首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
2.
The vertebrate genetic locus, coding for a Ca2+/calmodulin-dependent enzyme myosin light chain kinase (MLCK), the key regulator of smooth muscle contraction and cell motility, reveals a complex organization. Two MLCK isoforms are encoded by the MLCK genetic locus. Recently identified M(r) 210 kDa MLCK contains a sequence of smooth muscle/non-muscle M(r) 108 kDa MLCK and has an additional N-terminal sequence (Watterson et al., 1995. FEBS Lett. 373 : 217). A gene for an independently expressed non-kinase product KRP (telokin) is located within the MLCK gene (Collinge et al., 1992. Mol. Cell. Biol. 12 : 2359). KRP binds to and regulates the structure of myosin filaments (Shirinsky et al., 1993. J. Biol. Chem. 268 : 16578). Here we compared biochemical properties of MLCK-210 and MLCK-108 and studied intracellular localization of MLCK-210. MLCK-210 was isolated from extract of chicken aorta by immunoprecipitation using specific antibody and biochemically analysed in vitro. MLCK-210 phosphorylated myosin regulatory light chain and heavy meromyosin. The Ca(2+)-dependence and specific activity of MLCK-210 were similar to that of MLCK-108 from turkey gizzard. Using sedimentation assay we demonstrated that MLCK-210 as well as MLCK-108 binds to both actin and myosin filaments. MLCK-210 was localized in smooth muscle cell layers of aortic wall and was found to co-localize with microfilaments in cultured aortic smooth muscle cells.  相似文献   

3.
Telokin is a 17-kDa protein with an amino acid sequence that is identical to the COOH terminus of the 130-kDa myosin light chain kinase (MLCK). Telokin mRNA is transcribed from a second promoter, located within an intron, in the 3' region of the MLCK gene. In the current study, we show by in situ mRNA hybridization that telokin mRNA is restricted to the smooth muscle cell layers within adult smooth muscle tissues. In situ mRNA analysis of mouse embryos also revealed that telokin expression is restricted to smooth muscle tissues during embryonic development. Telokin mRNA expression was first detected in mouse gut at embryonic day 11.5; no telokin expression was detected in embryonic cardiac or skeletal muscle. Expression of telokin was also found to be regulated during postnatal development of the male and female reproductive tracts. In both uterus and vas deferens, telokin protein expression greatly increased between days 7 and 14 of postnatal development. The increase in telokin expression correlated with an increase in the expression of several other smooth muscle-restricted proteins, including smooth muscle myosin and alpha-actin.  相似文献   

4.
5.
Small pulmonary arteries (SPA), <500 microm diameter of the cat, constrict when exposed to hypoxia, whereas larger arteries (large pulmonary arteries; LPA), >800 microm diameter, show little or no response. It is unknown why different contractile responses occur within the same vascular bed, but activator or repressor proteins within the smooth muscle cell (SMC) can modify myosin phosphatase and myosin light chain kinase (MLCK), thereby influencing the phosphorylation state of myosin light chain (MLC) and ultimately, contraction. Telokin, a protein with a sequence identical to the COOH-terminal domain of MLCK, is expressed in smooth muscle where in its phosphorylated state it inhibits myosin phosphatase, binds to unphosphorylated myosin, and helps maintain smooth muscle relaxation. We measured telokin mRNA and telokin protein in smooth muscle from different diameter feline pulmonary arteries and sought to determine whether changes in the phosphorylation status of telokin and MLC occurred during hypoxia. In pulmonary arteries, telokin expression varied inversely with artery diameter, but cerebral arteries showed neither telokin protein nor telokin mRNA. Although telokin and MLC were distributed uniformly throughout the SPA muscle cell cytoplasm, they were not colocalized. During hypoxia, telokin dephosphorylated, and MLC became increasingly phosphorylated in SPA SMC, whereas in LPA SMC there was no change in either telokin or MLC phosphorylation. When LPA SMC were exposed to phenylephrine, MLC phosphorylation increased with no change in telokin phosphorylation. These results suggest that in SPA, phosphorylated telokin may help maintain relaxation under unstimulated conditions, whereas in LPA, telokin's function remains undetermined.  相似文献   

