首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
It has been proposed that (-)-nicotine can activate release-stimulating presynaptic nicotinic acetylcholine receptors (nAChRs) on glutamatergic nerve terminals to release glutamate, which in turn stimulates the release of noradrenaline (NA) and dopamine (DA) via presynaptic ionotropic glutamate receptors on catecholaminergic terminals. The objective of this study was to compare the function of N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methylisoxazide-4-propionic acid (AMPA) glutamate receptors in synaptosomes of rat hippocampus and striatum following acute and chronic (-)-nicotine administration. In hippocampal synaptosomes, prelabeled with [3H]NA, both the NMDA- and AMPA-evoked releases were higher in (-)-nicotine-treated (10 days) than in (-)-nicotine-treated (1 day) or vehicle-treated (1 or 10 days) rats. In striatal synaptosomes prelabeled with [3H]DA, the NMDA-evoked, but not the AMPA-evoked, release of [3H]DA was higher in (-)-nicotine-treated (10 days) than in nicotine-treated (1 day) or vehicle-treated (1 or 10 days) animals. Chronic (-)-nicotine did not affect catecholamine uptake, basal release and release evoked by high-K+ depolarization. Thus, chronic exposure to nicotine enhances the function of ionotropic glutamate receptors mediating noradrenaline release in the hippocampus and dopamine release in the striatum.  相似文献   

2.
A number of studies have found that the chronic administration of nicotine causes an increase in the density of nicotinic binding sites in the brain, but it is not known whether these additional binding sites are functionally active receptors. In this study, the effects of 1-week administration of the potent nicotinic agonist, (+)-anatoxin-a (96 nmol/day via osmotic minipumps), was assessed on [3H]nicotine binding and [3H]dopamine uptake and release in rat striatal synaptosomes. Chronic (+)-anatoxin-a treatment resulted in a 32% increase in the Bmax of [3H]nicotine binding in anatoxin-treated animals compared to control. There was a 43% increase in the activity of 3 microM nicotine to release [3H]dopamine from synaptosomes of anatoxin-treated animals, but the release induced by 20 mM K+ depolarization was unaffected. There was no effect of chronic (+)-anatoxin-a treatment on the uptake of [3H]dopamine. A strong positive correlation (r = 0.64) was found between the density of [3H]nicotine binding sites and the nicotine-induced stimulation of [3H]dopamine release in individual animals. These results indicate that (+)-anatoxin-a, like nicotine, produces an up-regulation of nicotine binding sites following chronic administration, and that these additional sites are functional receptors capable of mediating the release of dopamine from striatal synaptosomes.  相似文献   

3.
The existence of pre-synaptic auto- and hetero receptors which modulate neurotransmitter release is well documented. Emerging evidence show that in some cases these pre-synaptic receptors may also cross-talk with each other. The aim of the present work was to investigate whether acetylcholine receptors (nAChRs) and dopamine (DA) autoreceptors, which are both able to modulate DA release, functionally interact on the same nerve endings. We used rat and mouse nucleus accumbens synaptosomes pre-labeled with [3H]DA and exposed to nicotinic and dopaminergic receptor ligands. Both nicotinic agonists and 4-aminopyridine (4-AP) provoked [3H]DA release which was inhibited by quinpirole and blocked by sulpiride and raclopride. Both the inhibitory effect of quinpirole and the stimulatory effect of (−)nicotine did not change when the nAChRs or the DA receptors were desensitized. (−)Nicotine and 4-AP were able to stimulate [3H]DA overflow also in mouse synaptosomes and this overflow was partially inhibited by quinpirole. In the β2 knockout mice quinpirole was still able to inhibit the [3H]DA overflow elicited by 4-AP. To conclude: in rat and mouse the (−)nicotine evoked-release can be modulated by D2/D3 autoreceptors present on the DA terminals and nAChRs function is independent from D2/D3 autoreceptors which themselves may function independently from the activation of nAChRs.  相似文献   

