首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Subfragment-1 of HMM was prepared by tryptic [EC 3.4.21.4] digestion of HMM, which had been modified with 1 mole of CMB per mole of HMM at a specific SH group, SHr. S-1(T) obtained from CMB-HMM retained almost all the CMB, and the amount of bound CMB was about 0.8-0.9 mole per 2 moles of S-1(T). S-2 of CMB-HMM contained no bound CMB. The ATPase [EC 3.6.1.3] activity of HMM increased gradually with increase in the concentration of FA, and the acto-HMM ATPase was inhibited by excess substrate or removal of Ca2+ ions in the presence of RP. The ATPase activity of CMB-HMM increased to a maximum level on adding a small amount of FA, and the acto-CMB-HMM ATPase showed neither substrate inhibition nor Ca2+ sensitivity in the presence of RP. On the other hand, the dependence on the concentration of FA of the ATPase activity of acto-S-1(T) was unaffected by modification of S-1 with CMB. The Ca2+ sensitivity of the ATPase activity of acto-S-1(T) in the presence of RP was also unaffected by the modification. Acto-S-1(T) dissociated almost completely, while acto-CMB-S-1(T) was only 50% dissociated on adding ATP. More than 80% of the bound CMB was contained in S-1(T) undissociated from FA. Furthermore, superprecipitation of actomyosin induced by ATP was completely inhibited by adding about 2 moles of CMB-S-1(T) per mole of actin monomer. On the other hand, about 90% of the burst size of Pi liberation was retained in S-1(T) dissociated from FA. It was concluded that the two heads of the myosin molecule are different: one shows the initial burst of Pi liberation, and does not contain the SHr group which binds CMB (head B), and the other does not show the initial burst and contains the SHr group (head A). It was also concluded that modification of head A of HMM or myosin with CMB increases its binding strength to FA, and consequently the substrate inhibition and Ca2+ sensitivity of acto-HMM or actomyosin ATPase at head B are lost on modification of head A with CMB. CMB-S-1(CT) was prepared by chymotryptic [EC 3.4.21.1] digestion of CMB-myosin, and separated into two fractions by ultracentrifugation of acto-CMB-S-1(CT) in the presence of ATP. Three components of CMB-S-1(CT) with molecular weights of 9, 2.4, and 1.2 X 10(4) were separated by SDS-polyacrylamide gel electrophoresis. The ratios of the peak areas of the three components in electrophoretograms were the same in CMB-S-1(CT) and in the two fractions (1 : 0.18 : 0.09), indicating that heads A and B have the same subunit structure.  相似文献   

2.
H-Meromyosin (HMM) was digested with insoluble papain [EC 3.4.22.2]. Neither the size of the initial burst of Pi liberation (0.5 mole/mole of myosin head) nor the Mg2+-ATPase [EC 3.6.1.3] activity of HMM in the steady state was affected by this treatment. Acto-S-1 was obtained by mixing F-actin with HMM digested with insoluble papain (HMM-S-1). The size of the initial burst of Pi liberation of acto-S-1 was 0.35 mole/mole of S-l at an ATP concentration of 0.5 mole/mole of S-1, and 0.5 mole/moleof S-1 at ATP concentrations above 1 mole/mole of S-1...  相似文献   

3.
1. The myosin content of myofibrils was found to be 51% by SDS-gel electrophoresis. 2. The initial burst of Pi liberation of the ATPase [EC 3.6.1.3] of a solution of myofibrils in 1 M KCl was measured in 0.5 M KCl, and found to be 0.93 mole/mole of myosin. 3. The amount of ADP bound to myofibrils during the ATPase reaction and the ATPase activity were measured by coupling the myofibrillar ATPase reaction with sufficient amounts of pyruvate kinase [EC 2.7.1.40] and PEP to regenerate ATP. The maximum amount of ADP bound to myofibrils in 0.05M KCl and in the relaxed state was about 1.5 mole/mole of myosin. On the other hand, the ATPase activity exhibited substrate inhibition, and the amount of ATP required for a constant level of ATPase activity was smaller than that required for the maximum binding of ADP to myofibrils. 4. The maximum amount of ADP bound to myofibrils in 0.5 M KCl was about 1.9 mole/mole of myosin. When about one mole of ADP was found to 1 mole of myosin in myofibrils, the myofibrillar ATPase activity reached the saturated level, and with further increase in the concentration of ATP one more mole of ADP was found per mole of myosin.  相似文献   