6.
Two proteins with myosin light chain kinase activity and electrophoretic molecular weights of 155,000 and 130,000 were each isolated from bovine stomach smooth muscle [Kuwayama, H., Suzuki, M., Koga, R., & Ebashi, S. (1988) J. Biochem. 104, 862-866]. The 155 kDa component showed a much higher superprecipitation-inducing activity than the 130 kDa component, when compared on the basis of equivalent myosin light chain kinase activity. In this study, we isolated a cDNA for the entire coding region of the 155 kDa protein. The deduced amino acid sequence revealed a high degree of similarity to those of chicken and rabbit smooth muscle myosin light chain kinases. Multiple motifs, such as three repeats of an immunoglobulin C2-like domain, a fibronectin type III domain, and unusual 20 repeats of 12 amino acids were detected in the sequence. Part of the amino-terminal sequence was similar to that of the actin- and calmodulin-binding domain of smooth muscle caldesmon. These observations suggest that the 155 kDa protein has additional functions other than its enzymatic activity. Two mRNAs of 6.0 and 2.6 kb in length in the bovine stomach smooth muscle RNAs were hybridized with cDNA probes. The 2.6-kb RNA probably encodes telokin, which is the carboxyl terminus of smooth muscle myosin light chain kinase. mRNAs with identical lengths were also detected in bovine aorta.  相似文献   

7.
8.
鸡平滑肌肌球蛋白轻链激酶在NIH 3T3细胞中的表达   总被引:2,自引:0,他引:2  
肌球蛋白轻链激酶(MLCK)在调节平骨肌细胞收缩过程中具有十分重要的作用。本言语通过将MLCKcDNA插到质粒pBKrsv中构建pBKrsv-MLCK,并转染至NIH3T3细胞中,DNA-PCR、RT-PCR和Western blot分析表达转染细胞可表达MLCK。活生分析表明所表达的MLCK具有生物学活性。为进一步研究MLCK在信号传导,调节平骨肌收缩等作用奠定了基础。  相似文献   

9.
10.
Smooth muscle myosin light chain kinase (MLCK) is known to bind to thin filaments and myosin filaments. Telokin, an independently expressed protein with an identical amino acid sequence to that of the C-terminal domain of MLCK, has been shown to bind to unphosphorylated smooth muscle myosin. Thus, the functional significance of the C-terminal domain and the molecular morphology of MLCK were examined in detail. The C-terminal domain was removed from MLCK by alpha-chymotryptic digestion, and the activity of the digested MLCK was measured using myosin or the isolated 20-kDa light chain (LC20) as a substrate. The results showed that the digestion increased K(m) for myosin 3-fold whereas it did not change the value for LC20. In addition, telokin inhibited the phosphorylation of myosin by MLCK by increasing K(m) but only slightly increased K(m) for LC20. Electron microscopy indicated that MLCK was an elongated molecule but was flexible so as to form folded conformations. MLCK was crosslinked to unphosphorylated heavy meromyosin with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide in the absence of Ca(2+)/calmodulin (CaM), and electron microscopic observation of the products revealed that the MLCK molecule bound to the head-tail junction of heavy meromyosin. These results suggest that MLCK binds to the head-tail junction of unphosphorylated myosin through its C-terminal domain, where LC20 can be promptly phosphorylated through its catalytic domain following the Ca(2+)/CaM-dependent activation.  相似文献   

