首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Barley (Hordeum vulgare L.) mutant chlorina 3613 is notable for a lack of chlorophyll b (Chl b), low content of chlorophyll a (Chl a) and carotenoids in the chloroplasts, as well as reduction in the majority of components of LHCI and LHCII. Incompletely developed photosynthetic machinery of chlorina 3613 results in suppressed growth, lower biomass, and the declined rate of photosynthesis (as compared with the wild-type cv. Donaria). The lack of Chl b and greater part of peripheral antenna suggests that this mutant will have difficulties during acclimation to long-term shading because the light-harvesting role of Chl b-containing antenna becomes more important under the shortage of light. Earlier, our experiments with the mature chlorina 3613 plants shaded for one week at PAR photon flux density of 60 and 40% of that in full sunlight showed a stimulating effect of shading on growth, biomass accumulation, and Chl a synthesis in chlorina 3613 when biosynthesis of Chl b did not occur [1]. In this work, we investigated in more detail the changes in the content of carotenoids in chlorina 3613. We found that in Donaria at both investigated levels of illumination (60 and 40% of full sunlight) and in chlorina 3613 at 60% illumination, moderate reversible changes typical of shade-enduring plants occur in the content of carotenoids. In chlorina 3613 at 40% illumination, the content of β-carotene increased considerably (by 3 times) with simultaneous accumulation of Chl a. When full illumination was restored, the content of β-carotene decreased and remained on the level, which exceeded its initial content in the plants without shading by 38%; this level, was maintained by the end of vegetation. The changes in the contents of β-carotene and Chl a in chlorina 3613 were not accompanied by any accumulation of xanthophylls or changes in the relative content of active violaxanthin. The obtained results suggest that a long-term shading of the leaves of mature chlorina 3613 plants induced the formation of certain components of photosynthetic apparatus: reactive centers and core parts of photosystems’ antennae as well as proteins CP26 and CP29 and in this way contributed to partial restoration of photosynthetic activity and production process in the mutant lacking Chl b.  相似文献   

2.
Agronomic traits, photosynthetic pigments, gas exchange, and chlorophyll (Chl) fluorescence parameters of red stem buckwheat (Fagopyrum dibotrys Hara) mutants induced by γ-radiation were compared with green control at seedling stage. Plant height, number of first-class branches, and rhizome biomass were inhibited significantly (p<0.01). Chl a, Chl b, and Chl a+b contents decreased with elevated dose of γ-rays, while increasing carotenoid content indicated that buckwheat was capable of adjusting to the radiation damage. Decrease in net photosynthetic rate was the result of both stomatal and non-stomatal limitations. Fluorescence parameters, such as F0, Fm, Fv/Fm, Fv/F0, ΦPS2, electron transport rate, and photochemical quenching declined significantly (p<0.01) as compared with control due to photoinhibition, while non-photochemical quenching increased to enhance thermal dissipation. Lower parameters implied that leaf tissue was damaged significantly by high dose of γ-radiation and therefore leaf senescence was accelerated.  相似文献   

3.
Light-independent chlorophyll (Chl) biosynthesis is a prerequisite for the assembly of photosynthetic pigment–protein complexes in the dark. Dark-grown Larix decidua Mill. seedlings synthesize Chl only in the early developmental stages and their Chl level rapidly declines during the subsequent development. Our analysis of the key regulatory steps in Chl biosynthesis revealed that etiolation of initially green dark-grown larch cotyledons is connected with decreasing content of glutamyl-tRNA reductase and reduced 5-aminolevulinic acid synthesizing capacity. The level of the Chl precursor protochlorophyllide also declined in the developing larch cotyledons. Although the genes chlL, chlN and chlB encoding subunits of the light-independent protochlorophyllide oxidoreductase were constitutively expressed in the larch seedlings, the accumulation of the ChlB subunit was developmentally regulated and ChlB content decreased in the fully developed cotyledons. The efficiency of chlB RNA-editing was also reduced in the mature dark-grown larch seedlings. In contrast to larch, dark-grown seedlings of Picea abies (L.) Karst. accumulate Chl throughout their whole development and show a different control of ChlB expression. Analysis of the plastid ultrastructure, photosynthetic proteins by Western blotting and photosynthetic parameters by gas exchange and Chl fluorescence measurements provide additional experimental proofs for differences between dark and light Chl biosynthesis in spruce and larch seedlings.  相似文献   

