterized lipid whose synthesis is terminated after meiosis. Round spermatids specifically fucosylated two components with molecular weights of 45,000 and 80,000. These results demonstrate the viability of germ cells of the male mouse in short-term culture and show that they are capable of synthesizing and fucosylating plasma membrane components in the absence of Sertoli cells.  相似文献   

11.
Immunoglobin A in bile and other external secretions is mostly bound to a glycoprotein known as secretory component. This glycoprotein is not synthesized by the same cells as immunoglobulin A and is not found in blood. We now report the mechanism by which secretory component reaches the bile and describe its function in immunoglobulin A transport across the hepatocyte. Fractionation of rat liver homogenates by zonal centrifugation was followed by measurement of the amounts of secretory component in the various fractions by rocket immunoelectrophoresis. Secretory component was found in two fractions. One of these was identified as containing Golgi vesicles from its isopycnic density and appearance in the electron microscope; the other contained principally fragments of the plasma membrane of the sinusoidal face of the hepatocyte, as shown by its particle size and content of marker enzymes. Only the latter fraction bound 125I-labelled immunoglobulin A added in vitro. At 5min after intravenous injection of [14C]fucose, the secretory component in the Golgi fraction was labelled, but not that in the plasma membrane. The secretory component in the sinusoidal plasma membrane did, however, become labelled before the first labelled secretory component appeared in bile, about 30min after injection. We suggest that fucose is added to the newly synthesized secretory component in the Golgi apparatus. The secretory component then passes, with the other newly secreted glycoproteins, to the sinusoidal plasma membrane. There it remains bound but exposed to the blood and able to bind any polymeric immunoglobulin A present in serum. The secretory component then moves across the hepatocyte to the bile-canalicular face in association with the endocytic-shuttle vesicles which carry immunoglobulin A. Hence there is a lag before newly synthesized secretory component appears in bile.  相似文献   

12.
B Gumbiner  R B Kelly 《Cell》1982,28(1):51-59
The pituitary cell line, AtT-20, synthesizes adrenocorticotropic hormone (ACTH) as a glycoprotein precursor that is cleaved into mature hormones during packaging into secretory granules. The cells also produce an endogenous leukemia virus (MuLV) that is glycosylated after translation similar to the glycosylation of the ACTH precursor. Our evidence suggests that the envelope glycoprotein and some precursor ACTH get to the cell surface in a vesicle different from the mature ACTH secretory granule. Viral glycoproteins and ACTH precursor are released from the cells much sooner after synthesis than mature ACTH. Isolated secretory granules do not contain significant amounts of the envelope glycoprotein or ACTH precursor. Exposing cells to 8Br-cAMP stimulates release of mature ACTH four to five fold, but has little effect on the release of the ACTH precursor or the viral glycoproteins. We propose that the viral glycoproteins and some of the ACTH precursor are transported by a constitutive pathway, while mature ACTH is stored in secretory granules where its release is enhanced by stimulation.  相似文献   

13.
Chlamydomonas flagella exhibit force transduction in association with their surface. This flagellar surface motility is probably used both for whole cell gliding movements (flagella-substrate interaction) and for reorientation of flagella during mating (flagella-flagella interaction). The present study seeks to identify flagellar proteins that may function as exposed adhesive sites coupled to a motor responsible for their translocation in the plane of the plasma membrane. The principal components of the flagellar membrane are a pair of glycoproteins (approximately 350,000 mol wt), with similar mobility on SDS polyacrylamide gels. A rabbit IgG preparation has been obtained which is specific for these two glycoproteins; this antibody preparation binds to and agglutinates cells by their flagellar surfaces only. Treatment of cells with 0.1 mg/ml pronase results in a loss of motility-coupled flagellar membrane adhesiveness. This effect is totally reversible, but only in the presence of new protein synthesis. The major flagellar protein modified by this pronase treatment is the faster migrating of the two high molecular weight glycoproteins; the other glycoprotein does not appear to be accessible to external proteolytic digestion. Loss and recovery of flagella surface binding sites for the specific antibody parallels the loss and recovery of the motility-coupled flagellar surface adhesiveness, as measured by the binding and translocation of polystyrene microspheres. These observations suggest, but do not prove, that the faster migrating of the major high molecular weight flagellar membrane glycoproteins may be the component which provides sites for substrate interaction and couples these sites to the cytoskeletal components responsible for force transduction.  相似文献   