4.
The rates of the ATPase [EC 3.6.1.3] reaction of the H-meromyosin-F-actin-relaxing protein system were measured in 2 mM MgCl2, 50mM KC1, and 10mM Tris-HC1 at pH 7.8 and 20 degrees in the presence and absence of 0.05-0.1 mM Ca2+ ions. The concentrations of H-meromyosin (HMM) and the F-actin-relaxing protein (F-A-PR) complex were 3.4 and 3 mg/ml, respectively, and the ATPase reaction was coupled with 4 mg/ml of pyruvate kinase [EC 2.7.1.40] and 1 or 20 mM phosphoenolpyruvate to regenerate ATP. The amount of ADP bound to HMM during the ATPase reaction was determined by measuring the amount of ADP remaining in the reaction mixture. The amount of ATP bound to HMM was determined by subtracting the amount of bound ADP from the total amount of nucleotides bound to HMM, which was measured by a rapid flow-dialysis method. The following results were obtained. 1. The ATPase activity of the HMM-F-A-RP system increased linearly with increase in the amount of ATP added, and was independent of the presence of 0.05 mM Ca2+, when the amount of ATP added was less than 1 mole/mole of HMM. In the presence of 0.05 mM Ca2+, the ATPase activity reached a maximal level when 1.2-1.5 mole of ATP was added per mole of HMM, and maintained this level even at 3 moles of added ATP/mole of HMM. In the presence of 3mM EGTA, the ATPase activity decreased with increase in the amount of ATP added, from 1.5 to 3 moles of ATP/mole of HMM, and reached the level of the HMM ATPase reaction at 3 moles of added ATP/mole of HMM. Similar results were observed when the concentration of HMM was maintained at 3.4 mg/ml and the concentration of the F-A-RP complex was decreased from 3 to 1 or 0.5 mg/ml.  相似文献   

5.
The binding of ADP to subfragment-1 was investigated by the gel filtration method. The amount of bound ADP was determined as a function of free ADP concentration. Linear Scatchard plots were obtained. The maximum binding number, 0.55 mole of ADP per 10(5) g of protein, and the dissociation constant, 1.6 x 10(-6) M, were obtained, using subfragment-1 prepared by tryptic digestion, in the presence of 0.083 M KCl-10 mM MgCl2-0.02 M Tris-HCl (pH 8), at 25 degrees. Similar maximum numbers, about 0.5 mole per 10(5) g of protein, were obtained with subfragment-1 prepared by chymotryptic digestion of myosin or papain digestion of myofibrils. The maximum number did not depend on the KCl concentration or the temperature, while the dissociation constant decreased on decreasing either the KCl concentration or the temperature. Adenylyl imidodiphosphate binding to subfragment-1 prepared by chymotryptic digestion was also measured by the gel filtration method. The maximum binding number, 0.41 mole per 10(5) g of subfragment-1, and the dissociation constant, less than 10(-7) M, were obtained in the presence of 0.7 M KCl-10 mM MgCl2-0.02 M Tris-HCl (pH 8), at 8 degrees. The difference absorbance at 288 nm of the difference absorption spectrum induced by ADP of subfragment-1 prepared by tryptic digestion was proportional to the amount of bound ADP. The steady-state ATPase rate of subfragment-1 prepared by tryptic digestion was inhibited competitively by ADP in the presence of MgCl2. The extent of the initial burst of ATPase [EC 3.6.1.3] decreased from 0.46 +/- 0.06 to 0.30 +/- 0.09 mole of Pi per 10(5) g of subfragment-1 on adding ADP to a level of 0.6 mM. Subfragment-1 prepared by tryptic digestion bound F-actin with a mole ratio of 1/0.96 of actin monomer. The binding was depressed by the addition of ADP. On the basis of these results, subfragment-1 preparations were assumed to be a half-and-half mixture of two kinds of protein, and properties of each protein are discussed.  相似文献   