4.
The fatty acid (FA) composition of callus lipids in two pine species, Pinus sibirica Du Tour and P. sylvestris L. was studied. Callus lipids were characterized by a high content of unsaturated FAs: 81.7% in P. sibirica and 63.2% in P. sylvestris. Among them, oleic and linoleic acids predominated (22.9 and 34.0% of total FAs in P. sibirica and 17.6 and 27.8% in P. sylvestris, respectively). Callus lipids also contained Δ5-UPIFA (unsaturated polymethyle-interrupted FAs), where pinoleic and sciadonic acids predominated. A comparison of FAs in the lipids of P. sylvestris calluses derived from needle and needle photosynthesizing tissues of this pine species showed that callus lipids were characterized by a greater diversity of Δ5-UPIFA but a lower degree of FA unsaturation and he higher level of Δ5-UPIFA.  相似文献   

5.
The photosynthetic performance and related leaf traits of Incarvillea delavayi Bur. et Franch were studied at different water regimes to assess its capacity for photosynthetic acclimation to water stress. The initial response of I. delavayi to water stress was the closure of stomata, which resulted in down-regulation of photosynthesis. The stomatal limitation (SL) represented the main component to photosynthetic limitations but non-stomatal limitation (NSL) increased quickly with the increasing water stress, and had similar magnitude to SL under severe water stress (soil moisture 25–30 % of field capacity). Chlorophyll (Chl) a fluorescence parameters characterizing photosystem (PS) 2 photochemical efficiency (ΦPS2), electron transport rate (J) and photochemical quenching (qP) decreased with the increasing water stress, indicating impaired photosynthetic apparatus. However, the water-stressed plants had a increased mesophyll CO2 diffusional conductance, Chl a/b ratio, leaf nitrogen partitioning in RuBPCO and bioenergetics in later grown parts, indicating that I. delavay had a substantial physiological plasticity and showed a good tolerance to water stress.  相似文献   

6.
Responses of plants deficient in chlorophyll b (Chl b) to a long-term (lasting for 7 days) decrease in illumination and subsequent restoration of normal illumination were investigated in chlorina 3613 mutant of barley (Hordeum vulgare L.). Efficiency of acclimation was estimated by productivity. Throughout the entire vegetation period, control chlorina 3613 plants growing under full natural illumination (PAR photon flux density of 2000–2200 μmol/(m2s)) were notable for a low content of chlorophyll a (Chl a), slow growth, and low productivity as compared with Donaria parent genotype (wild type). In the experiments, mature chlorina 3613 plants were shaded for 1 week, so that radiant flux density of PAR came to 60 or 40% of that in full sunlight. In experimental chlorina 3613 plants subjected to shading for 7 days, accumulation of Chl a and the lack of Chl b were accompanied by activation of growth processes and rise in total biomass; in contrast, in Donaria 7-day-long shading negatively influenced the accumulation of biomass by the plants. After restoration of full natural illumination, growth and productivity characteristics of chlorina 3613 plants, which for 7 days received only 40% of full natural illumination, became close to the characteristics of wild-type plants. Thus, the lack of Chl b in chlorina 3613 plants did not affect growth and productivity after a 7-day-long shading (to 40% of full illumination).  相似文献   