11.
Myosin light chain kinase (MLCK) and the kinase-related protein (KRP), also known as telokin, are the major independent protein products of the smooth muscle/non-muscle MLCK genetic locus. They share a common C-terminal part and major sites phosphorylated in vivo. Whereas MLCK is critically involved in myosin activation and contraction initiation in smooth muscle, KRP is thought to antagonize MLCK and to exert relaxation activity. Phosphorylation controls the MLCK and KRP activities. We generated two phosphorylation and site-specific antibodies to individually monitor levels of MLCK and KRP phosphorylation on critical sites. We quantified the level of KRP phosphorylation in smooth muscle before and after an increase in intracellular free Ca2+ and stimulation of adenylate cyclase, protein kinase C, and mitogen-activated protein kinases (MAP-kinases). Forskolin and phorbol-12,13-dibutyrate increased KRP phosphorylation at Ser13 from 25 to 100% but did not produce contraction in rat ileum. The level of Ser13 phosphorylation was not altered during Ca2+-dependent contraction evoked by KCl depolarization or carbachol, but subsequently increased to maximum during forskolin-induced relaxation. These data suggest that several intracellular signaling pathways control phosphorylation of KRP on Ser13 in smooth muscle and thus may contribute to relaxation. In contrast, phosphorylation level of Ser19 of KRP increased only slightly (from 30 to 40-45%) and only in response to MAP-kinase activation, arguing against its regulatory function in smooth muscle.  相似文献   

12.
Phosphorylation on Ser 19 of the myosin II regulatory light chain by myosin light chain kinase (MLCK) regulates actomyosin contractility in smooth muscle and vertebrate nonmuscle cells. The smooth/nonmuscle MLCK gene locus produces two kinases, a high molecular weight isoform (long MLCK) and a low molecular weight isoform (short MLCK), that are differentially expressed in smooth and nonmuscle tissues. To study the relative localization of the MLCK isoforms in cultured nonmuscle cells and to determine the spatial and temporal dynamics of MLCK localization during mitosis, we constructed green fluorescent protein fusions of the long and short MLCKs. In interphase cells, localization of the long MLCK to stress fibers is mediated by five DXRXXL motifs, which span the junction of the NH(2)-terminal extension and the short MLCK. In contrast, localization of the long MLCK to the cleavage furrow in dividing cells requires the five DXRXXL motifs as well as additional amino acid sequences present in the NH(2)-terminal extension. Thus, it appears that nonmuscle cells utilize different mechanisms for targeting the long MLCK to actomyosin structures during interphase and mitosis. Further studies have shown that the long MLCK has twofold lower kinase activity in early mitosis than in interphase or in the early stages of postmitotic spreading. These findings suggest a model in which MLCK and the myosin II phosphatase (Totsukawa, G., Y. Yamakita, S. Yamashiro, H. Hosoya, D.J. Hartshorne, and F. Matsumura. 1999. J. Cell Biol. 144:735-744) act cooperatively to regulate the level of Ser 19-phosphorylated myosin II during mitosis and initiate cytokinesis through the activation of myosin II motor activity.  相似文献   

13.
Translocation of telokin by cGMP signaling in smooth muscle cells   总被引:3,自引:0,他引:3  
Telokin is an acidic protein with asequence identical to the COOH-terminal domain of myosin light chainkinase (MLCK) produced by an alternate promoter of the MLCK gene.Although it is abundantly expressed in smooth muscle, its physiologicalfunction is not understood. In the present study, we attempted toclarify the function of telokin by analyzing its spatial and temporallocalization in living single smooth muscle cells. Primary culturedsmooth muscle cells were transfected with green fluorescent protein(GFP)-tagged telokin. The telokin-GFP localized mostly diffusely incytosol. Stimulation with both sodium nitroprusside (SNP) and8-bromo-cyclic GMP induced translocation of GFP-tagged telokin to nearplasma membrane in living single smooth muscle cells. The translocation was slow, and it took more than 10 min at room temperature. Mutation ofthe phosphorylation sites of telokin (S13A, S19A, and S13A/S19A) significantly attenuated SNP-induced translocation. Both KT-5823 (cGMP-dependent protein kinase inhibitor) and PD-98059(mitogen-activated protein kinase inhibitor) diminished the telokin-GFPtranslocation. These results suggest that telokin changes itsintracellular localization because of phosphorylation at Ser13 and/orSer19 via the cGMP-signaling pathway.