6.
Brain microtubules purified by cycles of assembly and disassembly contained an ATPase activity in the fraction of microtubule-associated proteins (MAPs). This ATPase activity was found to be stimulated by 6S tubulin in the presence of Ca2+ ions, suggesting its functional association with brain microtubules (Ihara et al. (1979) J. Biochem. 86, 587-590). On further purification by DEAE-cellulose column chromatography, two peaks of ATPase activity were separated; one, eluted at 0.2 M KCl (ATPase I), was dependent on added 6S tubulin but the other, eluted at 0.5 M KCl (ATPase II), was not. ATPase I was highly unstable but could be stabilized by the addition of 0.1 mM ADP, 50% (v/v) glycerol or 0.3 mg/ml tubulin. ATPase I was further purified by CM-cellulose column chromatography, and by gel filtration on Sephacryl S-300. Its molecular weight, estimated by gel filtration, was 33,000. ATPase II had a high molecular weight and appeared to be associated with membrane vesicles. It sedimented on glycerol density gradient centrifugation with an s value of 27S. It was purified by high speed sedimentation and hydrophobic chromatography, and was observed under an electron microscope to consist of membrane vesicles of about 70 nm in diameter containing knob-like structures similar to those of H+-pump ATPase.  相似文献   

7.
A simple preparative method is described for isolation of the cytoplasmic and outer membranes from E. coli. The characteristics of both membrane fractions were studied chemically, biologically, and morphologically. Spheroplasts of E. coli K-12 strain W3092, prepared by treating cells with EDTA-lysozyme [EC 3.2.1.17], were disrupted in a French press. The crude membrane fraction was washed with 3 mM EDTA-10% (w/v) sucrose, pH 7.2, and the cytoplasmic membranes and outer membranes were separated by sucrose isopycnic density gradient centrifugation. The crude membrane fraction contained approximately 10% of the protein of the whole cells, 0.3% of the DNA, 0.7% of the RNA, 0.3% of the peptidoglycan, and about 30% of the lipopolysaccharide. The cytoplasmic membrane fraction was rich in phospholipid, while the outer membrane fraction contained much lipopolysaccharide and carbohydrate; the relative contents of lipopolysaccharide and carbohydrate per mg protein in the cytoplasmic membrane fraction were 12 and 40%, respectively, of the contents in the outer membrane fraction. Cytochrome b1, NADH oxidase, D-lactate dehydrogenase [EC 1.1.1.28], succinate dehydrogenase [EC 1.3.99.1], ATPase [EC 3.5.1.3], and activity for concentrative uptake of proline were found to be localized mainly in the cytoplasmic membranes; their specific activities in the outer membrane fraction were 1.5 to 3% of those in the cytoplasmic membrane fraction. In contrast, a phospholipase A appeared to be localized mainly in the outer membranes and its specific activity in the cytoplasmic membrane fraction was only 5% of that in the outer membrane fraction. The cytoplasmic and outer membrane fractions both appeared homogeneous in size and shape and show vesicular structures by electron microscopy. The advantages of this method for large scale preparation of the cytoplasmic and outer membrane fractions are discussed.  相似文献   

