首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Lyme borreliosis (LB) group spirochetes, collectively known as Borrelia burgdorferi sensu lato, are distributed worldwide. Wild rodents are acknowledged as the most important reservoir hosts. Ixodes scapularis is the primary vector of B. burgdorferi sensu lato in the eastern United States, and in the southeastern United States, the larvae and nymphs mostly parasitize certain species of lizards. The primary aim of the present study was to determine whether wild lizards in the southeastern United States are naturally infected with Lyme borreliae. Blood samples obtained from lizards in Florida and South Carolina were tested for the presence of LB spirochetes primarily by using B. burgdorferi sensu lato-specific PCR assays that amplify portions of the flagellin (flaB), outer surface protein A (ospA), and 66-kDa protein (p66) genes. Attempts to isolate spirochetes from a small number of PCR-positive lizards failed. However, PCR amplification and sequence analysis of partial flaB, ospA, and p66 gene fragments confirmed numerous strains of B. burgdorferi sensu lato, including Borrelia andersonii, Borrelia bissettii, and B. burgdorferi sensu stricto, in blood from lizards from both states. B. burgdorferi sensu lato DNA was identified in 86 of 160 (54%) lizards representing nine species and six genera. The high infection prevalence and broad distribution of infection among different lizard species at different sites and at different times of the year suggest that LB spirochetes are established in lizards in the southeastern United States.  相似文献   

2.
Lyme disease, caused by the bacterium Borrelia burgdorferi sensu stricto, is an emerging zoonotic disease in Canada and is vectored by the blacklegged tick, Ixodes scapularis. Here we used Bayesian analyses of sequence types (STs), determined by multilocus sequence typing (MLST), to investigate the phylogeography of B. burgdorferi populations in southern Canada and the United States by analyzing MLST data from 564 B. burgdorferi-positive samples collected during surveillance. A total of 107 Canadian samples from field sites were characterized as part of this study, and these data were combined with existing MLST data for samples from the United States and Canada. Only 17% of STs were common between both countries, while 49% occurred only in the United States, and 34% occurred only in Canada. However, STs in southeastern Ontario and southwestern Quebec were typically identical to those in the northeastern United States, suggesting a recent introduction into this region from the United States. In contrast, STs in other locations in Canada (the Maritimes; Long Point, Ontario; and southeastern Manitoba) were frequently unique to those locations but were putative descendants of STs previously found in the United States. The picture in Canada is consistent with relatively recent introductions from multiple refugial populations in the United States. These data thus point to a geographic pattern of populations of B. burgdorferi in North America that may be more complex than simply comprising northeastern, midwestern, and Californian groups. We speculate that this reflects the complex ecology and spatial distribution of key reservoir hosts.  相似文献   

3.
Lyme borreliosis, the most commonly reported vector-borne disease in North America, is caused by the spirochete Borrelia burgdorferi. Given the extensive genetic polymorphism of B. burgdorferi, elucidation of the population genetic structure of the bacterium in clinical samples may be relevant for understanding disease pathogenesis and may have applicability for the development of diagnostic tests and vaccine preparations. In this investigation, the genetic polymorphism of the 16S-23S rRNA (rrs-rrlA) intergenic spacer and ospC was investigated at the sequence level in 127 clinical isolates obtained from patients with early Lyme borreliosis evaluated in suburban New York City. Sixteen distinct rrs-rrlA and 16 distinct ospC alleles were identified, representing virtually all of the genotypes previously found in questing Ixodes scapularis nymphs in this region. In addition, a new ospC group was identified in a single patient. The strong linkage observed between the chromosome-located rrs-rrlA and plasmid-borne ospC genes suggests a clonal structure of B. burgdorferi in these isolates, despite evidence of recombination at ospC.  相似文献   

4.
The rare ospC allele L was detected in 30% of Borrelia burgdorferi sensu stricto strains cultured from a tick species, Ixodes affinis, and two rodent host species, Peromyscus gossypinus and Sigmodon hispidus, collected in a coastal plain area of Georgia and South Carolina, in the southeastern United States.  相似文献   