  相似文献   

14.
The mechanism of telokin action on reversible phosphorylation of turkey gizzard myosin was investigated using a native-like filamentous myosin. This myosin contained endogenous calmodulin (CaM) and myosin light chain kinase (MLCK) at a molar ratio to myosin of about 1 to 40 or less depending on the initial extractions conditions. These levels were sufficient to fully phosphorylate myosin within 20-40 s or less after addition of [gamma-32P]ATP, but when the ATP was depleted, they became dephosphorylated indicating the presence of myosin light chain phosphatase (MLCP). Addition of telokin at the 1 to 1 or higher molar ratio to myosin caused a three- to five-fold inhibition of the initial phosphorylation rates (without reduction of the overall extent of phosphorylation) and produced a similar increase in the rate of dephosphorylation. The inhibition was also observed for myosin filaments free of MLCK and CaM together with constitutively active MLCKs produced by digestion, or by expression of a truncated mammalian kinase as well as for the wild-type enzyme. Thus, neither N- nor C-terminal of MLCK was necessary for interaction of myosin with telokin and the inhibition resulted from telokin-induced change of myosin head configuration within the filament that prevented their ordered, paracrystaline-like, aggregation. Sedimentation of the filamentous myosin in glycerol gradients showed that this change made the filaments less compact and facilitated release of the endogenous MLCK/CaM complex. For a mixture of the filaments with or without the complex, the configuration change resulted in an increase of the phosphorylation rate but not in its inhibition. The increase of the rate resulting from the liberation of the complex was also observed in mixtures of the filamentous myosin with added isolated regulatory light chain (ReLC) or soluble myosin head subfragment. This observation reinforces the above conclusions. The acceleration of the MLCP activity by telokin was shown to result from dissociation of its catalytic subunit from a MLCK/MLCP complex bound to the filamentous myosin. Analogous desensitizing effects of telokin were also demonstrated for the contraction and relaxation cycle of Triton-skinned fibers from guinea pig Teania coli. Taken together, our results indicate that telokin acted as an effective modulator or chaperone of the myosin filament and a scheme for its action in smooth muscle was proposed.  相似文献   

