首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Escherichia coli cells harboring an altered Q beta RNA replicase which has amino acid substitutions of the glycine residue at position 357 in the conserved sequence Tyr356-Gly357-Asp358-Asp359 of the beta-subunit protein lost the replicase activity but interfered with proliferation of Q beta phage [Inokuchi and Hirashima (1987) J. Virol. 61, 3946-3949]. To examine the mechanism of the interference, we further analyzed various mutants lacking the carboxy-terminal region of the beta-subunit protein. The cells expressing the beta-subunit gene with up to 17% deletion from the carboxy-terminus of the protein prevented the proliferation of Q beta phage. However, in the case that the deletion extended beyond 25% from the carboxy-terminus, the cells showed no interference. In addition, when the interference took place, the phage coat protein synthesis was inhibited. These results indicate that the region between amino acids 440 and 487 of the beta-subunit protein is involved in the interference and suggest that the defective replicase inhibits the phage coat protein synthesis by competing with the ribosomes at the initiation site of the coat gene.  相似文献   

2.
Autocatalytic replication of a recombinant RNA   总被引:11,自引:0,他引:11  
We demonstrate that a heterologous RNA sequence can be copied in vitro by Q beta replicase when it is inserted into a naturally occurring Q beta replicase template. A recombinant RNA was constructed by inserting decaadenylic acid between nucleotides 63 and 64 of MDV-1 (+) RNA, using phage T4 RNA ligase. The insert was located away from regions of the template known to be required for the binding of the replicase and for the initiation of product strand synthesis. To minimize the disruption of template structure, we inserted the heterologous sequence into a hairpin loop on the exterior of the molecule. Q beta replicase copied this recombinant RNA in vitro, and the complementary product strands served as templates for the synthesis of additional copies of the original recombinant RNA. The reaction was therefore autocatalytic and the amount of recombinant RNA increased exponentially. A 300-fold amplification of the recombinant RNA occurred within nine minutes. Insertion of biologically significant RNAs into the MDV-1 RNA sequence should allow them to be replicated autocatalytically.  相似文献   

3.
4.
5.
Numerous RNA species of different length and nucleotide sequence grow spontaneously in vitro in Q beta replicase reactions where no RNA templates are added deliberately. Here, we show that this spontaneous RNA synthesis by Q beta replicase is template directed. The immediate source of template RNA can be the laboratory air, but there are ways to eliminate, or at least substantially reduce, the harmful effects of spontaneous synthesis. Solitary RNA molecules were detected in a thin layer of agarose gel containing Q beta replicase, where they grew to form colonies that became visible upon staining with ethidium bromide. This result provides a powerful tool for RNA cloning and selection in vitro. We also show that replicating RNAs similar to those growing spontaneously are incorporated into Q beta phage particles and can propagate in vivo for a number of phage generations. These RNAs are the smallest known molecular parasites, and in many aspects they resemble both the defective interfering genomes of animal and plant viruses and plant virus satellite RNAs.  相似文献   

6.
A very efficient replicase template has been isolated from the products of spontaneous RNA synthesis in an in vitro Q beta replicase reaction that was incubated in the absence of added RNA. This template was named RQ135 RNA because it is 135 nucleotides in length. Its sequence consists entirely of segments that are homologous to ribosomal 23 S RNA and the phage lambda origin of replication. The sequence segments are unrelated to the sequence of Q beta bacteriophage genomic RNA. Nonetheless, this natural recombinant is replicated in vitro at a rate equal to the most efficient of the known Q beta RNA variants. Apparently, the structural properties that ensure recognition of an RNA template by Q beta replicase are not confined to viral RNA, but can appear as a result of recombination among other RNAs that usually occur in cells.  相似文献   