5.
Lyme borreliosis in North America is caused by the tick-borne spirochete Borrelia burgdorferi, a zoonotic bacterium that is able to persistently infect a wide range of vertebrate species. Given the pronounced strain structure of B. burgdorferi in the northeastern United States, we asked whether the fitness of the different genotypes varies among susceptible vertebrate hosts. The transmission dynamics of two genetically divergent human isolates of B. burgdorferi, BL206 and B348, were analyzed experimentally in white-footed mice and in C3H/HeNCrl mice over a time period of almost 3 months. We found that the initially high transmission efficiency from white-footed mice to ticks declined sharply for isolate B348 but remained considerably high for isolate BL206. In contrast, in C3H/HeNCrl mice, high transmission efficiency persisted for both isolates. Our findings provide proof-of-principle evidence for intrinsic fitness variation of B. burgdorferi strains in vertebrate host species, perhaps indicating the beginnings of adaptive radiation.  相似文献   

6.
During the spring in 2005 and 2006, 39,095 northward-migrating land birds were captured at 12 bird observatories in eastern Canada to investigate the role of migratory birds in northward range expansion of Lyme borreliosis, human granulocytic anaplasmosis, and their tick vector, Ixodes scapularis. The prevalence of birds carrying I. scapularis ticks (mostly nymphs) was 0.35% (95% confidence interval [CI] = 0.30 to 0.42), but a nested study by experienced observers suggested a more realistic infestation prevalence of 2.2% (95% CI = 1.18 to 3.73). The mean infestation intensity was 1.66 per bird. Overall, 15.4% of I. scapularis nymphs (95% CI = 10.7 to 20.9) were PCR positive for Borrelia burgdorferi, but only 8% (95% CI = 3.8 to 15.1) were positive when excluding nymphs collected at Long Point, Ontario, where B. burgdorferi is endemic. A wide range of ospC and rrs-rrl intergenic spacer alleles of B. burgdorferi were identified in infected ticks, including those associated with disseminated Lyme disease and alleles that are rare in the northeastern United States. Overall, 0.4% (95% CI = 0.03 to 0.41) of I. scapularis nymphs were PCR positive for Anaplasma phagocytophilum. We estimate that migratory birds disperse 50 million to 175 million I. scapularis ticks across Canada each spring, implicating migratory birds as possibly significant in I. scapularis range expansion in Canada. However, infrequent larvae and the low infection prevalence in ticks carried by the birds raise questions as to how B. burgdorferi and A. phagocytophilum become endemic in any tick populations established by bird-transported ticks.  相似文献   

7.
In North America, Lyme disease (LD) is a tick-borne zoonosis caused by the spirochete bacterium Borrelia burgdorferi sensu stricto, which is maintained by wildlife. Tick vectors and bacteria are currently spreading into Canada and causing increasing numbers of cases of LD in humans and raising a pressing need for public health responses. There is no vaccine, and LD prevention depends on knowing who is at risk and informing them how to protect themselves from infection. Recently, it was found in the United States that some strains of B. burgdorferi sensu stricto cause severe disease, whereas others cause mild, self-limiting disease. While many strains occurring in the United States also occur in Canada, strains in some parts of Canada are different from those in the United States. We therefore recognize a need to identify which strains specific to Canada can cause severe disease and to characterize their geographic distribution to determine which Canadians are particularly at risk. In this review, we summarize the history of emergence of LD in North America, our current knowledge of B. burgdorferi sensu stricto diversity, its intriguing origins in the ecology and evolution of the bacterium, and its importance for the epidemiology and clinical and laboratory diagnosis of LD. We propose methods for investigating associations between B. burgdorferi sensu stricto diversity, ecology, and pathogenicity and for developing predictive tools to guide public health interventions. We also highlight the emergence of B. burgdorferi sensu stricto in Canada as a unique opportunity for exploring the evolutionary aspects of tick-borne pathogen emergence.  相似文献   

8.
We developed a high-throughput method based on terminal restriction fragment length polymorphisms (T-RFLP) to identify ospC genotypes from field-collected samples of Borrelia burgdorferi. We first validated the method by analyzing B. burgdorferi ospC previously identified by sequencing. We then analyzed and compared ospC genotypes detected from ear biopsy tissue from natural populations of the white-footed mouse, a major B. burgdorferi reservoir host species in the eastern United States, and larval ticks feeding on those individual mice. The T-RFLP method enabled us to distinguish all 17 ospC genotypes tested, as well as mixed samples containing more than one genotype. Analysis costs compare favorably to those of alternative ospC identification methods. The T-RFLP method will facilitate large-scale field studies to advance our understanding of genotype-specific transmission patterns.  相似文献   