4.
NMDA receptors regulating hippocampal noradrenaline (NA) and striatal dopamine (DA) release have been compared using superfused synaptosomes prelabelled with the [(3)H]catecholamines. Both receptors mediated release augmentation when exposed to NMDA plus glycine. Quinolinic acid (100 microM or 1 mM) plus glycine (1 microM)-elicited [(3)H]NA, but not [(3)H]DA release. The NMDA (100 microM)-evoked release of [(3)H]NA and [(3)H]DA was similar and concentration-dependently enhanced by glycine or D-serine (0.1-1 microM); in contrast, the HIV-1 envelope protein gp120 potently (30-100 pM) enhanced the NMDA-evoked release of [(3)H]NA, but not that of [(3)H]DA. Gp120 also potentiated quinolinate-evoked [(3)H]NA release. Ifenprodil (0.1-0.5 microM) or CP-101,606 (0.1-10 microM) inhibited the NMDA plus glycine-evoked release of both [(3)H]catecholamines. Zinc (0.1-1 microM) was ineffective. Lowering external pH from 7.4 to 6.6 strongly inhibited the release of [(3)H]NA elicited by NMDA plus glycine, whereas the release of [(3)H]DA was unaffected. The protein kinase C inhibitors GF 109203X (0.1 microM) or H7 (10 microM) selectively prevented the effect of NMDA plus glycine on the release of [(3)H]NA. GF 109203X also blocked the release of [(3)H]NA induced by NMDA or quinolinate plus gp120. It is concluded that the hippocampal NMDA receptor and the striatal NMDA receptor are pharmacologically distinct native subtypes, possibly containing NR2B subunits but different splice variants of the NR1 subunit.  相似文献   

5.
The existence on glutamatergic nerve endings of nicotinic acetylcholine receptors (nAChRs) mediating enhancement of glutamate release has often been suggested but not demonstrated directly. Here, we study the effects of nAChR agonists on [3 H]-d-aspartate ([3 H]-d-ASP) release from synaptosomes superfused in conditions known to prevent indirect effects. Nicotinic receptor agonists, while unable to modify the basal [3 H]-d-ASP release from human neocortex or rat striatal synaptosomes, enhanced the Ca2+ -dependent exocytotic release evoked by K+ (12 mm) depolarization. Their rank order of potency were anatoxin-a > epibatidine > nicotine > ACh (+ atropine). The anatoxin-a effect, both in human and rat synaptosomes, was antagonized by mecamylamine, alpha-bungarotoxin or methyllycaconitine. The basal release of [3 H]ACh from human cortical synaptosomes was increased by (-)-nicotine (EC50 = 1.16 +/- 0.33 microm) or by ACh plus atropine (EC50 = 2.0 +/- 0.04 microm). The effect of ACh plus atropine was insensitive to alpha-bungarotoxin, methyllycaconitine or alpha-conotoxin MII, whereas it was totally antagonized by mecamylamine or dihydro-beta-erythroidine. To conclude, glutamatergic axon terminals in human neocortex and in rat striatum possess alpha7* nicotinic heteroreceptors mediating enhancement of glutamate release. Release-enhancing cholinergic autoreceptors in human neocortex are nAChRs with a pharmacological profile compatible with the alpha4beta2 subunit combination.  相似文献   

