首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Preexisting magnesium deficiency may alter the susceptibility of rat hearts to postischemic oxidative injury (free radicals). This was examined in rats maintained for 3 weeks on a magnesium-deficient (Mg-D) diet with or without concurrent vitamin E treatment (1.2 mg/day, SC). Magnesium-sufficient (Mg-S) rats received the same diet supplemented with 100 mmol Mg/kg feed. Following sacrifice, isolated working hearts were subjected to 30-, 40-, or 60-min global ischemia and 30-min reperfusion. Postischemic production of free radicals was monitored using electron spin resonance (ESR) spectroscopy and spin trapping with -phenyl-N-tert butylnitrone (PBN, 3 mM final); preischemic and postischemic effluent samples were collected and then extracted with toluene. PBN/alkoxyl adduct(s) (PBN/RO·; H = 1.93 G,N = 13.63 G) were the dominant signals detected in untreated Mg-S and Mg-D postischemic hearts, with comparably higher signal intensities observed for the Mg-D group following any ischemic duration. Time courses of postischemic PBN/RO· detection were biphasic for both groups (maxima: 2–4 and 8.5–12.5 min), and linear relationships between the extent of PBN/RO· production and the severity of both mechanical dysfunction and tissue injury were determined. Following each duration of ischemia, Mg-D hearts displayed greater levels of total PBN adduct production (1.7 –2.0 times higher) and lower recovery of cardiac function (42–48% less) than Mg-S hearts. Pretreating Mg-D rats with vitamin E prior to imposing 40-min ischemia/reperfusion, led to a 49% reduction in total PBN/RO· production, a 55% lower LDH release and a 2.2-fold improvement in functional recovery, compared to untreated Mg-D hearts. These data suggest that magnesium deficiency predisposes postischemic hearts to enhanced oxidative injury and functional loss, and that antioxidants may offer significant protection against pro-oxidant influence(s) of magnesium deficiency.  相似文献   

2.
The benefits of acute D-propranolol (D-Pro, non-beta-adrenergic receptor blocker) pretreatment against enhanced ischemia/reperfusion (I/R) injury of hearts from moderate iron-overloaded rats were examined. Perfused hearts from iron-dextran-treated rats (450 mg/kg/week for 3 weeks, intraperitoneal administration) exhibited normal control function, despite iron treatment that elevated plasma iron and conjugated diene levels by 8.1-and 2.5-fold, respectively. However, these hearts were more susceptible to 25 mins of global I/R stress compared with non-loaded hearts; the coronary flow rate, aortic output, cardiac work, left ventricular systolic pressure, positive differential left ventricular pressure (dP/dt), and left ventricular developed pressure displayed 38%, 60%, 55%, 13%, 41%, and 15% lower recoveries, respectively, and a 6.5-fold increase in left ventricular end-diastolic pressure. Postischemic hearts from iron-loaded rats also exhibited 5.6-, 3.48-, 2.43-, and 3.45-fold increases in total effluent iron content, conjugated diene levels, lactate dehydrogenase (LDH) activity, and lysosomal N-acetyl-beta-glucosaminidase (NAGA) activity, respectively, compared with similarly stressed non-loaded hearts. A comparison of detection time profiles during reperfusion suggests that most of the oxidative injury (conjugated diene) in hearts from iron-loaded rats occurred at later times of reperfusion (8.5-15 mins), and this corresponded with heightened tissue iron and NAGA release. D-Pro (2 microM infused for 30 mins) pretreatment before ischemia protected all parameters compared with the untreated iron-loaded group; pressure indices improved 1.2- to 1.6-fold, flow parameters improved 1.70- to 2.96-fold, cardiac work improved 2.87-fold, and end-diastolic pressure was reduced 56%. D-Pro lowered total release of tissue iron, conjugated diene content, LDH activity, and NAGA activity 4.59-, 2.55-, 3.04-, and 4.14-fold, respectively, in the effluent of I/R hearts from the iron-loaded group. These findings suggest that the enhanced postischemic dysfunction and tissue injury of hearts from iron-loaded rats was caused by excessive iron-catalyzed free radical stress, and that the membrane antioxidant properties of D-Pro and its stabilization of sequestered lysosomal iron by D-Pro may contribute to the cardioprotective actions of D-Pro.  相似文献   