15.
We report that the genetic locus that encodes vertebrate smooth muscle and nonmuscle myosin light chain kinase (MLCK) and kinase-related protein (KRP) has a complex arrangement and a complex pattern of expression. Three proteins are encoded by 31 exons that have only one variation, that of the first exon of KRP, and the genomic locus spans approximately 100 kb of DNA. The three proteins can differ in their relative abundance and localization among tissues and with development. MLCK is a calmodulin (CaM) regulated protein kinase that phosphorylates the light chain of myosin II. The chicken has two MLCK isoforms encoded by the MLCK/KRP locus. KRP does not bind CaM and is not a protein kinase. However, KRP binds to and regulates the structure of myosin II. Thus, KRP and MLCK have the same subcellular target, the myosin II molecular motor system. We examined the tissue and cellular localization of KRP and MLCK in the chicken embryo and in adult chicken tissues. We report on the selective localization of KRP and MLCK among and within tissues and on a differential distribution of the proteins between embryonic and adult tissues. The results fill a void in our knowledge about the organization of the MLCK/KRP genetic locus, which appears to be a late evolving regulatory paradigm, and suggest an independent and complex regulation of expression of the gene products from the MLCK/KRP genetic locus that may reflect a basic principle found in other eukaryotic gene clusters that encode functionally linked proteins. J. Cell. Biochem. 70:402–413, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
A single human myosin light chain kinase gene (MLCK; MYLK)   总被引:7,自引:0,他引:7  
Lazar V  Garcia JG 《Genomics》1999,57(2):256-267
The myosin light chain kinase (MLCK) gene, a muscle member of the immunoglobulin gene superfamily, yields both smooth muscle and nonmuscle cell isoforms. Both isoforms are known to regulate contractile activity via calcium/calmodulin-dependent myosin light chain phosphorylation. We previously cloned from a human endothelial cell (EC) cDNA library a high-molecular-weight nonmuscle MLCK isoform (EC MLCK (MLCK 1) with an open reading frame that encodes a protein of 1914 amino acids. We now describe four novel nonmuscle MLCK isoforms (MLCK 2, 3a, 3b, and 4) that are the alternatively spliced variants of an mRNA precursor that is transcribed from a single human MLCK gene. The primary structure of the cDNA encoding the nonmuscle MLCK isoform 2 is identical to the previously published human nonmuscle MLCK (MLCK 1) (J. G. N. Garcia et al., 1997, Am. J. Respir. Cell Mol. Biol. 16, 489-494) except for a deletion of nucleotides 1428-1634 (D2). The full nucleotide sequence of MLCK isoforms 3a and 3b and partial sequence for MLCK isoform 4 revealed identity to MLCK 1 except for deletions at nucleotides 5081-5233 (MLCK 3a, D3), double deletions of nucleotides 1428-1634 and 5081-5233 (MLCK 3b), and nucleotide deletions 4534-4737 (MLCK 4, D4). Northern blot analysis demonstrated the extended expression pattern of the nonmuscle MLCK isoform(s) in both human adult and human fetal tissues. RT-PCR using primer pairs that were designed to detect specifically nonmuscle MLCK isoforms 2, 3, and 4 deletions (D2, D3, and D4) confirmed expression in both human adult and human fetal tissues (lung, liver, brain, and kidney) and in human endothelial cells (umbilical vein and dermal). Furthermore, relative quantitative expression studies demonstrated that the nonmuscle MLCK isoform 2 is the dominant splice variant expressed in human tissues and cells. Further analysis of the human MLCK gene revealed that the MLCK 2 isoform represents the deletion of an independent exon flanked by 5' and 3' neighboring introns of 0.6 and 7.0 kb, respectively. Together these studies demonstrate for the first time that the human MLCK gene yields multiple nonmuscle MLCK isoforms by alternative splicing of its transcribed mRNA precursor with differential distribution of these isoforms in various human tissues and cells.  相似文献   

17.
The isolation of an acidic protein, pI 4.5, that is abundant in turkey gizzard is described. Its apparent molecular weight measured by electrophoretic procedures is 24,000. This protein is phosphorylated by the catalytic subunit of the cAMP-dependent protein kinase and one phosphorylation site is indicated. From sequence determinations of tryptic peptides it is concluded that this protein is closely related to the C-terminal part of smooth muscle myosin light chain kinase. The initiation site for the protein is to the C-terminal side of the calmodulin-binding site. From the sequence data an estimated molecular weight is 18,000. This protein is expressed independently, as indicated by a blocked N terminus, and is probably the translation product of the 2.7-kilobase RNA detected previously in chicken gizzard (Guerriero, V., Jr., Russo, M. A., Olson, N. J., Putkey, J. A., and Means, A. R. (1986) Biochemistry 25, 8372-8381). Because of its putative origin as the C-terminal end of smooth muscle myosin light chain kinase, it is termed "telokin" (from a combination of kinase and the Greek telos, "end").  相似文献   

18.
A 5.6-kilobase cDNA clone has been isolated which includes the entire coding region for the myosin light chain kinase from rabbit uterine tissue. This cDNA, expressed in COS cells, encodes a Ca2+/calmodulin-dependent protein kinase with catalytic properties similar to other purified smooth muscle myosin light chain kinases. A module (TLKPVGNIKPAE), repeated sequentially 15 times, has been identified near the N terminus of this smooth muscle kinase. It is not present in chicken gizzard or rabbit skeletal muscle myosin light chain kinases. This repeat module and a subrepeat (K P A/V) are similar in amino acid content to repeated motifs present in other proteins, some of which have been shown to associate with chromatin structures. Immunoblot analysis after sodium dodecyl sulfate-polyacrylamide gel electrophoresis, used to compare myosin light chain kinase present in rabbit, bovine, and chicken smooth and nonmuscle tissues, showed that within each species both tissue types have myosin light chain kinases with indistinguishable molecular masses. These data suggest that myosin light chain kinases present in smooth and nonmuscle tissues are the same protein.  相似文献   