8.
21S Dynein ATPase [EC 3.6.1.3] from axonemes of a Japanese sea urchin, Pseudocentrotus depressus, and its subunit fractions were studied to determine their kinetic properties in the steady state, using [gamma-32P]ATP at various concentrations, 5 mM divalent cations, and 20 mM imidazole at pH 7.0 and 0 degrees C. The following results were obtained. 1. 21S Dynein had a latent ATPase activity of about 0.63 mumol Pi/(mg . min) in 1 mM ATP, 100 mM KCl, 4 mM MgSO4, 0.5 mM EDTA, and 30 mM Tris-HCl at pH 8.0 and 25 degrees C. Its exposure to 0.1% Triton X-100 for 5 min at 25 degrees C induced an increase in the ATPase activity to about 3.75 mumol Pi/(mg . min) and treatment at 40 degrees C for 5 min also induced a similar activation. 2. The double-reciprocal plot for the ATPase activity of dynein activated by the treatment at 40 degrees C consisted of two straight lines, while that of nonactivated 21S dynein fitted a single straight line. 3. In low ionic strength solution, the Mg- and Mn-ATPase of 21S dynein showed substrate inhibition at ATP concentrations above 0.1 mM; the inhibition decreased with increasing ionic strength. Ca- and Sr-ATPase showed no substrate inhibition. 4. Both the Vmax and Km values of dynein ATPase decreased reversibly upon addition of about 40% (v/v) glycerol. In the presence of glycerol, the dynein ATPase showed an initial burst of Pi liberation. The apparent Pi-burst size was 1.0 mol/(10(6) g protein) and the true size was calculated to be 1.6 mol/1,250 K after correcting for the effect of Pi liberation in the steady state and the purity of our preparation. 5. One of the subunit fractions of 21S dynein which was obtained by the method of Tang et al. showed substrate inhibition and an initial burst of Pi liberation of 1.4 mol/(10(6) g protein) in the presence of 54% (v/v) glycerol.  相似文献   

9.
Using glutaric dialdehyde, the muscle proteins myosin, actin, actomyosin and heavy meromyosin subfragment-1 (S-1) have been immobilized on capron fibers. The ATPase activity of myosin and its capability to interact with actin have been preserved whereas the ATPase activity of its subfragment decreased significnatly. Immobilization on capron fibers changes the pH dependence of the ATPase activity of myosin and of S-1 shifting the maximum towards the acid zone (pH 5.5) and increases the thermal stability of the enzyme. Calcium ions produce a stimulatory effect on ATPase; Mg2+ions yield no effect on myosin and S-1 but enhance the activity in the case of immobilized actomyosin though to a lesser degree than the ions of Ca2+. Immobilized actin retains its ability to form actomyosin complex.  相似文献   

10.
As previously reported, rho-nitrobenzenediazonium fluoroborate strongly inhibits Ca2+- ATPase of myosin [EC 3.6.1.3] without appreciable suppression of its EDTA-K+- ATPase activity, and the presence of ATP in the reaction medium reverses the pattern of alteration in both ATPase activities, i.e., causing selective inhibition of EDTA-K+ -ATPase. Spectrophotometric studies on the azo-coupling products of 17 amino acids and their derivatives revealed that the amino acid residue of myosin modified by the diazonium dye was cysteine in both the presence and absence of ATP. It is also suggested that the number of cysteinyl residues responsible for the activity changes was one mole per mole of myosin subunit.  相似文献   

11.
During Mn(II)-ATP hydrolysis by myosin, the predominant intermediate formed at the burst site of the enzyme below 10 degrees is the myosin-ADP complex formed by adding ADP to myosin, while above 10 degrees it is the myosin -ADP-P1 complex generated by ATP hydroolysis (Yazawa, Morita, & Yagi (1973) J. Biochem. 74, 1107; Hozumi & Tawada (1975) Biochim. Biophys. Acta 376, 1; Tawada & Yoshida (1975) J. Biochem. 78, 293). It is suggested that the second (non-burst) site of myosin predominantly forms the myosin-ATP complex (Hozumi & Tawada, ibid.). From these findings, it is expected that (i) myosin subfragment 1 (S1) having the burst site is bound to actin in Mn(II)-ATP solution containing ADP below 10 degrees, because it forms the S1-ADP complex even in the presence of ATP; (ii) the other S1, i.e., that having the non-burst site, is dissociated from actin, because it forms the S1-ATP complex. These two expectations were confirmed by viscosity measurements of acto-S1 solutions, giving a basis for the separation of S1 into two fractions: one having the burst site and the other having the non-burst site. S1 having the non-burst site could be extracted from partially papain [EC 3.4.22.2]-digested myofibrils of rabbit skeletal muscle with a solution containing MnCl2, ATP, and ADP at 0 degrees. S1 having the burst site was extracted from myofibrils already used for the extraction of S1 having the non-burst site, with a solution containing MgCl2 and ATP at 20 degrees. The former S1 fraction had Mg-ATPase [EC 3.6.1.3] activity, but scarcely showed any initial burst of Pi liberation. The latter S1 showed a Pi burst of more than 0.5 (M/M). The steady state ATPase activity of the former S1 was slightly higher than that of the latter. The burst size of normal S1, i.e., that extracted from papain-digested myofibrils with Mg-PPi or Mg-ATP, was 0.5 (M/M). The ultraviolet absorption spectrum of the non-burst type S1 was not changed by ADP but was changed by ATP, though the difference spectrum was distinct from that of normal S1 and the difference molar extinction coefficient at 289 nm was only 20% of that of normal S1. No significant difference was seen in the compositions of these two S1's and normal S1, as determined by SDS gel electrophoresis.  相似文献   