14.
EVIDENCE FOR THE CLOSE ASSOCIATION OF A GLYCOPROTEIN WITH MYELIN IN RAT BRAIN   总被引:27,自引:17,他引:10  
Abstract— Myelin was purified from rats which had been injected intracerebrally with radioactive fucose in order to label specifically the glycoproteins. Myelin contained a small amount of fucose-labelled glycoproteins in comparison to that in other subcellular fractions, but polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate revealed a unique pattern of radioactive glycoproteins dominated by a major peak. The same glycoprotein was not prominent in the other subcellular fractions which were examined. This major glycoprotein in the myelin fraction was also labelled after injection with [3H]glucosamine or N -[3H]acetylmannosamine. It was the most intensely staining myelin protein when gels were treated with periodic acid-Schiff reagents, an indication that, in terms of protein-bound carbohydrate, it is the major glycoprotein in the myelin fraction. The glycoprotein was present in myelin purified from rats ranging in age from 14 days to 14 months. Extensive recycling of the myelin through the purification procedures did not significantly reduce the amount of glycoprotein in the myelin. Double label experiments with [3H]fucose and [14C]fucose were used to compare glycoproteins in myelin purified from white and grey matter, respectively, and from mixed homogenates of myelinated and unmyelinated brain. The results obtained from these experiments suggested that the glycoprotein is closely associated with myelin and that it is not in an unrelated contaminating structure. Possible locations of the glycoprotein are discussed. They include the myelin membrane itself, the oligodendroglial plasma membrane, and the axolemma of myelinated axons.  相似文献   

15.
Biosynthesis and secretion of fibronectin in human melanoma cells   总被引:2,自引:0,他引:2  
The biosynthesis and secretion of cellular fibronectin from human melanoma cells have been investigated by pulse-chase/immunoprecipitation analysis. Melanoma cells synthesize endoglycosidase H (Endo H)-sensitive glycoprotein precursors of fibronectin glycoproteins which chase to an Endo H-resistant monomer with an apparent Mr of 240,000 (240 K). This molecule, which has a significantly higher molecular weight than normal plasma or cellular fibronectin, is rapidly secreted by melanoma cells, resulting in the secretion of 80% of newly synthesized fibronectin in 120 min, following a 10-min biosynthetic pulse. This active secretory process can be inhibited by brief exposure of melanoma cells to sodium monensin (10(-7) M), which also results in a modified fibronectin of lower apparent Mr. Monosaccharide-incorporation studies of melanoma fibronectin reveal that monensin significantly inhibits galactose and fucose incorporation into this glycoprotein, correlating with reported effects of monensin on Golgi apparatus functions. These studies indicate that this tumor-associated and biosynthetically altered cellular fibronectin is a rapidly secreted major N-linked glycoprotein of metastatic human melanoma cells.  相似文献   

16.
A high-molecular-weight glycoprotein was isolated, purified and partially characterized from the insoluble pulmonary secretions accumulating in lungs of patients suffering from pulmonary alveolar proteinosis. On electrophoresis in 5% polyacrylamide gel in the presence of sodium dodecyl sulphate and 2-mercaptoethanol, the purified protein gave one major band as detected by Coomassie Blue as well as with periodic acid/Schiff staining. An apparent mol.wt. of 250000 was estimated for this glycoprotein. Amino acid analysis showed that it contains hydroxyproline, and relatively high amounts of glycine, glutamic acid, aspartic acid and leucine. It contains approx. 6% hexose, 3% sialic acid and 2% glucosamine. The neutral sugars are galactose, mannose and fucose. An antiserum prepared in rabbits against this high-molecular-weight glycoprotein cross-reacted with two smaller glycoproteins (mol.wts. 62000 and 36000) isolated from the same pulmonary secretions of these patients. A complementary observation was also made when this large alveolar glycoprotein cross-reacted with an antiserum prepared in rabbits against the smaller glycoprotein (mol.wt. 36000). It appears that this high-molecular-weight glycoprotein may be the precursor of the two smaller glycoproteins present in the same diseased pulmonary secretions.  相似文献   

17.
Ethanol-induced alterations of plasma membrane assembly in the liver   总被引:2,自引:0,他引:2  
The effects of acute ethanol administration on the assembly of glycoproteins into the hepatic plasma membrane were studied in the rat. When [14C]fucose and N-acetyl[3H]mannosamine, a sialic acid precursor, were injected following an acute dose of ethanol, the incorporation of these precursors into the total pool of membrane glycoproteins was minimally affected. This finding indicated that ethanol treatment did not appreciably alter the glycosylation of proteins in the Golgi apparatus. However, the assembly of labeled fucoproteins and sialoproteins into the plasma membrane was markedly inhibited in the ethanol-treated animals. This inhibition of plasmalemmal glycoprotein assembly was accompanied by a corresponding accumulation of labeled glycoproteins in the cytosolic fraction of the hepatocyte. The content of labeled glycoproteins in the Golgi complex was not significantly altered by ethanol treatment. These results indicate that ethanol administration impairs the late stages of hepatic plasma membrane assembly and further suggest that ethanol administration interferes with the flow of membrane components from the Golgi apparatus to the surface membrane.  相似文献   