7.
The finding of unique Chl d- and Chl f-containing cyanobacteria in the last decade was a discovery in the area of biology of oxygenic photosynthetic organisms. Chl b, Chl c, and Chl f are considered to be accessory pigments found in antennae systems of photosynthetic organisms. They absorb energy and transfer it to the photosynthetic reaction center (RC), but do not participate in electron transport by the photosynthetic electron transport chain. However, Chl d as well as Chl a can operate not only in the light-harvesting complex, but also in the photosynthetic RC. The long-wavelength (Qy) Chl d and Chl f absorption band is shifted to longer wavelength (to 750 nm) compared to Chl a, which suggests the possibility for oxygenic photosynthesis in this spectral range. Such expansion of the photosynthetically active light range is important for the survival of cyanobacteria when the intensity of light not exceeding 700 nm is attenuated due to absorption by Chl a and other pigments. At the same time, energy storage efficiency in photosystem 2 for cyanobacteria containing Chl d and Chl f is not lower than that of cyanobacteria containing Chl a. Despite great interest in these unique chlorophylls, many questions related to functioning of such pigments in primary photosynthetic processes are still not elucidated. This review describes the latest advances in the field of Chl d and Chl f research and their role in primary photosynthetic processes of cyanobacteria.  相似文献   

8.
Effects of zinc (12–180 μM) alone and in mixtures with 12 μM Cd on metal accumulation, dry masses of roots and shoots, root respiration rate, variable to maximum fluorescence ratio (FV/FM), and content of photosynthetic pigments were studied in hydroponically cultivated chamomile (Matricaria recutita) plants. The content of Zn in roots and shoots increased with the increasing external Zn concentration and its accumulation in the roots was higher than that in the shoots. While at lower Zn concentrations (12 and 60 μM) the presence of 12 μM Cd decreased Zn accumulation in the roots, treatment with 120 and 180 μM Zn together with 12 μM Cd caused enhancement of Zn content in the root. Presence of Zn (12–120 μM) decreased Cd accumulation in roots. On the other hand, Cd content in the shoots of plants treated with Zn + Cd exceeded that in the plants treated only with 12 μM Cd. Only higher Zn concentrations (120 and 180 μM) and Zn + Cd mixtures negatively influenced dry mass, chlorophyll (Chl) and carotenoid content, FV/FM and root respiration rate. Chl b was reduced to a higher extent than Chl a.  相似文献   

9.
Photosynthetic parameters, growth, and pigment contents were determined during expansion of the fourth leaf of in vitro photoautotrophically cultured Nicotiana tabacum L. plants at three irradiances [photosynthetically active radiation (400–700 nm): low, LI 60 μmol m−2 s−1; middle, MI 180 μmol m−2 s−1; and high, HI 270 μmol m−2 s−1]. During leaf expansion, several symptoms usually accompanying leaf senescence appeared very early in HI and then in MI plants. Symptoms of senescence in developing leaves were: decreasing chlorophyll (Chl) a+b content and Chl a/b ratio, decreasing both maximum (FV/FM) and actual (ΦPS2) photochemical efficiency of photosystem 2, and increasing non-photochemical quenching. Nevertheless, net photosynthetic oxygen evolution rate (P N) did not decrease consistently with decrease in Chl content, but exhibited a typical ontogenetic course with gradual increase. P N reached its maximum before full leaf expansion and then tended to decline. Thus excess irradiance during in vitro cultivation did not cause early start of leaf senescence, but impaired photosynthetic performance and Chl content in leaves and changed their typical ontogenetic course.  相似文献   