9.
Lyme borreliosis, one of the most frequently contracted zoonotic diseases in the Northern Hemisphere, is caused by bacteria belonging to different genetic groups within the Borrelia burgdorferi species complex, which are transmitted by ticks among various wildlife reservoirs, such as small mammals and birds. These features make the Borrelia burgdorferi species complex an attractive biological model that can be used to study the diversification and the epidemiology of endemic bacterial pathogens. We investigated the potential of population genomic approaches to study these processes. Sixty-three strains belonging to three species within the Borrelia burgdorferi complex were isolated from questing ticks in Alsace (France), a region where Lyme disease is highly endemic. We first aimed to characterize the degree of genetic isolation among the species sampled. Phylogenetic and coalescent-based analyses revealed clear delineations: there was a ∼50 fold difference between intra-specific and inter-specific recombination rates. We then investigated whether the population genomic data contained information of epidemiological relevance. In phylogenies inferred using most of the genome, conspecific strains did not cluster in clades. These results raise questions about the relevance of different strategies when investigating pathogen epidemiology. For instance, here, both classical analytic approaches and phylodynamic simulations suggested that population sizes and migration rates were higher in B. garinii populations, which are normally associated with birds, than in B. burgdorferi s.s. populations. The phylogenetic analyses of the infection-related ospC gene and its flanking region provided additional support for this finding. Traces of recombination among the B. burgdorferi s.s. lineages and lineages associated with small mammals were found, suggesting that they shared the same hosts. Altogether, these results provide baseline evidence that can be used to formulate hypotheses regarding the host range of B. burgdorferi lineages based on population genomic data.  相似文献   

10.
In the Thousand Islands region of eastern Ontario, Canada, Lyme disease is emerging as a serious health risk. The factors that influence Lyme disease risk, as measured by the number of blacklegged tick (Ixodes scapularis) vectors infected with Borrelia burgdorferi, are complex and vary across eastern North America. Despite study sites in the Thousand Islands being in close geographic proximity, host communities differed and both the abundance of ticks and the prevalence of B. burgdorferi infection in them varied among sites. Using this archipelago in a natural experiment, we examined the relative importance of various biotic and abiotic factors, including air temperature, vegetation, and host communities on Lyme disease risk in this zone of recent invasion. Deer abundance and temperature at ground level were positively associated with tick abundance, whereas the number of ticks in the environment, the prevalence of B. burgdorferi infection, and the number of infected nymphs all decreased with increasing distance from the United States, the presumed source of this new endemic population of ticks. Higher species richness was associated with a lower number of infected nymphs. However, the relative abundance of Peromyscus leucopus was an important factor in modulating the effects of species richness such that high biodiversity did not always reduce the number of nymphs or the prevalence of B. burgdorferi infection. Our study is one of the first to consider the interaction between the relative abundance of small mammal hosts and species richness in the analysis of the effects of biodiversity on disease risk, providing validation for theoretical models showing both dilution and amplification effects. Insights into the B. burgdorferi transmission cycle in this zone of recent invasion will also help in devising management strategies as this important vector-borne disease expands its range in North America.  相似文献   