3.
Severe dietary Mg restriction (Mg(9), 9% of recommended daily allowance [RDA], plasma Mg = 0.25 mM) induces a pro-inflammatory neurogenic response in rats (substance P [SP]), and the associated increases in oxidative stress in vivo and cardiac susceptibility to ischemia/reperfusion (I/R) injury were previously shown to be attenuated by SP receptor blockade and antioxidant treatment. The present study assessed if less severe dietary Mg restriction modulates the extent of both the neurogenic/oxidative responses in vivo and I/R injury in vitro. Male Sprague-Dawley rats maintained on Mg(40) (40% RDA, plasma Mg = 0.6 mM) or Mg(100) (100% RDA, plasma Mg = 0.8 mM) diets were assessed for plasma SP levels (CHEM-ELISA) during the first 3 weeks and were compared with the Mg(9) group; red blood cell (RBC) glutathione and plasma malondialdehyde levels were compared at 3 weeks in Mg(9), Mg(20) (plasma Mg = 0.4 mM), Mg(40), and Mg(100) rats; and 40-min global ischemia/30-min reperfusion hearts from 7-week-old Mg(20), Mg(40), and Mg(100) rats were compared with respect to functional recovery (cardiac work, and diastolic, systolic, and developed pressures), tissue LDH release, and free radical production (ESR spectroscopy and alpha-phenyl-N-tert butylnitrone [PBN; 3 mM] spin trapping). The Mg(40) diet induced smaller elevations in plasma SP (50% lower) compared with Mg(9), but with a nearly identical time course. RBC glutathione and plasma malondialdehyde levels revealed a direct relationship between the severity of oxidative stress and hypomagnesemia. The dominant lipid free radical species detected in all I/R groups was the alkoxyl radical (PBN/alkoxyl: alpha(H) = 1.93 G, alpha(N) = 13.63 G); however, Mg(40) and Mg(20) hearts exhibited 2.7- and 3.9-fold higher alkoxyl levels, 40% and 65% greater LDH release, and lower functional recovery (Mg(20) < Mg(40)) compared with Mg(100). Our data suggest that varying dietary Mg intake directly influences the magnitude of the neurogenic/oxidative responses in vivo and the resultant myocardial tolerance to I/R stress.  相似文献   

4.
Free radicals produced during myocardial post-ischemic reperfusion are aggravating factors for functional disturbances and cellular injury. The aim of our work was to investigate the significance of the secondary free radical release during non ischemic perfusion and post-ischemic reperfusion and to evaluate the cardiovascular effects of the spin trap used. For that purpose, isolated perfused rat hearts underwent 0, 20, 30 or 60 min of a total ischemia, followed by 30 min of reperfusion. The spin trap: alpha-phenyl N-tert-butylnitrone (PBN) was used (3 mM). Functional parameters were recorded and samples of coronary effluents were collected and analyzed using Electron Paramagnetic Resonance (EPR) to identify and quantify the amount of spin adducts produced. During non ischemic perfusion, almost undetectable levels of free radical release were observed. Conversely, a large and long-lasting (30 min) release of spin adducts was detected from the onset of reperfusion. The free radical species were identified as alkyl and alkoxyl radicals with amounts reaching 40 times the pre-ischemic values. On the other hand, PBN showed a cardioprotective effect, allowing a significant reduction of rhythm disturbances and a better post-ischemic recovery for the hearts which were submitted to 20 min of ischemia. When the duration of ischemia increased, the protective effects of PBN disappeared and toxic effects became more important. Our results have therefore confirmed the antioxidant and protective properties of a spin trap agent such as PBN. Moreover, we demonstrated that the persistent post-ischemic dysfunction was associated with a sustained production and release of free radical species.  相似文献   