10.
Two rice chlorophyll (Chl) b-less mutants (VG28-1, VG30-5) and the respective wild type (WT) plant (cv. Zhonghua No. 11) were analyzed for the changes in Chl fluorescence parameters, xanthophyll cycle pool, and its de-epoxidation state under exposure to strong irradiance, SI (1 700 μmol m−2 s−1). We also examined alterations in the chloroplast ultrastructure of the mutants induced by methyl viologen (MV) photooxidation. During HI (0–3.5 h), the photoinactivation of photosystem 2 (PS2) appeared earlier and more severely in Chl b-less mutants than in the WT. The decreases in maximal photochemical efficiency of PS2 in the dark (Fv/Fm), quantum efficiency of PS2 electron transport (ΦPS2), photochemical quenching (qP), as well as rate of photochemistry (Prate), and the increases in de-epoxidation state (DES) and rate of thermal dissipation of excitation energy (Drate) were significantly greater in Chl b-mutants compared with the WT plant. A relatively larger xanthophyll pool and 78–83 % conversion of violaxanthin into antheraxanthin and zeaxanthin in the mutants after 3.5 h of HI was accompanied with a high ratio of inactive/total PS2 (0.55–0.73) and high 1–qP (0.57–0.68) which showed that the activities of the xanthophyll cycle were probably insufficient to protect the photosynthetic apparatus against photoinhibition. No apparent difference of chloroplast ultrastructure was found between Chl b-less mutants and WT plants grown under low, LI (180 μmol m−2 s−1) and high, HI (700 μmol m−2 s−1) irradiance. However, swollen chloroplasts and slight dilation of thylakoids occurred in both mutants and the WT grown under LI followed by MV treatment. These typical symptoms of photooxidative damage were aggravated as plants were exposed to HI. Distorted and loose scattered thylakoids were observed in particular in the Chl b-less mutants. A greater extent of photoinhibition and photooxidation in these mutants indicated that the susceptibility to HI and oxidative stresses was enhanced in the photosynthetic apparatus without Chl b most likely as a consequence of a smaller antenna size.  相似文献   

11.

Background  

Assembly of stable light-harvesting complexes (LHCs) in the chloroplast of green algae and plants requires synthesis of chlorophyll (Chl) b, a reaction that involves oxygenation of the 7-methyl group of Chl a to a formyl group. This reaction uses molecular oxygen and is catalyzed by chlorophyllide a oxygenase (CAO). The amino acid sequence of CAO predicts mononuclear iron and Rieske iron-sulfur centers in the protein. The mechanism of synthesis of Chl b and localization of this reaction in the chloroplast are essential steps toward understanding LHC assembly.  相似文献   

12.
Photosynthetic parameters were measured in two invasive weeds, Mikania micrantha and Chromolaena odorata, grown in soil under full, medium, and low irradiance and full, medium, and low water supply. Both species showed significantly higher net photosynthetic rate, quantum yield of PS 2 photochemistry and photochemical quenching coefficient under high than low irradiance. For M. micrantha, low irradiance caused decreased chlorophyll content (Chl), Chl a/b ratio and maximum photochemical efficiency of PS 2 (Fv/Fm), while drought decreased Chl content and Fv/Fm and increased nonphotochemical quenching (NPQ). However, these parameters were much less affected in C. odorata except that Chl content and NPQ slightly increased under drought and high irradiance. High irradiance increased xanthophyll pools in both species, especially M. micrantha under combination with drought.  相似文献   

13.
Maize (Zea mays L.) seedlings were grown in nutrient solution culture containing 0, 5, and 20 μM cadmium (Cd) and the effects on various aspects of photosynthesis were investigated after 24, 48, 96 and 168 h of Cd treatments. Photosynthetic rate (P N) decreased after 48 h of 20 μM Cd and 96 h of 5μM Cd addition, respectively. Chl a and total Chl content in leaves declined under 48 h of Cd exposure. Chl b content decreased on extending the period of Cd exposure to 96 h. The maximum quantum efficiency and potential photosynthetic capacity of PSII, indicated by Fv/Fm and Fv/Fo, respectively, were depressed after 96 h onset of Cd exposure. After 48 h of 5μM Cd and 24 h of 20 μM Cd treatments, the activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.39) and phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) in the leaves started to decrease, respectively. We found that the limitation of photosynthetic capacity in Cd stressed maize leaves was associated with Cd toxicity on the light and the dark stages. However, Cd stress initially reduced the activities of Rubisco and PEPC and subsequently affected the PSII electron transfer, suggesting that the Calvin cycle reactions in maize plants are the primary target of the Cd toxic effect rather than PSII.  相似文献   