7.
Q beta phage RNAs with inactivating insertion (8-base) or deletion (17-base) mutations within their replicase genes were prepared from modified Q beta cDNAs and transfected into Escherichia coli spheroplasts containing Q beta replicase provided in trans by a resident plasmid. Replicase-defective (Rep-) Q beta phage produced by these spheroplasts were detected as normal-sized plaques on lawns of cells containing plasmid-derived Q beta replicase, but were unable to form plaques on cells lacking this plasmid. When individual Rep- phage were isolated and grown to high titer in cells containing plasmid-derived Q beta replicase, revertant (Rep+) Q beta phage were obtained at a frequency of ca. 10(-8). To investigate the mechanism of this reversion, a point mutation was placed into the plasmid-derived Q beta replicase gene by site-directed mutagenesis. Q beta mutants amplified on cells containing the resultant plasmid also yielded Rep+ revertants. Genomic RNA was isolated from several of the latter phage revertants and sequenced. Results showed that the original mutation (insertion or deletion) was no longer present in the phage revertants but that the marker mutation placed into the plasmid was now present in the genomic RNAs, indicating that recombination was one mechanism involved in the reversion of the Q beta mutants. Further experiments demonstrated that the 3' noncoding region of the plasmid-derived replicase gene was necessary for the reversion-recombination of the deletion mutant, whereas this region was not required for reversion or recombination of the insertion mutant. Results are discussed in terms of a template-switching model of RNA recombination involving Q beta replicase, the mutant phage genome, and plasmid-derived replicase mRNA.  相似文献   

8.
Interference with viral infection by defective RNA replicase.   总被引:16,自引:6,他引:10  
RNA-dependent RNA and DNA polymerases have a conserved segment, Tyr-X-Asp-Asp (G. Karmer and P. Argos, Nucleic Acids Res. 12:7269-7282, 1984). To investigate the function of this segment, we changed the Gly residue at position 357 in the conserved sequence Tyr-356-Gly-357-Asp-358-Asp-359 of the replicase of RNA coliphage Q beta to Ala, Ser, Pro, Met, or Val and examined the replicase activity in vivo. Cells carrying the variant plasmids lost the replicase activity and severely inhibited the proliferation of phage Q beta (group III) and related phage SP (group IV) by suppressing phage RNA synthesis. In contrast, substitution of the Gly residue at 390 showed only a slight inhibitory effect, although replicase activity was also lost. These results suggest that the cells harboring an altered replicase at the conserved segment can interfere specifically with the wild-type phage and different but related phage infections.  相似文献   

9.
The secondary structure of genomic RNA from the coliphage Q beta has been examined by electron microscopy in the presence of varying concentrations of spermidine using the Kleinschmidt spreading technique. The size and position of structural features that cover 70% of the viral genome have been mapped. The structural features that are visualized by electron microscopy in Q beta RNA are large. They range in size from 170 to 1600 nucleotides. A loop containing approximately 450 nucleotides is located at the 5' end of the RNA. It includes the initiation region for the viral maturation protein. A large hairpin containing approximately 1600 nucleotides is located in the center of the molecule. It is multibranched and includes most of the viral coat gene, the readthrough region of the A1 gene, and approximately one third of the viral replicase gene. Within the central hairpin, the initiation region for the viral replicase gene pairs with a region within the distal third of the viral coat gene. This structure may participate in the regulation of translational initiation of the viral replicase gene. Two structural variants of the central hairpin were observed. One of them brings the internal S and M viral replicase binding regions into juxtaposition. These observations suggest that the central hairpin may also participate in the regulation of translation of the viral coat gene. The secondary structures that are observed in Q beta RNA differ significantly from structures that we described previously in the genomic RNA of coliphage MS2 but are similar to structures we observed by electron microscopy in the related group B coliphage SP.  相似文献   

10.
K Mitsui  K Igarashi  T Kakegawa  S Hirose 《Biochemistry》1984,23(12):2679-2683
The possibility that polyamines can stimulate the synthesis of special kinds of proteins has been examined by using a polyamine-requiring mutant of Escherichia coli. It was found that the synthesis of some proteins, particularly one with a molecular weight (Mr) of 62K, was significantly stimulated following polyamine supplementation of polyamine-starved cells. The preferential stimulation of the synthesis of this polyamine-induced protein of Mr 62K (PI protein) was followed by the stimulation of overall protein synthesis by polyamines. PI protein was purified to homogeneity and some of its properties were examined. From studies on the effect of PI protein on MS2 RNA directed protein synthesis, it was shown that this protein stimulated the synthesis of RNA replicase by 2.2-fold in the presence of 1 mM spermidine.  相似文献   