5.
Ha KC  Piao CS  Chae HJ  Kim HR  Chae SW 《Regulatory peptides》2006,133(1-3):13-19
The present study used isolated rat hearts to investigate whether (1) Dendroaspis natriuretic peptide (DNP) is protective against post-ischemic myocardial dysfunction, and (2) whether the cardioprotective effects of DNP is related to alteration of Bcl-2 family protein levels. The excised hearts of Sprague-Dawley rats were perfused on a Langendorff apparatus with Krebs-Henseleit solution with a gas mixture of 95% O2 and 5% CO2. Left ventricular end-diastolic pressure (LVEDP, mmHg), left ventricular developed pressure (LVDP, mmHg) and coronary flow (CF, ml/min) were continuously monitored. In the presence of 50 nM DNP, all hearts were perfused for a total of 100 min consisting of a 20 min pre-ischemic period followed by a 30 min global ischemia and 50 min reperfusion. Lactate dehydrogenase (LDH) activity in the effluent was measured during reperfusion. Treatment with DNP alone improved the pre-ischemic LVEDP and post-ischemic LVEDP significantly comparing with the untreated control hearts during reperfusion. However, DNP did not affect the LVDP, heart rate (HR, beats/min), and CF. Bcl-2, an anti-apoptotic protein expressed in ischemic myocardium of DNP+ischemia/reperfusion (I/R) group, was higher than that in I/R alone group. Bax, a pro-apoptotic protein expressed in ischemic myocardium of DNP+I/R group, has no significant difference compared with I/R alone group. These results suggest that the protective effects of DNP against I/R injury would be mediated, at least in part, through the increased ratio of Bcl-2 to Bax protein after ischemia-reperfusion.  相似文献   

6.
Cardiac ischemia may be responsible for either the loss of endothelial nitric oxide synthase (eNOS) or changes in its activity, both conditions leading to coronary dysfunction. We investigated whether early ischemic preconditioning was able to preserve eNOS protein expression and function in the ischemic/reperfused myocardium. Langendorff-perfused rat hearts were subjected to 20 min global ischemia, followed by 30 min reperfusion (I/R). A second group of hearts was treated as I/R, but preconditioned with three cycles of 5 min-ischemia/5 min-reperfusion (IP). Cardiac contractility markedly decreased in I/R, consistently with the rise of creatine kinase (CK) activity in the coronary effluent, whilst ischemic preconditioning significantly improved all functional parameters and reduced the release of CK. Western blot analysis revealed that the amount of eNOS protein decreased by 54.2% in I/R with respect to control (p < 0.01). On the other hand, NOS activity was not significantly reduced in I/R, as well as cGMP tissue levels, suggesting that a parallel compensatory stimulation of this enzymatic activity occurred during ischemia/reperfusion. Ischemic preconditioning completely prevented the loss of eNOS. Moreover, both NOS activity and cGMP tissue level were significantly higher (p < 0.05) in IP (12.7 +/- 0.93 pmol/min/mg prot and 58.1 +/- 12.2 fmol/mg prot, respectively) than I/R (7.34 +/- 2.01 pmol/min/mg prot and 21.4 +/- 4.13 fmol/mg prot, respectively). This suggest that early ischemic preconditioning may be useful to accelerate the complete recovery of endothelial function by preserving the level of cardiac eNOS and stimulating the basal production of nitric oxide.  相似文献   