11.
Factors potentially contributing to the lower incidence of Lyme borreliosis (LB) in the far-western than in the northeastern United States include tick host-seeking behavior resulting in fewer human tick encounters, lower densities of Borrelia burgdorferi-infected vector ticks in peridomestic environments, and genetic variation among B. burgdorferi spirochetes to which humans are exposed. We determined the population structure of B. burgdorferi in over 200 infected nymphs of the primary bridging vector to humans, Ixodes pacificus, collected in Mendocino County, CA. This was accomplished by sequence typing the spirochete lipoprotein ospC and the 16S-23S rRNA intergenic spacer (IGS). Thirteen ospC alleles belonging to 12 genotypes were found in California, and the two most abundant, ospC genotypes H3 and E3, have not been detected in ticks in the Northeast. The most prevalent ospC and IGS biallelic profile in the population, found in about 22% of ticks, was a new B. burgdorferi strain defined by ospC genotype H3. Eight of the most common ospC genotypes in the northeastern United States, including genotypes I and K that are associated with disseminated human infections, were absent in Mendocino County nymphs. ospC H3 was associated with hardwood-dominated habitats where western gray squirrels, the reservoir host, are commonly infected with LB spirochetes. The differences in B. burgdorferi population structure in California ticks compared to the Northeast emphasize the need for a greater understanding of the genetic diversity of spirochetes infecting California LB patients.In the United States, Lyme borreliosis (LB) is the most commonly reported vector-borne illness and is caused by infection with the spirochete Borrelia burgdorferi (3, 9, 52). The signs and symptoms of LB can include a rash, erythema migrans, fever, fatigue, arthritis, carditis, and neurological manifestations (50, 51). The black-legged tick, Ixodes scapularis, and the western black-legged tick, Ixodes pacificus, are the primary vectors of B. burgdorferi to humans in the United States, with the former in the northeastern and north-central parts of the country and the latter in the Far West (9, 10). These ticks perpetuate enzootic transmission cycles together with a vertebrate reservoir host such as the white-footed mouse, Peromyscus leucopus, in the Northeast and Midwest (24, 35), or the western gray squirrel, Sciurus griseus, in California (31, 46).B. burgdorferi is a spirochete species with a largely clonal population structure (14, 16) comprising several different strains or lineages (8). The polymorphic ospC gene of B. burgdorferi encodes a surface lipoprotein that increases expression within the tick during blood feeding (47) and is required for initial infection of mammalian hosts (25, 55). To date, approximately 20 North American ospC genotypes have been described (40, 45, 49, 56). At least four, and possibly up to nine, of these genotypes are associated with B. burgdorferi invasiveness in humans (1, 15, 17, 49, 57). Restriction fragment length polymorphism (RFLP) and, subsequently, sequence analysis of the 16S-23S rRNA intergenic spacer (IGS) are used as molecular typing tools to investigate genotypic variation in B. burgdorferi (2, 36, 38, 44, 44, 57). The locus maintains a high level of variation between related species, and this variation reflects the heterogeneity found at the genomic level of the organism (37). The IGS and ospC loci appear to be linked (2, 8, 26, 45, 57), but the studies to date have not been representative of the full range of diversity of B. burgdorferi in North America.Previous studies in the northeastern and midwestern United States have utilized IGS and ospC genotyping to elucidate B. burgdorferi evolution, host strain specificity, vector-reservoir associations, and disease risk to humans. In California, only six ospC and five IGS genotypes have been described heretofore in samples from LB patients or I. pacificus ticks (40, 49, 56) compared to approximately 20 ospC and IGS genotypes identified in ticks, vertebrate hosts, or humans from the Northeast and Midwest (8, 40, 45, 49, 56). Here, we employ sequence analysis of both the ospC gene and IGS region to describe the population structure of B. burgdorferi in more than 200 infected I. pacificus nymphs from Mendocino County, CA, where the incidence of LB is among the highest in the state (11). Further, we compare the Mendocino County spirochete population to populations found in the Northeast.  相似文献   

12.
Many vector-borne pathogens consist of multiple strains that circulate in both the vertebrate host and the arthropod vector. Characterization of the community of pathogen strains in the arthropod vector is therefore important for understanding the epidemiology of mixed vector-borne infections. Borrelia afzelii and B. garinii are two species of tick-borne bacteria that cause Lyme disease in humans. These two sympatric pathogens use the same tick, Ixodes ricinus, but are adapted to different classes of vertebrate hosts. Both Borrelia species consist of multiple strains that are classified using the highly polymorphic ospC gene. Vertebrate cross-immunity against the OspC antigen is predicted to structure the community of multiple-strain Borrelia pathogens. Borrelia isolates were cultured from field-collected I. ricinus ticks over a period spanning 11 years. The Borrelia species of each isolate was identified using a reverse line blot (RLB) assay. Deep sequencing was used to characterize the ospC communities of 190 B. afzelii isolates and 193 B. garinii isolates. Infections with multiple ospC strains were common in ticks, but vertebrate cross-immunity did not influence the strain structure in the tick vector. The pattern of genetic variation at the ospC locus suggested that vertebrate cross-immunity exerts strong selection against intermediately divergent ospC alleles. Deep sequencing found that more than 50% of our isolates contained exotic ospC alleles derived from other Borrelia species. Two alternative explanations for these exotic ospC alleles are cryptic coinfections that were not detected by the RLB assay or horizontal transfer of the ospC gene between Borrelia species.  相似文献   