6.
KCl (16 mM) stimulated the release of [3H]noradrenaline ([3H]NA) from rat hypothalamic synaptosomes in a Ca2+-dependent manner; this release was attenuated by clonidine (0.01-100 microM). Changes in the release of [3H]NA and the functional status of alpha 2-adrenoceptors in the medial hypothalamus of rats treated acutely and chronically with clorgyline (1 mg/kg/day) or desipramine (DMI, 10 mg/kg/day) were assessed using superfused synaptosomes in which the attenuating effects of clonidine (1 microM) or the potentiating effects of yohimbine (1 microM) on K+-evoked release of [3H]NA were measured. After acute administration of DMI, significantly less [3H]NA was accumulated into synaptosomes. Although total (spontaneous + K+-evoked) [3H]NA release from these synaptosomes was unchanged, a significant reduction was apparent in the K+-evoked release from the DMI-treated tissue. Attenuation of K+-evoked release by clonidine was abolished in both these acute treatment groups. Following the chronic antidepressant drug regimens, [3H]NA uptake into DMI-treated tissue remained significantly reduced although total percent and K+-evoked [3H]NA release were unchanged. The K+-evoked release of [3H]NA in S1 was significantly enhanced (by 22%) in the clorgyline treatment group. Attenuation of K+-evoked [3H]NA release by clonidine in both chronic antidepressant-treated tissues was not significantly changed. It is concluded that the functional sensitivity of alpha 2-adrenoceptors on nerve endings in the medial hypothalamus is unchanged by these chronic antidepressant drug regimens. In synaptosomes from untreated tissue, yohimbine significantly potentiated K+-evoked release of [3H]NA; this effect was unchanged after acute regimens and reduced after chronic administration of both the antidepressants.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Abstract: The objective of these experiments was to determine whether the chronic administration of nicotine, at a dose regimen that increases the density of nicotine binding sites, alters the nicotine-induced release of [3H]dopamine ([3H]DA), [3H]norepinephrine ([3H]NE), [3H]serotonin ([3H]5-HT), or [3H]acetylcholine ([3H]ACh) from rat striatal slices. For these experiments, rats received subcutaneous injections of either saline or nicotine bitartrate [1.76 mg (3.6 µmol)/kg, dissolved in saline] twice daily for 10 days, and neurotransmitter release was measured following preloading of the tissues with [3H]DA, [3H]NE, [3H]5-HT, or [3H]choline. Chronic nicotine administration did not affect the accumulation of tritium by striatal slices, the basal release of radioactivity, or the 25 mM KCl-evoked release of neurotransmitter. Superfusion of striatal slices with 1, 10, and 100 µM nicotine increased [3H]DA release in a concentration-dependent manner, and release from slices from nicotine-injected animals was significantly (p < 0.05) greater than release from saline-injected controls; release from the former increased to 132, 191, and 172% of release from the controls following superfusion with 1, 10, and 100 µM nicotine, respectively. Similarly, [3H]5-HT release increased in a concentration-related manner following superfusion with nicotine, and release from slices from nicotine-injected rats was significantly (p < 0.05) greater than that from controls. [3H]5-HT release from slices from nicotine-injected rats evoked by superfusion with 1 and 10 µM nicotine increased to 453 and 217%, respectively, of release from slices from saline-injected animals. The nicotine-induced release of [3H]NE from striatal slices was also concentration dependent but was unaffected by chronic nicotine administration. [3H]ACh release from striatal slices could not be detected when samples were superfused with nicotine but was measurable when tissues were incubated with nicotine. The release of [3H]ACh from slices from nicotine-injected rats was significantly (p < 0.05) less than release from controls and decreased to 36, 83, and 77% of control values following incubation with 1, 10, or 100 µM nicotine, respectively. This decreased [3H]ACh release could not be attributed to methodological differences because slices from nicotine-injected rats incubated with nicotine exhibited an increased [3H]DA release, similar to results from superfusion studies. In addition, it is unlikely that the decreased release of [3H]ACh from striatal slices from nicotine-injected rats was secondary to increased DA release because [3H]ACh release from slices from hippocampus, which is not tonically inhibited by DA, also decreased significantly (p < 0.05) in response to nicotine; hippocampal slices from nicotine-injected rats incubated with 1 and 10 µM nicotine decreased to 42 and 70%, respectively, of release from slices from saline-injected animals. Results indicate that the chronic administration of nicotine increases the ability of nicotine to induce the release of [3H]DA and [3H]5-HT and decreases the ability of nicotine to evoke the release of [3H]ACh but does not alter the nicotine-induced release of [3H]NE from brain slices.  相似文献   