19.
The first primary structure for a nonmuscle myosin light chain kinase (nmMLCK) has been determined by elucidation of the cDNA sequence encoding the protein kinase from chicken embryo fibroblasts, and insight into the molecular mechanism of calmodulin (CaM) recognition and activation has been obtained by the use of site-specific mutagenesis and suppressor mutant analysis. Treatment of chicken and mouse fibroblasts with antisense oligodeoxynucleotides based on the cDNA sequence results in an apparent decrease in MLCK levels, an altered morphology reminiscent of that seen in v-src-transformed cells, and a possible effect on cell proliferation. nmMLCK is distinct from and larger than smooth muscle MLCK (smMLCK), although their extended DNA sequence identity is suggestive of a close genetic relationship not found with skeletal muscle MLCK. The analysis of 20 mutant MLCKs indicates that the autoinhibitory and CaM recognition activities are centered in distinct but functionally coupled amino acid sequences (residues 1,068-1,080 and 1,082-1,101, respectively). Analysis of enzyme chimeras, random mutations, inverted sequences, and point mutations in the 1,082-1,101 region demonstrates its functional importance for CaM recognition but not autoinhibition. In contrast, certain mutations in the 1,068-1,080 region result in a constitutively active MLCK that still binds CaM. These results suggest that CaM/protein kinase complexes use similar structural themes to transduce calcium signals into selective biological responses, demonstrate a direct link between nmMLCK and non-muscle cell function, and provide a firm basis for genetic studies and analyses of how nmMLCK is involved in development and cell proliferation.  相似文献   

20.
Smooth muscles are divided into slowly contracting tonic and relatively fast phasic muscles. In both cases Ca2+ is a key mediator of the contractile response. However, the appearance of a tonic component during sphincter or arterial muscle contraction and its absence in contracting visceral smooth muscle is characteristic of their difference. We have found that in chicken tissues phorbol 12,13-dibutyrate (PDBu) induces a sustained contraction in carotid arterial muscle, but provokes no contraction in phasic gizzard smooth muscle. Next we were aimed to find differences in PDBu-induced phosphorylation of the key proteins involved in regulation of smooth muscle contraction, i.e. caldesmon, myosin light chain kinase (MLCK), and the myosin light chain kinase-related protein (KRP, also known as telokin). Two correlative differences were observed. 1. PDBu stimulated phosphorylation of MLCK in tonic smooth muscle and had no effect on the level of MLCK phosphorylation in phasic muscle. Phosphopeptide mapping suggests the involvement of mitogen-activated protein (MAP) kinases in phosphorylation of MLCK in situ. 2. PDBu induced phosphorylation of MAP-kinase sites in caldesmon in both types of smooth muscle, but this phosphorylation had no significant effect on caldesmon functional activity in vitro. For the first time we have shown that in gizzard PDBu also stimulates a yet unknown transitory caldesmon-kinase different from protein kinase, C, Ca2+/calmodulin-dependent kinase II and casein kinase CK2. 3. No significant difference was found in the kinetics of PDBu-dependent phosphorylation of KRP in tonic and phasic smooth muscles. KRP was also demonstrated to be a major phosphoprotein in smooth muscle phosphorylated in vivo at several sites located within its N-terminal sequence. Protein kinases able to phosphorylate these sites were identified in vitro. Among them, MAP-kinase was suggested to phosphorylate a serine residue homologous to that phosphorylated in MLCK. 4. p42erk2 and p38 MAP-kinases were found in phasic and tonic smooth muscles. Both were responsive to PDBu in cultured chicken aortic smooth muscle cells, and their role in phosphorylation of MLCK and low molecular weight isoform of caldesmon was evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号