18.
We studied the uptake of leucine, phenylalanine, and the amino acid analog, 2-aminonorborane-2-carboxylic acid, by rat hepatoma cells in tissue culture. The uptake of these amino acids was partially mediated by a plasma membrane transport system similar to the L agency described in other cell types in that it does not require extracellular sodium and is subject to trans-stimulation. Initial rates of sodium-independent transport of these amino acids were calculated using mathematical transformations of the uptake time course curves. The glucocorticoid dexamethasone inhibits the activity of this transport system; the initial rates of sodium-independent uptake of leucine, phenylalanine, and 2-aminonorborane-2-carboxylic acid are decreased by approximately one-third (average = 30%, n = 19) after incubation of HTC cells with 0.1 microM dexamethasone. This inhibition requires at least 15 h, reaching a maximum at 24 h of exposure of the cells to the hormone. Dexamethasone has an asymmetrical effect on sodium-independent amino acid transport in that exposure of the cells to the hormone does not inhibit the rates of outflow of leucine or phenylalanine from preloaded cells into medium without sodium. Inhibition of uptake is blocked by 0.1 mM cycloheximide and 4 microM actinomycin D, indicating the need for continuous protein synthesis for dexamethasone action. Insulin, which is known to partially reverse the inhibitory effect of dexamethasone on the A amino acid transport system in HTC cells, does not alter the action of dexamethasone on the L system. Previous investigations have demonstrated inhibition by dexamethasone of at least two distinct sodium-dependent amino acid transport activities in HTC cells. The data presented here, showing inhibition by the glucocorticoid of a sodium-independent transport activity, indicate that the effect of the hormone is independent of the energy source of the amino acid transport systems affected.  相似文献   

19.
Abstract: With [3H]fucose as a marker, C6 glioma cells in culture released an 85,000 molecular weight molecule into the medium as the major extracellular glycoprotein. The quantity and extracellularkytoplasmic ratio of this glycoprotein suggest that its cellular processing is different from that of five other released glycoproteins of molecular weights 55,000, 115,000, 130,000, 150,000, and 170,000. Nearly 40% of newly synthesized glycoproteins in the cells was released into the culture medium. Major glycoproteins retained by the cells migrated electrophoretically to molecular weight positions of 82,000, 110,000, 120,000, 140,000, and 160,000, and approximately one-third of these retained glycoproteins were labile to trypsinization. Both synthesis and release of these macromolecules were inhibited more than 95% with cycloheximide treatment, demonstrating that nearly all fucosylation was linked to protein synthesis. Since 40% of all glycoproteins was released under conditions of more than 99% cellular viability, it is likely that these extracellular glycoproteins are physiological products of membrane turnover and secretion, but not of cell lysis. The results provide a basis for the further study of glial differentiation and of shed glioma antigens.  相似文献   

20.
Electron microscope autoradiography was used to detect the incorporation of 3H-fucose into glycoproteins of toad bladder epithelial cells. After short exposure to 3H-fucose, without a chase period, the Golgi regions of all four cell types were labeled. When exposure to 3H-fucose was followed by chase periods (1,3,4 and 6 hours) the apical and basal-lateral plasma membranes of granular cells were heavily labeled. Apical granules and the cytoplasm of granular cells were also labeled, suggesting that they both provide the means for glycoprotein transfer from the Golgi to the plasma membranes. The heaviest labeling in mitochondria-rich cells, after the 1- and 3-hour chase periods, was over the apical tubules, although the apical and basal-lateral plasma membranes were also heavily labeled. After 4- and 6-hour chases, the labeling of the apical tubules decreased, whereas the labeling of the plasma membranes increased, strongly suggesting that in these cells apical tubules play a major role in the transfer of glycoproteins from the Golgi to the plasma membrane. Our results demonstrate that the route of 3H-fucose incorporation into plasma membrane glycoproteins and the rate of glycoprotein synthesis and breakdown are not the same in the two major epithelial cell types in toad bladder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号