8.
The effects of nicotine and 1,1-dimethyl-4-phenylpiperazinium (DMPP) on the release of newly synthesized [3H]acetylcholine in mouse cerebral cortical synaptosomes were examined. Nicotine and DMPP produced increases in [3H]acetylcholine release, over the level of spontaneous release, of 24% and 30%, respectively, of a maximum depolarization-induced release produced by 50 mM potassium. The maximum effect was achieved at a concentration of 1 X 10(-4) M for both agents. The time course of release indicated a slow onset of action, reaching a maximum effect at 15 min of incubation. Both nicotine and DMPP also produced a slightly greater release of total tritium, measured in the absence of cholinesterase inhibition, than of [3H]acetylcholine. The release induced by nicotine was completely antagonized by hexamethonium and was largely (58%) calcium-dependent. Nicotine also produced an increase in [3H]choline accumulation into synaptosomes. These results indicate that the nicotinic agonists nicotine and DMPP can produce a moderate enhancement of acetylcholine release by a receptor-mediated action on cholinergic nerve terminals in the central nervous system.  相似文献   

9.
Using a sensitive perfusion system we have studied the nicotine-induced release of [3H]dopamine ([( 3H]DA) from striatal synaptosomes. Nicotine-evoked release was concentration dependent with an EC50 of 3.8 microM. The response to 1 microM nicotine was comparable to that to 16 mM K+; 10 microM veratridine evoked a larger response. All three stimuli were Ca2+ dependent but only the response to veratridine was blocked by tetrodotoxin. Repetitive stimulations by 1 microM (-)-nicotine (100 microliters) at 30-min intervals resulted in similar levels of [3H]DA release; higher concentrations of (-)-nicotine resulted in an attenuation of the response particularly following the third stimulation. This may reflect desensitisation or tachyphylaxis of the presynaptic nicotinic receptor. The action of nicotine was markedly stereoselective: a 100-fold higher concentration of (+)-nicotine was necessary to evoke the same level of response as 1 microM (-)-nicotine. It is proposed that these presynaptic nicotinic receptors on striatal terminals are equivalent to high-affinity nicotine binding sites described in mammalian brain.  相似文献   

10.
In this study, we investigate the effects of chronic administration of (−)nicotine on the function of the NMDA-mediated modulation of [3H]dopamine (DA) release in rat prefrontal cortex (PFC) and nucleus accumbens (NAc). In the PFC synaptosomes NMDA in a concentration-dependent manner evoked [3H]DA release in rats chronically treated with vehicle (14 days) with an EC50 of 13.1 ± 2.0 μM. The NMDA-evoked overflow of the [3H]DA in PFC nerve endings of rats treated with (−)nicotine was significantly lower (−43%) than in vehicle treated rats. The EC50 was 9.0 ± 1.4 μM. Exposure of NAc synaptosomes of rats treated with vehicle to NMDA produced an increase in [3H]DA overflow with an EC50 of 14.5 ± 5.5 μM. This effect was significantly enhanced in chronically treated animals. The EC50 was 10.5 ± 0.5 μM. The K+-evoked release of [3H]DA was not modified by the (−)nicotine administration. Both the changes of the NMDA-evoked [3H]DA overflow in the NAc and PFC disappeared after 14 days withdrawal. The results show that chronic (−)nicotine differentially affects the NMDA-mediated [3H]DA release in the PFC and NAc of the rat.  相似文献   