12.
F-Actin bindings to subfragment-1 (S-1) and S-1 after limited proteolysis by trypsin (S-1t) were studied in the absence and presence of ATP by means of ultracentrifugation. No significant difference in the affinities for F-actin was observed between S-1 and S-1t in the absence of ATP. In contrast, the affinity for F-actin in the presence of ATP was decreased about 50 times by the limited proteolysis of the S-1 heavy chain. The S-1 whose SH1 and SH2 groups were cross-linked by N,N'-p-phenylenedimaleimide bound F-actin weakly. The affinity for F-actin was similar to that of unmodified S-1 in the presence of ATP and was also decreased markedly by limited proteolysis of the cross-linked S-1. Reciprocals of the dissociation constant of acto-S-1 complex decreased markedly with increase of ionic strength in the presence of ATP, but decreased only slightly at the rigor state. All these results are consistent with our proposal that S-1 has two different actin binding sites, as reported previously (Katoh, T., Imae, S., & Morita, F. (1984) J. Biochem. 95, 447-454). The mechanism of activation of S-1 ATPase by F-actin is discussed.  相似文献   

13.
The Malachite Green method for determination of inorganic phosphate (Pi) (Itaya K. & Ui, M. (1966) Clin. Chim. Acta 14, 361-366) was modified to measure Pi in the range of 0.2-15 nmol per ml of ATPase reaction mixture. An ATPase reaction mixture is quenched with an equal volume of 0.6 M PCA; the supernatant after centrifugation is mixed with an equal volume of the Malachite Green/molybdate reagent containing 2 g of sodium molybdate, 0.3 g of Malachite Green and 0.5 g of Triton X-100 or Sterox SE in 1 liter of 0.7 M HCl, and the absorbance at 650 nm is then measured after a 35-40 min incubation at 25 degrees C. Owing to the high sensitivity and simplicity of the modified method, the slow time course of myosin ATP hydrolysis in the presence of Mg2+ and the size of initial phosphate burst can be determined accurately using relatively low concentrations of native myosin and its subfragment-1. The phosphate burst size varied with changes in pH, ionic strength, and temperature. A typical value was 0.8-0.9 mol per site in 0.1 M KCl, 10 mM MgCl2, pH 8.0 at 25 degrees C for fresh enzyme preparations.  相似文献   

14.
A synthetic peptide corresponding to a sequence 632-642 (S632-642) on the myosin subfragment 1 (S-1) heavy chain and spanning the 50/20 kDa junction of S-1 binds to actin in the presence and absence of S-1. The binding of 1.0 mole of peptide per actin causes almost complete inhibition of actomyosin ATPase activity and only partial inhibition of S-1 binding to actin. The binding of S632-642 to the N-terminal segment of actin is supported by competitive carbodiimide cross-linking of S-1 and S632-642 to actin and the catalytic properties of cross-linked acto-S-1 and actin-peptide complexes. These results show that the sequence 632-642 on S-1 is an autonomous binding site for actin and confirm the catalytic importance of its interactions with the N-terminal segment of actin.  相似文献   