14.
Gas exchange of Carex cinerascens was carried out in Swan Islet Wetland Reserve (29°48′ N, 112°33′ E). The diurnal photosynthetic course of C. cinerascens in the flooded and the nonflooded conditions were analyzed through the radial basis function (RBF) neural network approach to evaluate the influences of environmental variables on the photosynthetic activity. The inhibition of photosynthesis induced by soil flooding can be attributed to the reduced stomatal conductance (g s), the deficiency of Rubisco regeneration and decreased chlorophyll (Chl) content. As revealed by analysis of artificial neural network (ANN) models, g s was the dominant factor in determining the photosynthesis response. Weighting analysis showed that the effect of water pressure deficit (VPD) > air temperature (T) > CO2 concentration (C a) > air humidity (RH) > photosynthetical photon flux density (PPFD) for the nonflooded model, whereas for the flooded model, the factors were ranked in the order VPD > C a > RH > PPFD > T. The different photosynthetic response of C. cinerascens found between the nonflooded and flooded conditions would be useful to evaluate the flood tolerance at plant species level.  相似文献   

15.
The responses of tobacco plants over-expressing trans-zeatin O-glucosyltransferase gene under constitutive or senescence-inducible promoter (35S:ZOG1 and SAG12:ZOG1) and of wild type (WT) plants to water stress and subsequent rehydration were compared. In plants sufficiently supplied with water, both transgenics have higher net photosynthetic rate (PN) in upper and middle leaves and higher stomatal conductance (gs) in middle leaves than WT. Water use efficiency (WUE = PN/E) was higher in both transgenics than in WT. During prolonged water stress, both PN and E declined to a similar extent in both transgenics and WT plants. However, 7 d after rehydration PN in SAG:ZOG (upper and middle leaves) and 35S:ZOG (upper leaves) was higher than that in WT plants. Increased content of endogenous CKs in 35S:ZOG plants did not prevent their response to ABA application and the results obtained did not support concept of CK antagonism of ABA-induced stomatal closure. The chlorophyll (Chl) a+b content was mostly higher in both transgenics than in WT. During water stress and subsequent rehydration it remained unchanged in upper leaves, decreased slightly in middle leaves only of WT, while rapidly in lower leaves. Total degradation of Chl, carotenoids and xanthophyll cycle pigments (XCP) was found under severe water stress in lower leaves. Carotenoid and XCP contents in middle and upper leaves mostly increased during development of water stress and decreased after rehydration. While β-carotene content was mostly higher in WT, neoxanthin content was higher in transgenics especially in 35S:ZOG under severe stress and after rehydration. The higher content of XCP and degree of their deepoxidation were usually found in upper and middle leaves than in lower leaves with exception of SAG:ZOG plants during mild water stress.  相似文献   

16.
We have investigated changes in the complex of biochemical parameters reflecting the disturbance of the homeostatic state and the activity of the adaptive reactions in Pinus sylvestris L. under the conditions of technogenic pollution. Disorders of the physiological state of trees growing under the effect of the excessive accumulation of pollutant elements result in changes in a number of parameters: a decrease in the ratio of protein and nonprotein nitrogen fractions in the needles by 52%; a decrease in the total phosphorus and its acid-soluble fraction by 40 and 63%, respectively; a decrease in carbon concentration by 31%; and a decrease in the amount of chlorophyll a, chlorophyll b, and carotenoids based on the weight of one needle by 23, 40, and 42%, respectively. The activation of protective reactions of pine is proven by an increase in the amount of ascorbic acid in needles by 48%; in the amount of water-soluble phenolic compounds by 29%; in the ratio of Chl. a/Chl. b by 35%; in the ratio of green pigments to yellow by 40%; and in the level of water- and alcohol-soluble proteins 40 and 30%, respectively. The highest activity of biochemical protection components was recorded in trees growing near the Shelekhovsky industrial center, the emissions of which contain a large amount of fluorides and polycyclic aromatic hydrocarbons (PAHs).  相似文献   