11.
Acetylcholine (ACh) release is modulated pre-synaptically by both muscarinic and nicotinic receptor-mediated processes. While muscarinic autoreceptors inhibit ACh release, nicotinic autoreceptors enhance ACh release and thus disruption of these processes could potentially affect cholinergic toxicity following exposure to anticholinesterases. Marked age-related differences in sensitivity to some organophosphorus (OP) anticholinesterases have been reported. We compared nicotinic autoreceptor function (NAF) during maturation and aging and evaluated its potential modulation by the common OP insecticide, chlorpyrifos (CPF). Cortical synaptosomes were pre-loaded with [3H]choline, superfused (0.6 ml/min) with physiological buffer and [3H]ACh release was evoked with potassium (KCl, 9 mM), with or without co-addition of exogenous ACh to stimulate nicotinic autoreceptors. Fractions of perfusate were subsequently collected and area under the curve (AUC) for [3H] was analyzed by scintillation counting. The difference in evoked release due to co-addition of exogenous ACh was defined as NAF. Under these conditions, atropine (ATR, 0.1 microM) appeared requisite for NAF; thus this muscarinic antagonist was subsequently added to all perfusion buffers. In synaptosomes from adult tissues, exogenous ACh (3-100 microM) significantly increased release in a concentration-dependent manner. The nicotinic antagonist mecamylamine (MEC, 100 microM) substantially reduced the potassium-evoked release elicited by co-addition of ACh (10 microM). Interestingly, the nicotinic agonists nicotine (NIC) and dimethylphenylpiperazinium (DMPP; 0.1-10 microM) had no effect on release. The active metabolite of CPF (i.e. chlorpyrifos oxon (CPO), 1-10 microM) inhibited NAF in vitro. Maturation-related expression of NAF was noted (AUC with co-addition of 10 microM ACh: 7-day rats, 7+/-6; 21-day rats, 44+/-6; 90-day rats, 196+/-37; 24-month rats, 173+/-52). NAF was substantially reduced (67-91%) 96 h after maximum tolerated dosages of CPF in adult and aged rats (279 mg/kg, sc) but not in juveniles (127 mg/kg, sc), even though AChE inhibition was similar among the age groups (>80%). Together these data suggest that NAF is differentially expressed during maturation and that this neuromodulatory process may be selectively altered by some OP insecticides, potentially contributing to age-related differences in response to AChE inhibitors. As NAF has been postulated to be activated under conditions of 'impaired' cholinergic function, selective alteration of this pre-synaptic process by OP anticholinesterases may be also important in age-related conditions associated with cholinergic hypofunction.  相似文献   

12.
Dopaminergic nerve endings in the corpus striatum possess nicotinic (nAChRs) and muscarinic cholinergic receptors (mAChRs) mediating release of dopamine (DA). Whether nAChRs and mAChRs co-exist and interact on the same nerve endings is unknown. We here investigate on these possibilities using rat nucleus accumbens synaptosomes pre-labeled with [3H]DA and exposed in superfusion to cholinergic receptor ligands. The mixed nAChR–mAChR agonists acetylcholine (ACh) and carbachol provoked [3H]DA release partially sensitive to the mAChR antagonist atropine but totally blocked by the nAChR antagonist mecamylamine. Addition of the mAChR agonist oxotremorine at the minimally effective concentration of 30 μmol/L, together with 3, 10, or 100 μmol/L (−)nicotine provoked synergistic effect on [3H]DA overflow. The [3H]DA overflow elicited by 100 μmol/L (−)nicotine plus 30 μmol/L oxotremorine was reduced by atropine down to the release produced by (−)nicotine alone and it was abolished by mecamylamine. The ryanodine receptor blockers dantrolene or 8-bromo-cADP-ribose, but not the inositol 1,4,5-trisphosphate receptor blocker xestospongin C inhibited the (−)nicotine/oxotremorine evoked [3H]DA overflow similarly to atropine. This overflow was partly sensitive to 100 nmol/L methyllycaconitine which did not prevent the synergistic effect of (−)nicotine/oxotremorine. Similarly to (−)nicotine, the selective α4β2 nAChR agonist RJR2403 exhibited synergism when added together with oxotremorine. To conclude, in rat nucleus accumbens, α4β2 nAChRs exert a permissive role on the releasing function of reportedly M5 mAChRs co-existing on the same dopaminergic nerve endings.  相似文献   