15.
J W Shriver  B D Sykes 《Biochemistry》1982,21(12):3022-3028
A new fluorine-containing reagent has been synthesized and used to specifically label the reactive sulfhydryl [sulfhydryl-1 (SH1)] of myosin subfragment 1 (S-1). The labeled S-1 (S-1-CF3) demonstrates activated calcium and magnesium adenosinetriphosphatase (ATPase) activities relative to S-1 and a lower potassium ethylenediaminetetraacetate (EDTA) ATPase activity. Maximal effect is obtained with the modification of one thiol per S-1. The 19F NMR spectrum of S-1 CF3 contains only one resonance with a line width of 110 Hz, which implies a rotational correlation time of 2.3 X 10(-7) s. The chemical shift of this resonance is sensitive to temperature, PH, ionic strength, and nucleotides bound in the active site. The temperature dependence of the chemical shift clearly indicates two limiting states for the S-1-CF3 with a highly temperature-dependent equilibrium between 5 and 40 degrees C. The low-temperature state appears to be identical with the state resulting from the binding of Mg.ADP or Mg.AMPPNP at 25 degree C. The energetics of the conformational change have been studied under various conditions. At pH 7 in 25 mM cacodylate, 0.1 M KCl, and 1 mM EDTA, delta H degree = 30 kcal/mol and delta S degree = 105 cal deg-1 mol-1. A decrease in pH to 6.5 results in an increased population of the low-temperature state with delta H degree = 31 kcal/mol and delta S degree = 107 cal deg-1 mol-1. Similarly, the low-temperature state is favored by low ionic strength. In 5.8 mM piperazine-N,N'bis(2-ethanesulfonic acid) and 1 mM EDTA (pH 7), delta H degree = 8 kcal/mol and delta S degree = 27 cal deg-1 mol-1. We have also obtained 19F NMR spectra of S-1-CF3 in D2O solution with 30% ethylene glycol at pH 7.1. Increasing concentrations of ethylene glycol progressively stabilize the high-temperature states.  相似文献   

16.
The rates of the elementary steps of the actomyosin ATPase reaction were measured using the myosin subfragment-1 of porcine left ventricular muscle. The results could be explained only by the two-route mechanism for actomyosin ATPase (Inoue, Shigekawa, & Tonomura (1973) J. Biochem. 74, 923-934), in which ATP is hydrolyzed via routes with or without accompanying dissociation of actomyosin. The dependence on the F-actin concentration of the rate of the acto-S-1 ATPase reaction in the steady state was measured in 5 mM KCl at 20 degrees C. The maximal rate, Vmax, and the dissociation constant for F-actin of the ATPase, Kd, were 3.0 s-1 and 2.2 mg/ml, respectively. The Kd value was almost the same as that determined from the extent of binding of S-1 with F-actin during the ATPase reaction. The rate of recombination of the S-1-phosphate-ADP complex, S-1ADPP, with F-actin, vr, was lower than that of the ATPase reaction in the steady state. Thus, ATP is mainly hydrolyzed without accompanying dissociation of acto-S-1 into S-1ADPP and F-actin. In the cardiac acto-S-1 ATPase reaction, the rate of the ATPase reaction in the steady state and that of recombination of S-1ADPP with F-actin were about 1/5 those of the skeletal acto-S-1 ATPase reaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Purified plasma membranes of Schizosaccharomyces pombe were obtained by precipitation at pH 5.2 of a crude particulate fraction, followed by differential centrifugations and isopycnic centrifugation in a discontinuous sucrose gradient. The specific activity of the Mg2+-requiring plasma membrane ATPase activity (EC 3.6.1.3) was enriched from 0.3 mumol min-1 x mg-1 of protein in the homogenate to 26 in the purified membranes. The optimal conditions for solubilization of the ATPase activity by lysolecithin were found to be: 2 mg/ml of lysolecithin, a lysolecithin to protein ratio of 8 at pH 7.5, and 15 degrees C in the presence of 1 mM ATP and 1 mM ethylenediaminetetraacetic acid. A 6- to 7-fold purification of the solubilized ATPase activity was obtained by centrifugation of the lysolecithin extract in sucrose gradient. Part of the ATPase activity which was inactivated during the centrifugation in the sucrose gradient could be restored by addition of a micellar solution of 50 microgram of lysolecithin/ml during the assay. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate of the purified enzyme showed only one band of Mr = 105,000 stained with Coomassie blue. Another ATPase component of apparent molecular weight lower than 10,000 was stained by periodic Schiff reagent but not colored by Coomassie blue. The purified enzyme was 85% inhibited by 50 micrometer N,N'-dicyclohexylcarbodiimide and 94% inhibited by 53 microgram of Dio-9/ml.  相似文献   