11.
12.
We report the nucleotide sequence of the Group IV RNA bacteriophage SP. The entire sequence is 4276 nucleotides long. Four cistrons have been identified by comparison with the related Group III phage Q beta. The maturation protein contains 449 amino acids, the coat protein contains 131 amino acids, the read-through protein contains 330 amino acids and the replicase beta-subunit contains 575 amino acids. SP is 59 nucleotides longer than Q beta. We have analyzed both sequence and structural conservation between SP and Q beta and shown that the sequences for the coat and central region of the replicase are strongly conserved between the two genomes. We also show that the S and M replicase binding sites of Q beta are strongly conserved in SP. Interestingly, the base composition of SP and Q beta differ significantly from one another, and most of the differences can be accounted for by a strong preponderance of U in the third position of each codon of Q beta relative to SP. We also compare conserved hairpins associated with potential coat protein and replicase binding sites.  相似文献   

13.
(1) The RNA replicase induced by bacteriophage Qbeta consists of four non-identical subunits designated as alpha (mol. wt. 74000), beta (mol. wt. 64000), gamma (mol. wt. 47000) and delta (mol. wt. 33000), only one (subunit beta) of which is specified by the phage genome. (2) Subunit alpha (30 S ribosomal protein "S1" as well as translational interference factor "i") is required only for (+) strand-directed RNA synthesis in the presence of the host factor. (3) Qbeta replicase lacking subunit alpha (R-alpha) is capable of replicating templates other than (+) strand, such as (--), "6S" RNA, poly(C) etc., in the absence of the host factor. (4) Subunit beta is suggested to be the nucleotide-polymerizing enzyme, but is unable to initiate RNA synthesis by itself. (5) Subunits gamma and delta are identical to the protein synthesis elongation factors, EF-Tu and EF-Ts, respectively, and are required only for initiation of RNA synthesis, but not for elongation. (6) A model of Qbeta replicase is presented in order to discuss observed template-enzyme interactions.  相似文献   

14.
C K Biebricher  R Luce 《The EMBO journal》1992,11(13):5129-5135
SV-11 is a short-chain [115 nucleotides (nt)] RNA species that is replicated by Q beta replicase. It is reproducibly selected when MNV-11, another 87 nt RNA species, is extensively amplified by Q beta replicase at high ionic strength and long incubation times. Comparing the sequences of the two species reveals that SV-11 contains an inverse duplication of the high-melting domain of MNV-11. SV-11 is thus a recombinant between the plus and minus strands of MNV-11 resulting in a nearly palindromic sequence. During chain elongation in replication, the chain folds consecutively to a metastable secondary structure of the RNA, which can rearrange spontaneously to a more stable hairpin-form RNA. While the metastable form is an excellent template for Q beta replicase, the stable RNA is unable to serve as template. When initiation of a new chain is suppressed by replacing GTP in the replication mixture by ITP, Q beta replicase adds nucleotides to the 3' terminus of RNA. The replicase uses parts of the RNA sequence, preferentially the 3' terminal part for copying, thereby creating an interior duplication. This reaction is about five orders of magnitude slower than normal template-instructed synthesis. The reaction also adds nucleotides to the 3' terminus of some RNA molecules that are unable to serve as templates for Q beta replicase.  相似文献   

15.
Localization of the Q beta replicase recognition site in MDV-1 RNA   总被引:4,自引:0,他引:4  
Fragments of MDV-1 RNA (a small, naturally occurring template for Q beta replicase) that were missing nucleotides at either their 5' end or their 3' end were still able to form a complex with Q beta replicase. By assaying the binding ability of fragments of different length, it was established that the binding site for Q beta replicase is determined by nucleotide sequences that are located near the middle of MDV-1 RNA. Fragments missing nucleotides at their 5' end were able to serve as templates for the synthesis of complementary strands, but fragments missing nucleotides at their 3' end were inactive, indicating that the 3'-terminal region of the template is required for the initiation of RNA synthesis. The nucleotide sequences of both the 3' terminus and the central binding region of MDV-1 (+) RNA are almost identical to sequences at the 3' terminus and at an internal region of Q beta (-) RNA.  相似文献   