13.
Abstract: The existence in the mammalian CNS of release-inhibiting muscarinic autoreceptors is well established. In contrast, few reports have focused on nicotinic autoreceptors mediating enhancement of acetylcholine (ACh) release. Moreover, it is unclear under what conditions the function of one type of autoreceptor prevails over that of the other. Rat cerebrocortex slices, prelabeled with [3H]choline, were stimulated electrically at 3 or 0.1 Hz. The release of [3H]ACh evoked at both frequencies was inhibited by oxotremorine, a muscarinic receptor agonist, and stimulated by atropine, a muscarinic antagonist. Nicotine, ineffective at 3 Hz, enhanced [3H]ACh release at 0.1 Hz; mecamylamine, a nicotinic antagonist, had no effect at 3 Hz but inhibited [3H]ACh release at 0.1 Hz. The cholinesterase inhibitor neostigmine decreased [3H]ACh release at 3 Hz but not at 0.1 Hz; in the presence of atropine, neostigmine potentiated [3H]ACh release, an effect blocked by mecamylamine. In synaptosomes depolarized with 15 mM KCI, ACh inhibited [3H]ACh release; this inhibition was reversed to an enhancement when the external [Ca2+] was lowered. The same occurred when, at 1.2 mM Ca2+, external [K+] was decreased. Oxotremorine still inhibited [3H]ACh release at 0.1 mM Ca2+. When muscarinic receptors were inactivated with atropine, the K+ (15 mM)-evoked release of [3H]ACh (at 0.1 mM Ca2+) was potently enhanced by ACh acting at nicotinic receptors (EC50? 0.6 µM). In conclusion, synaptic ACh concentration does not seem to determine whether muscarinic or nicotinic autoreceptors are activated. Although muscarinic autoreceptors prevail under normal conditions, nicotinic autoreceptors appear to become responsive to endogenous ACh and to exogenous nicotinic agents under conditions mimicking impairment of ACh release. Our data may explain in part the reported efficacy of cholinesterase inhibitors (and nicotinic agonists) in Alzheimer's disease.  相似文献   

14.
The impact of syntaxin and SNAP-25 cleavage on [3H]noradrenaline ([3H]NA) and [3H]dopamine ([3H]DA) exocytotic release evoked by different stimuli was studied in superfused rat synaptosomes. The external Ca2+-dependent K+-induced [3H]catecholamine overflows were almost totally abolished by botulinum toxin C1 (BoNT/C1), which hydrolyses syntaxin and SNAP-25, or by botulinum toxin E (BoNT/E), selective for SNAP-25. BoNT/C1 cleaved 25% of total syntaxin and 40% of SNAP-25; BoNT/E cleaved 40% of SNAP-25 but left syntaxin intact. The GABA uptake-induced releases of [3H]NA and [3H]DA were differentially affected: both toxins blocked the former, dependent on external Ca2+, but not the latter, internal Ca2+-dependent. BoNT/C1 or BoNT/E only slightly reduced the ionomycin-evoked [3H]catecholamine release. More precisely, [3H]NA exocytosis induced by ionomycin was sensitive to toxins in the early phase of release but not later. The Ca2+-independent [3H]NA exocytosis evoked by hypertonic sucrose, thought to release from the readily releasable pool (RRP) of vesicles, was significantly reduced by BoNT/C1. Pre-treating synaptosomes with phorbol-12-myristate-13-acetate, to increase the RRP, enhanced the sensitivity to BoNT/C1 of [3H]NA release elicited by sucrose or ionomycin. Accordingly, cleavage of syntaxin was augmented by the phorbol-ester. To conclude, our results suggest that clostridial toxins selectively target exocytosis involving vesicles set into the RRP.  相似文献   