13.
Scant attention has been paid to Lyme disease, Borrelia burgdorferi, Ixodes scapularis, or reservoirs in eastern North Dakota despite the fact that it borders high-risk counties in Minnesota. Recent reports of B. burgdorferi and I. scapularis in North Dakota, however, prompted a more detailed examination. Spirochetes cultured from the hearts of five rodents trapped in Grand Forks County, ND, were identified as B. burgdorferi sensu lato through sequence analyses of the 16S rRNA gene, the 16S rRNA gene-ileT intergenic spacer region, flaB, ospA, ospC, and p66. OspC typing revealed the presence of groups A, B, E, F, L, and I. Two rodents were concurrently carrying multiple OspC types. Multilocus sequence typing suggested the eastern North Dakota strains are most closely related to those found in neighboring regions of the upper Midwest and Canada. BALB/c mice were infected with B. burgdorferi isolate M3 (OspC group B) by needle inoculation or tick bite. Tibiotarsal joints and ear pinnae were culture positive, and B. burgdorferi M3 was detected by quantitative PCR (qPCR) in the tibiotarsal joints, hearts, and ear pinnae of infected mice. Uninfected larval I. scapularis ticks were able to acquire B. burgdorferi M3 from infected mice; M3 was maintained in I. scapularis during the molt from larva to nymph; and further, M3 was transmitted from infected I. scapularis nymphs to naive mice, as evidenced by cultures and qPCR analyses. These results demonstrate that isolate M3 is capable of disseminated infection by both artificial and natural routes of infection. This study confirms the presence of unique (nonclonal) and infectious B. burgdorferi populations in eastern North Dakota.  相似文献   

14.
15.
Lyme disease spirochetes demonstrate strain- and species-specific differences in tissue tropism. For example, the three major Lyme disease spirochete species, Borrelia burgdorferi sensu stricto, B. garinii, and B. afzelii, are each most commonly associated with overlapping but distinct spectra of clinical manifestations. Borrelia burgdorferi sensu stricto, the most common Lyme spirochete in the U.S., is closely associated with arthritis. The attachment of microbial pathogens to cells or to the extracellular matrix of target tissues may promote colonization and disease, and the Lyme disease spirochete encodes several surface proteins, including the decorin- and dermatan sulfate-binding adhesin DbpA, which vary among strains and have been postulated to contribute to strain-specific differences in tissue tropism. DbpA variants differ in their ability to bind to its host ligands and to cultured mammalian cells. To directly test whether variation in dbpA influences tissue tropism, we analyzed murine infection by isogenic B. burgdorferi strains that encode different dbpA alleles. Compared to dbpA alleles of B. afzelii strain VS461 or B. burgdorferi strain N40-D10/E9, dbpA of B. garinii strain PBr conferred the greatest decorin- and dermatan sulfate-binding activity, promoted the greatest colonization at the inoculation site and heart, and caused the most severe carditis. The dbpA of strain N40-D10/E9 conferred the weakest decorin- and GAG-binding activity, but the most robust joint colonization and was the only dbpA allele capable of conferring significant joint disease. Thus, dbpA mediates colonization and disease by the Lyme disease spirochete in an allele-dependent manner and may contribute to the etiology of distinct clinical manifestations associated with different Lyme disease strains. This study provides important support for the long-postulated model that strain-specific variations of Borrelia surface proteins influence tissue tropism.  相似文献   

16.
Antisera from rabbits immunized with two Japanese strains of Borrelia burgdorferi, HP3 an isolate from Ixodes persulcatus and HO14 an isolate from I. ovatus, or the European strain P/Bi isolated from human cerebrospinal fluid (CSF) did not passively protect hamsters from challenge with the infectious strain 297, a North American isolate from patient CSF. Antisera to strains 297 and B31, a North American isolate from I. dammini, however, provided protective effect to challenge with strain 297. Immune mice sera in the presence of homologous B. burgdorferi antigen induced the production of oxygen intermediates from mouse peritoneal exudate cells. Heterologous B. burgdorferi antigen had no effect. These results suggest that antigenic properties of Japanese strains are different from those of North American and European isolates.  相似文献   