18.
The mechanism of the ATPase [EC 3.6.1.3] reaction of porcine platelet myosin and the binding properties of platelet myosin with rabbit skeletal muscle F-actin were investigated. The kinetic properties of the platelet myosin ATPase reaction, that is, the rate, the extent of fluorescence enhancement of myosin, the size of the initial P1 burst of myosin, and the amount of nucleotides bound to myosin during the ATPase reaction, were very similar to those found for other myosins. Strong binding of platelet myosin with rabbit skeletal muscle F-actin, as found for smooth muscle myosin, was suggested by the following results. The rate of the ATP-induced dissociation of hybrid actomyosin, reconstituted from platelet myosin and skeletal muscle F-actin, was very slow. The amount of ATP necessary for complete dissociation of hybrid actomyosin was 2 mol/mol of myosin, although skeletal muscle actomyosin is known to dissociate completely upon addition of 1 mol ATP per mol of myosin. Unlike skeletal muscle myosin, the EDTA(K+)-ATPase activity of platelet myosin was inhibited by skeletal muscle F-actin. These observations indicate that ATP hydrolysis by vertebrate nonmuscle myosin follows the same mechanism as with other myosins and that the binding properties of nonmuscle myosin with F-actin are similar to those of smooth muscle myosin but not to those of skeletal muscle myosin.  相似文献   

19.
The ATPase activity of acto-myosin subfragment 1 (S-1) was measured in the presence of smooth and skeletal muscle tropomyosins over a wide range of ionic strengths (20-120 mM). In contrast to the 60% inhibitory effect caused by skeletal muscle tropomyosin at all ionic strengths, the effect of smooth muscle tropomyosin was found to be dependent on ionic strength. At low ionic strength (20 mM), smooth muscle tropomyosin inhibits the ATPase activity by 60%, while at high ionic strength (120 mM), it potentiates the ATPase activity 3-fold. All of these ATPase activities were measured at very low ratios of S-1 to actin, under conditions at which a 4-fold increase in S-1 concentration did not change the specific activity of the tropomyosin-acto.S-1 ATPase. Therefore, the potentiation of the ATPase activity by smooth muscle tropomyosin at high ionic strength cannot be explained by bound S-1 heads cooperatively turning on the tropomyosin-actin complex. To determine whether the fully potentiated rates are different in the presence of smooth muscle and skeletal muscle tropomyosins, S-1 which was extensively modified by N-ethylmaleimide was added to the ATPase assay to attain high ratios of S-1 to actin. The results showed that, under all conditions, the fully potentiated rates are the same for both tropomyosins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The bindings of S-1 and the two heads of HMM with pyrene-labeled F-actin were studied using the change in light-scattering intensity or that in the fluorescence intensity of the pyrenyl group. At low ionic strength (50 mM KCl), both S-1 and HMM became bound tightly with F-actin (Kd less than 0.1 microM) and both heads of HMM became bound to F-actin. The affinities of S-1 and HMM for F-actin decreased with increasing KCl concentration. In 1 M KCl, the Kd values of S-1 and HMM for F-actin were 11 and 0.58 microM, respectively. Thus, HMM was bound to F-actin 19 times more tightly than S-1. We compared the extent of binding of HMM to F-actin measured by a centrifugation method with that measured by the fluorescence change of pyrenyl-group, and found that even in 1 M KCl, HMM became bound to F-actin with a two-headed attachment. We measured the kinetics of binding and dissociation of acto-S-1 and acto-HMM from the time course of the change in light-scattering intensity after mixing S-1 or HMM with F-actin at 1 M KCl and that after mixing 1 M KCl with acto-S-1 or acto-HMM formed at low ionic strength.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号