15.
Presynaptic muscarinic and nicotinic receptors in the cerebral cortex reportedly inhibit and increase acetylcholine (ACh) release, respectively. In this study, we investigated whether these receptors reside on cholinergic nerve terminals projecting to the cerebral cortex from the nucleus basalis magnocellularis (nbm). Adult male rats received unilateral infusions of ibotenic acid (5 micrograms/1 microliter) in the nbm. Two weeks later, cerebral cortical cholinergic markers (choline acetyltransferase activity, high-affinity choline uptake, and coupled ACh synthesis) were significantly reduced in synaptosomes prepared from the lesioned hemispheres compared to contralateral controls. The depolarization-induced release of [3H]ACh from these synaptosomes was also reduced in the lesioned hemispheres, reflecting the reduced synthesis of transmitter. However, the nbm lesions had no effect on the inhibition of release induced by 100 microM oxotremorine. Synaptosomal [3H]ACh release was not altered by nicotine or the nicotinic agonists anabaseine and 2-(3-pyridyl)-1,4,5,6-tetrahydropyrimidine. Nicotine (10-100 microM) did increase [3H]ACh release in control and lesioned hemispheres in cortical minces, but to a similar extent. These results suggest that neither muscarinic nor nicotinic receptors modulating ACh release reside on nbm-cholinergic terminals.  相似文献   

16.
We examined the effect of chronic nicotine treatment on dopaminergic activity by measuring the effects of D1 and D2 dopamine (DA) receptor agonists and antagonists on tritium release from mouse striatum preloaded with [3H]DA. The radioactivity released during superfusion was separated on alumina columns and the distribution and efflux of [3H]DA and its main 3H-labeled metabolites were quantified. After preloading by incubation with [3H]DA, the electrical stimulation-evoked tritium overflow was higher in striatum prepared from nicotine-treated mice, whereas in vitro addition of nicotine caused a similar increase in tritium release from striatum of untreated and chronic nicotine-treated mice. The overflow of [3H]DA and its 3H-metabolites exhibited similar distribution patterns in [3H]DA-preloaded striatum dissected from untreated and chronic nicotine-pretreated mice, indicating that repeated injections with nicotine did not alter the metabolism of [3H]DA taken up by the tissue. (-)-Quinpirole, a selective agonist for D2 DA receptors, and apomorphine, a nonselective D1/D2 agonist, inhibited the electrical stimulation-induced tritium efflux from striatum of untreated mice, whereas (+/-)-sulpiride, a D2 DA receptor antagonist, enhanced the evoked release of tritium. These changes in tritium efflux effected by (-)-quinpirole and (+/-)-sulpiride reflected changes in [3H]DA release and not in DA metabolism, as shown by separation of the released radioactivity on alumina columns. The D1 receptor agonist (+/-)-SKF-38393 did not affect the tritium overflow, whereas the D1 receptor antagonist (+)-SCH-23390 exerted a stimulatory action but only at a high concentration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Synaptosomes, prepared from rat cerebral cortex and hippocampus, were preincubated with [methyl-3H]choline. The effect of adenosine, cyclohexyladenosine, N-ethylcarboxamide adenosine, 2'-deoxyadenosine, and oxotremorine on K+-evoked 3H efflux was investigated. High-voltage electrophoretic separation showed that in the presence of physostigmine, the K+-evoked 3H efflux from hippocampal synaptosomes was 90% [3H]acetylcholine and 10% [3H]choline. Adenosine (30 microM) and oxotremorine (100 microM) both decreased [3H]acetylcholine release from hippocampal synaptosomes. The effect was inversely proportional to the KCl concentration and disappeared at a KCl concentration of 50 mM. Cyclohexyladenosine was approximately 3,000 times more active than adenosine, whereas N-ethylcarboxamide adenosine and 2'-deoxyadenosine were inactive. This indicates that A1 adenosine receptors were involved in the inhibitory effect. Caffeine antagonized the adenosine effect, and at a concentration of 100 microM, it stimulated [3H]acetylcholine efflux. The inhibitory effect of oxotremorine was as great in cortical as in hippocampal synaptosomes. In contrast, adenosine was much less active in cortical than in hippocampal synaptosomes. When inhibitory concentrations of adenosine and oxotremorine were added together into the incubation medium, the effect of adenosine on [3H]acetylcholine release was consistently reduced. An interaction between muscarinic and A1 adenosine presynaptic receptors at a common site modulating acetylcholine release can be assumed.  相似文献   