7.
Cardioprotection by Mg Sulfate (MgSO4) during ischemia/reperfusion (I/R) is attributed largely to the Mg2+ cation. However, Mg-gluconate (MgGl2) may provide added benefit, possibly through its anion's antioxidant properties. Protective effects of both Mg-salts and their anions during 30 min global I and 50 min R were assessed in Langendorff-perfused (Krebs-Henseleit buffer) rat hearts. Recovery of function was compared between untreated hearts and those receiving supplement (2.4 mM MgGl2, MgSO4, or Na2SO4, or 4.8 mM NaGI) for 5 min prior to I and during the initial 30 min R. The final 20 min R was conducted without supplement. End diastolic pressure (EDP, mmHg) of the 50 min reperfused MgGl2 group (2.6) was lower than MgSO4 (16.2) and untreated (35.6) groups, and the NaGI group (25.2) was considerably lower than Na2SO4 (38.8). Recovery of developed pressure (% preischemic DP) at the onset of R for MgGl2 (74.9) was greater than MgSO4 (37.9) and untreated (33.2). After 50 min, MgGl2 (77.9) and MgSO4 (66.9) provided protection compared to untreated (51.8). In separate studies, ESR spin trapping with alpha-phenyl-N-tert-butylnitrone (3 mM PBN) showed that I/R alkoxyl radical production was reduced with MgGl2 (0.0 vs. 2.4 vs. 3.6 mM: 184 vs. 97 vs. 54.8 nM/g tissue x min) to a greater extent than seen with MgSO4 (3.6 mM: 108). Additional studies suggest that Gl(1-), unlike SO4(2-), may scavenge hydroxyl radicals, accounting for the added protection. MgGl2 treated hearts exhibited less postischemic dysfunction and oxidative injury compared to MgSO4, suggesting the contribution of Gl(1-) to cardioprotection.  相似文献   

8.
Genetically engineered mice provide an excellent tool to study the role of a particular gene in biological systems and will be increasingly used as models to understand the signal transduction mechanisms involved in ischemic preconditioning (IP). However, the phenomenon of IP has not been well characterized in this species. We therefore attempted to examine whether IP could protect isolated mouse heart against global ischemia/reperfusion (GI/R) injury. Thirty adult mice hearts were perfused at constant pressure of 55 mmHg in Langendorff mode. Following 20 min equilibration, the hearts were randomized into three groups (n = 10/each): (1) Control Group; (2) IP2.5 Group: IP with two cycles of 2.5 min GI + 2.5 min R; (3) IP5 Group: IP with 5 min GI + 5 min R. All hearts were then subjected to 20 min of GI and 30 min R (37°C). Ventricular developed force was measured by a force transducer attached to the apex. Leakage of CK and LDH was measured in coronary efflux. Infarct size was determined by tetrazolium staining. Following sustained GI/R, infarct size was significantly reduced in IP2.5 (13.8 ± 2.3%), but not in IP5 (20.1 ± 4.0%), when compared with non-preconditioned control (23.6 ± 3.8%) hearts. CK and LDH release was also reduced in both IP2.5 and IP5 groups. No significant improvement in post-ischemic ventricular contractile function was observed in either IP groups. We conclude that IP with repetitive cycles of brief GI/R is able to reduce myocardial infarct size and intracellular enzyme leakage caused by a sustained GI/R in the isolated perfused mouse heart. This anti-necrosis cardioprotection induced by IP was not associated with the amelioration of post-ischemic ventricular dysfunction.  相似文献   