16.
17.
18.
We have localized a functional region of the RNA bacteriophage Q beta replicase following an extensive mutational analysis. Using the method of oligonucleotide linker-insertion mutagenesis, we specifically introduced mutations into a cloned DNA copy of the Q beta replicase gene so that the resulting replicase products would putatively contain small amino acid insertions. In a selective phenotypic assay, we screened mutant replicases for RNA-directed replication activity in vivo. Analysis of 37 different mutant clones indicated that Q beta replicase can accept amino acid substitutions and insertions at several sites at the amino and carboxy termini without abolishing functional activity in vivo or in vitro. However, disruption within the internal amino acid sequence resulted almost exclusively in nonfunctional enzyme. The results suggest that the central region of the replicase protein contains a rigid amino acid composition that is required for replicase function, whereas the amino and carboxy termini are much more receptive to small amino acid insertions and substitutions. These experiments should further enable us to analyze the coding function of the Q beta replicase gene independently of other phage RNA functions contained within this nucleotide region.  相似文献   

19.
Interactions of Q beta replicase with Q beta RNA   总被引:15,自引:0,他引:15  
The interactions of Qβ replicase with Qβ RNA were investigated by treating replicase-Qβ RNA complexes under various conditions with ribonuclease T1, and by characterizing enzyme-bound RNA fragments recovered by a filter binding technique. Evidence for replicase binding at two internal regions of Qβ RNA was obtained. One region (at about 1250 to 1350 nucleotides from the 5′ end) overlaps with the initiation site for coat protein synthesis; this interaction is thought to be inessential for template activity but rather to be involved in the regulation of protein synthesis. Binding to this site (called the S-site) requires moderate concentrations of salt but no magnesium ions. The other region (at about 2550 to 2870 nucleotides from the 5′ end) is probably essential for template activity; binding to this site (called the M-site) is dependent on the presence of magnesium ions. The nucleotide sequences of the RNA fragments from the two sites were determined and found to have no common features. Under the conditions tested, replicase binding at the 3′ end of Qβ RNA could not be demonstrated, except when initiation of RNA synthesis was allowed to occur in the presence of GTP and host factor. If instead of intact Qβ RNA, a complete RNAase T1 digest of Qβ RNA was allowed to bind to replicase, oligonucleotides from the S-site and the M-site, and oligonucleotides from a region close to the 3′ end, were found to have the highest affinity to the enzyme.The RNA fragments recovered in highest yield, M-2 and S-3 from the M and S-site, respectively, were isolated on a preparative scale and their enzyme binding properties were studied. In competition assays with random RNA fragments of the same size, selective binding was observed both for the M and the S-site fragment. Partial competition for replicase binding was found if M-2 and S-3 were presented simultaneously to the enzyme. Either fragment, if preincubated with replicase, caused a specific inhibition of initiation of Qβ RNA-directed RNA synthesis, without inhibiting the poly(rC)-directed reaction.The results are discussed in terms of a model of replicase-Qβ RNA recognition. Template specificity is attributed to binding of internal RNA regions to replicase, resulting in a specific spatial orientation of the RNA by which the inherently weak, but essential, interaction at the 3′ end is allowed to occur and to lead to the initiation of RNA synthesis.  相似文献   

20.
The effect of methylglyoxal bis(guanylhydrazone) (MGBG), a structural analog of polyamines, on protein synthesis has been studied in the presence and absence of spermidine. The spermidine stimulation of polyphenylalanine- and MS2 RNA-directed RNA replicase synthesis in an Escherichia coli cell-free system and of globin synthesis in a rabbit reticulocyte cell-free system disappeared with the addition of MGBG. The spermidine reduction of misincorporation of leucine during polyphenylalanine synthesis in both E. coli and wheat germ cell-free systems was also disturbed by MGBG. MGBG noncompetitively interfered with polyamine stimulation of polyphenylalanine and globin synthesis, suggesting that MGBG could bind to both RNA and the complex of RNA and polyamine. MGBG was preferentially bound to ribosomal RNA among ribosomal RNA, poly(U), and calf thymus DNA, and strongly inhibited the amount of polyamine bound to ribosomal RNA. These results suggest that MGBG elimination of polyamine effects on protein synthesis may occur through the disturbance of polyamine binding to ribosomal RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号