18.
The effects of both (-)- and (+)-nicotine isomers were examined on in vitro uptake and release of [3H]dopamine in rat striatum. Both isomers inhibited uptake of [3H]dopamine in chopped tissue at concentrations well below those necessary for promoting release of preloaded [3H]dopamine. (-)-Nicotine was more potent than (+)-nicotine both at inhibiting uptake and at promoting release. Unlike other dopamine uptake inhibitors, however, nicotine inhibited only 50% of the total uptake. In the presence of 1 nM nicotine, the residual [3H]dopamine uptake was less sensitive to inhibition by cocaine than uptake in the absence of nicotine. Nicotine did not compete against the binding of [3H]GBR 12935, a selective dopamine uptake inhibitor. The nicotinic receptor agonists carbachol and 1,1-dimethyl-4-phenylpiperazinium iodide also inhibited uptake, whereas the nicotinic antagonists chlorisondamine and mecamylamine blocked nicotine's effect. Thus, the effect of nicotine on dopamine uptake appears to be mediated by a receptor similar to the nicotinic acetylcholine receptor. These receptors do not seem to be on the terminals that are accumulating dopamine, however, since tetrodotoxin prevented the effect of nicotine on [3H]dopamine uptake and nicotine had no effect on uptake in a synaptosomal preparation.  相似文献   

19.
We evaluated the impact of environmental training on the functions of pre-synaptic glutamatergic NMDA and α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and nicotinic receptors expressed by hippocampal noradrenergic nerve terminals. Synaptosomes isolated from the hippocampi of mice housed in enriched (EE) or standard (SE) environment were labeled with [3H]noradrenaline ([3H]NA) and tritium release was monitored during exposure in superfusion to NMDA, AMPA, epibatidine or high K+. NMDA -evoked [3H]NA release from EE hippocampal synaptosomes was significantly higher than that from SE synaptosomes, while the [3H]NA overflow elicited by 100 μM AMPA, 1 μM epibatidine or (9, 15, 25 mM) KCl was unchanged. In EE mice, the apparent affinity of NMDA or glycine was unmodified, while the efficacy was significantly augmented. Sensitivity to non-selective or subtype-selective NMDA receptor antagonists (MK-801, ifenprodil and Zn2+ ions) was not modified in EE. Finally, the analysis of NMDA receptor subunit mRNA expression in noradrenergic cell bodies of the locus coeruleus showed that NR1, NR2A, NR2B and NR2D subunits were unchanged, while NR2C decreased significantly in EE mice as compared to SE mice. Functional up-regulation of the pre-synaptic NMDA receptors modulating NA release might contribute to the improved learning and memory found in animals exposed to an EE.  相似文献   

20.
Presynaptic modulation of synaptic transmission is the primary function of central nicotinic acetylcholine receptors (nAChRs) in developing and adult brain. nAChR activation regulates release of various neurotransmitters, including norepinephrine (NA). Given evidence that NA may serve a critical functional role in cerebellar development, we have undertaken studies to determine whether nAChRs modulate NA release in developing cerebellum. In vitro experiments using cerebellar slices examined the effects of nAChR stimulation on release of radiolabeled NA ([3H]NA). Our data indicate the presence of functional nAChRs on NA terminals in immature cerebellum and subsequent developmental regulation of receptor properties. During postnatal week one, the maximally effective dose of nicotine released 35.0 +/- 1.2% of cerebellar [3H]NA stores. There was a subsequent decline in maximal nicotine-stimulated NA release until postnatal day 30, when Emax values were statistically indistinguishable from adult. Although the efficacy of nicotine changed substantially throughout development, EC50 values did not differ significantly (EC50 = 4.4-12.0 micro m). Pharmacological analysis indicated that this developmental shift in maximum nicotine effect reflects a change in the properties of the nAChRs. These data support recent findings of a possible functional role of nAChRs in regulating cerebellar ontogeny, and provides further support for the role of NA as a neurotrophic factor during development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号