9.
Post-ischemic reperfusion causes cardiac dysfunction and radical-induced lipid peroxidation (LPO) detectable by ESR spin trapping. This study deals with the applicability of the spin trap technique to pharmacological investigations during myocardial reperfusion injury. The use of the spin trap phenylbutylnitrone (PBN, 3 mM) in isolated rat hearts demonstrated the release of alkoxyl radicals (aN = 1.39 mT, aH = 0.19 mT) formed particularly within the first 15 min of reperfusion following 30 min of ischemia. The decline of radicals, after 10 min of reperfusion, was accompanied by recovery of function in 80% of the hearts. The radical concentration in the coronary effluent (maximum after 7.5 min) was reduced by the infusion of 1 mM mercaptopropionylglycine (MPG, 2.7 ± 0.5 U/ml, p < 0.001) or 5 M vitamin E (11.7 ± 0.8 U/ml, p < 0.001), compared to the (PBN-containing) control (29.7 ± 4.3 U/ml). Moreover, functional recovery (left ventricular developed pressure, LVDP 91.6 ± 20% of pre-ischemic level, p < 0.05) was improved by the hydrophilic radical scavenger MPG, compared to the (PBN-containing) control (LVDP 50.5 ± 15.7% of baseline). PBN alone led to higher functional recovery (p < 0.05) and reduced VF (duration of ventricular fibrillation; 7.10 ± 0.36 min/30 min, p < 0.05), compared to the untreated (PBN-free) control (LVDP 26.6 ± 11.8%; VF 19.42 ± 3.64 min/30 min). The Ca antagonist verapamil (0.1 M), MPG, and the lipophilic vitamin E showed cardioprotection in the absence of PBN: post-ischemic recovery of LVDP was 25.4 ± 6.8% (p < 0.05), 39.6 ± 12.7% (p < 0.05) and 52.4 ± 2.6% (p < 0.01), respectively, compared to the corresponding untreated control (13.3 ± 6.6%). Whereas verapamil and vitamin E were able to protect the heart when present alone, they offered no additive effect in the presence of PBN. Therefore, PBN can be used to estimate the radical scavenger properties of an agent in the heart. However, because of the protective properties of PBN itself, the results of simultaneous investigations of the effects of other compounds, such as Ca antagonists or lipophilic radical scavengers, on heart function may be limited.  相似文献   

10.
High density lipoproteins (HDL) protect the heart against ischemia/reperfusion (I/R) injury, and matrix metalloproteinase-2 (MMP-2) directly contributes to cardiac contractile dysfunction after I/R. To investigate the possible involvement of MMP-2 inhibition in HDL-mediated cardioprotection, isolated rat hearts underwent 20 min of low-flow ischemia and 30 min of reperfusion. Plasma-derived and synthetic HDL attenuated the I/R-induced cardiac MMP-2 activation and release in a dose-dependent way. The attenuation of I/R-induced MMP-2 activation by HDL correlated with the reduction of post-ischemic contractile dysfunction and cardiomyocyte necrosis. These results indicate prevention of MMP-2 activation as a novel mechanism for HDL-mediated cardioprotection.  相似文献   

11.
Although Ca(2+)/calmodulin-dependent protein kinase II (CaMK II) is known to modulate the function of cardiac sarcoplasmic reticulum (SR) under physiological conditions, the status of SR CaMK II in ischemic preconditioning (IP) of the heart is not known. IP was induced by subjecting the isolated perfused rat hearts to three cycles of brief ischemia-reperfusion (I/R; 5 min ischemia and 5 min reperfusion), whereas the control hearts were perfused for 30 min with oxygenated medium. Sustained I/R in control and IP groups was induced by 30 min of global ischemia followed by 30 min of reperfusion. The left ventricular developed pressure, rate of the left ventricular pressure, as well as SR Ca(2+)-uptake activity and SR Ca(2+)-pump ATPase activity were depressed in the control I/R hearts; these changes were prevented upon subjecting the hearts to IP. The beneficial effects of IP on the I/R-induced changes in contractile activity and SR Ca(2+) pump were lost upon treating the hearts with KN-93, a specific CaMK II inhibitor. IP also prevented the I/R-induced depression in Ca(2+)/calmodulin-dependent SR Ca(2+)-uptake activity and the I/R-induced decrease in the SR CaMK II activity; these effects of IP were blocked by KN-93. The results indicate that IP may prevent the I/R-induced alterations in SR Ca(2+) handling abilities by preserving the SR CaMK II activity, and it is suggested that CaMK II may play a role in mediating the beneficial effects of IP on heart function.  相似文献   