17.
Plant growth, chlorophyll (Chl) content, photosynthetic gas exchange, ribulose-1,5-bisphosphate carboxylase (RuBPCO) enzyme activity, and Chl fluorescence in radish (Raphanus sativus var. longipinnatus) plants were examined after turnip mosaic virus (TuMV) infection. Plant fresh mass, dry mass, Chl content, net photosynthetic rate (P N), transpiration rate (E), stomatal conductance (g s), and RuBPCO activity were significantly lower in infected plants after 5 weeks of virus infection as compared to healthy plants. The 5-week virus infection did not induce significant differences in intercellular CO2 concentration (C i, photochemical efficiency of photosystem 2, PS2 (Fv/Fm), excitation capture efficiency of open PS2 reaction centres (Fv'/Fm'), effective quantum efficiency of photosystem 2 (ΔF/Fm'), and photochemical quenching (qP), but non-photochemical quenching (qN) and alternative electron sink (AES) were significantly enhanced. Thus the decreased plant biomass of TuMV-infected plants might be associated with the decreased photosynthetic activity mainly due to reduced RuBPCO activity.  相似文献   

18.
Ginger (Zingiber officinale Rosc.) plantlets were propagated in vitro and acclimated under different photosynthetic photon flux densities (60 and 250 μmol m−2 s−1 = LI and HI, respectively). Increases in chlorophyll (Chl) content and Chl a/b ratio were found under both irradiances. In vitro plantlets (day 0) exhibited a low photosynthesis, but chloroplasts from in vitro leaves contained well developed grana and osmiophillic globules. Photoinhibition in leaves formed in vitro was characterized by decrease of photochemical efficiency and quantum efficiency of photosystem 2 photochemistry in HI treatment during acclimation. The new leaves formed during acclimation in both treatments showed a higher photosynthetic capacity than the leaves formed in vitro. Also activities of antioxidant enzymes of micropropagated ginger plantlets changed during acclimation.  相似文献   

19.
The effects of shade on the growth, leaf photosynthetic characteristics, and chlorophyll (Chl) fluorescence parameters of Lycoris radiata var. radiata were determined under differing irradiances (15, 65, and 100% of full irradiance) within pots. The HI plants exhibited a typical decline in net photosynthetic rate (P N) during midday, which was not observed in MI- and LI plants. This indicated a possible photoinhibition in HI plants as the ratio of variable to maximum fluorescence (Fv/Fm) value was higher and the minimal fluorescence (F0) was lower in the, and LI plants. Diurnal patterns of stomatal conductance (g s) and transpiration rate (E) were remarkably similar to those of P N at each shade treatments, and the intercellular CO2 concentration (C i) had the opposite change trend. Under both shading conditions, the light saturation point, light compensation point and photon-saturated photosynthetic rate (P max) became lower than those under full sunlight, and it was the opposite for the apparent quantum yield (AQY). The higher the level of shade, the lower the integrated daytime carbon gain, stomatal and epidermis cell densities, specific leaf mass (SLM), bulb mass ratio (BMR), leaf thickness, and Chl a/b ratio. In contrast, contents of Chls per dry mass (DM), leaf area ratio (LAR), leaf mass ratio (LMR), leaf length, leaf area and total leaf area per plant increased under the same shade levels to promote photon absorption and to compensate for the lower radiant energy. Therefore, when the integrated daytime carbon gain, leaf area and total leaf area per plant, which are the main factors determining the productivity of L. radiata var. radiata plant, were taken into account together, this species may be cultivated at about 60∼70% of ambient irradiance to promote its growth.  相似文献   

20.
Long-term (30 d) effects of 100, 200, 300, and 400 mM NaCl on photosystem 2 (PS 2)-mediated electron transport activity and content of D1 protein in the thylakoid membranes of chrysanthemum (Dendranthema grandiflorum) cultured in vitro at low irradiance 20 μmol(photon) m−2 s−1 were investigated. 100 mM NaCl increased contents of chlorophylls (Chl) a and b, carotenoids (Car; xanthophylls + carotenes), and the ratio of Chl a/b, and Car/Chl a+b. However, further increase in NaCl concentration led to the significant reduction in the contents of Chl a, and Chl b, and increase in the ratio of Chl a/b and Car/Chl a+b. NaCl treatment decreased the PS 2-mediated electron transport activity and contents of various thylakoid membrane polypeptides including D1 protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号