17.
Lyme disease spirochetes possess complex genomes, consisting of a main chromosome and 20 or more smaller replicons. Among those small DNAs are the cp32 elements, a family of prophages that replicate as circular episomes. All complete cp32s contain an erp locus, which encodes surface-exposed proteins. Sequences were compared for all 193 erp alleles carried by 22 different strains of Lyme disease-causing spirochete to investigate their natural diversity and evolutionary histories. These included multiple isolates from a focus where Lyme disease is endemic in the northeastern United States and isolates from across North America and Europe. Bacteria were derived from diseased humans and from vector ticks and included members of 5 different Borrelia genospecies. All erp operon 5′-noncoding regions were found to be highly conserved, as were the initial 70 to 80 bp of all erp open reading frames, traits indicative of a common evolutionary origin. However, the majority of the protein-coding regions are highly diverse, due to numerous intra- and intergenic recombination events. Most erp alleles are chimeras derived from sequences of closely related and distantly related erp sequences and from unknown origins. Since known functions of Erp surface proteins involve interactions with various host tissue components, this diversity may reflect both their multiple functions and the abilities of Lyme disease-causing spirochetes to successfully infect a wide variety of vertebrate host species.  相似文献   

18.
In the northeastern United States, the Lyme disease agent, Borrelia burgdorferi sensu stricto, is maintained by enzoonotic transmission, cycling between white-footed mice (Peromyscus leucopus) and black-legged ticks (Ixodes scapularis). B. burgdorferi sensu stricto is genetically variable and has been divided into three major genotypes based on 16S-23S ribosomal DNA spacer (RST) analysis. To better understand how genetic differences in B. burgdorferi sensu stricto may influence transmission dynamics in nature, we investigated the interaction between an RST1 and an RST3 strain in a laboratory system with P. leucopus mice and I. scapularis ticks. Two groups of mice were infected with either BL206 (RST1) or B348 (RST3). Two weeks later, experimental mice were challenged with the opposite strain, while control mice were challenged with the same strain as that used for the primary infection. The transmission of BL206 and B348 from infected mice was then determined by xenodiagnosis with uninfected larval ticks at weekly intervals for 42 days. Mice in both experimental groups were permissive for infection with the second strain and were able to transmit both strains to the xenodiagnostic ticks. However, the overall transmission efficiencies of BL206 and B348 were significantly different. BL206 was more efficiently transmitted than B348 to xenodiagnostic ticks. Significantly fewer double infections than expected were detected in xenodiagnostic ticks. The results suggest that some B. burgdorferi sensu stricto strains, such as BL206, may be preferentially maintained in transmission cycles between ticks and white-footed mice. Other strains, such as B348, may be more effectively maintained in different tick-vertebrate transmission cycles.  相似文献   

19.
Targeted mutagenesis and complementation are important tools for studying genes of unknown function in the Lyme disease spirochete Borrelia burgdorferi. A standard method of complementation is reintroduction of a wild-type copy of the targeted gene on a shuttle vector. However, shuttle vectors are present at higher copy numbers than B. burgdorferi plasmids and are potentially unstable in the absence of selection, thereby complicating analyses in the mouse-tick infectious cycle. B. burgdorferi has over 20 plasmids, with some, such as linear plasmid 25 (lp25), carrying genes required by the spirochete in vivo but relatively unstable during in vitro cultivation. We propose that complementation on an endogenous plasmid such as lp25 would overcome the copy number and in vivo stability issues of shuttle vectors. In addition, insertion of a selectable marker on lp25 could ensure its stable maintenance by spirochetes in culture. Here, we describe the construction of a multipurpose allelic-exchange vector containing a multiple-cloning site and either of two selectable markers. This suicide vector directs insertion of the complementing gene into the bbe02 locus, a site on lp25 that was previously shown to be nonessential during both in vitro and in vivo growth. We demonstrate the functional utility of this strategy by restoring infectivity to an ospC mutant through complementation at this site on lp25 and stable maintenance of the ospC gene throughout mouse infection. We conclude that this represents a convenient and widely applicable method for stable gene complementation in B. burgdorferi.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号