12.
Wu Q  Zhao Z  Sun H  Hao YL 《生理学报》2008,60(3):327-332
The aim of the present study is to investigate the role of beta(2)-adrenoreceptor (beta(2)-AR) in ischemic preconditioning (IP) in isolated rat heart model of ischemia/reperfusion (I/R). Sprague-Dawley rat hearts were quickly removed, mounted on Langendorff apparatus, and perfused with Krebs-Henseleit (KH) solution. After the initial stabilization period, the rats were randomly divided into 6 groups including control group (perfused for an additional 20 min), IP group (4 cycles of 5 min of ischemia followed by 5 min of reflow), isoproterenol (ISO) group (10 nmol/L ISO perfusion for 5 min followed by 5 min washout), IP + ICI118551 group (55 nmol/L ICI118551 perfusion for 5 min before and throughout IP), ISO + ICI118551 group (55 nmol/L ICI118551 perfusion for 5 min before and throughout ISO treatment), ICI118551 group (55 nmol/L ICI118551 perfusion for 20 min). After these treatments, all hearts were followed by 30 min of no-flow ischemia and 30 min of reperfusion. A computer-based electrophysiological recorder system was used to measure changes of the maximal rate of pressure increase in systole phase (+dp/dt(max)), maximal rate of pressure decrease in diastole phase (-dp/dt(max)), and difference of left ventricular pressure (DeltaLVP). Then cardiomyocytes from these hearts were isolated by 5 min of Ca(2+)-free buffer perfusion and 25 min of collagenase perfusion. The ventricles were chopped and filtered. The myocytes were resuspended in KB buffer. The contraction and the viability of cardiomyocytes were measured. Lactate dehydrogenase (LDH) concentration in coronary effluent was assayed with assay kit. The results showed that both IP and ISO significantly increased the values of +/-dp/dt(max), DeltaLVP, the contraction and viability of cardiomyocytes, shortened the time-to-peak contraction (TTP), and decreased the release of LDH in coronary effluent. ICI118551, a selective beta(2)-AR antagonist, blocked these effects. Either the time-to-50% relaxation (R(50)) or the time-to-100% relaxation (R(100)) had no significant differences between groups. Our results indicate that the cardioprotection of IP was mediated by beta(2)-AR in isolated rat hearts subjected to I/R injury.  相似文献   

13.
The Chromogranin A (CgA)-derived anti-hypertensive peptide catestatin (CST) antagonizes catecholamine secretion, and is a negative myocardial inotrope acting via a nitric oxide-dependent mechanism. It is not known whether CST contributes to ischemia/reperfusion injury or is a component of a cardioprotective response to limit injury. Here, we tested whether CST by virtue of its negative inotropic activity improves post-ischemic cardiac function and cardiomyocyte survival. Three groups of isolated perfused hearts from adult Wistar rats underwent 30-min ischemia and 120-min reperfusion (I/R, Group 1), or were post-conditioned by brief ischemic episodes (PostC, 5-cycles of 10-s I/R at the beginning of 120-min reperfusion, Group 2), or with exogenous CST (75 nM for 20 min, CST-Post, Group-3) at the onset of reperfusion. Perfusion pressure and left ventricular pressure (LVP) were monitored. Infarct size was evaluated with nitroblue-tetrazolium staining. The CST (5 nM) effects were also tested in simulated ischemia/reperfusion experiments on cardiomyocytes isolated from young-adult rats, evaluating cell survival with propidium iodide labeling. Infarct size was 61 ± 6% of risk area in hearts subjected to I/R only. PostC reduced infarct size to 34 ± 5%. Infarct size in CST-Post was 36 ± 3% of risk area (P < 0.05 respect to I/R). CST-Post reduced post-ischemic rise of diastolic LVP, an index of contracture, and significantly improved post-ischemic recovery of developed LVP. In isolated cardiomyocytes, CST increased the cell viability rate by about 65% after simulated ischemia/reperfusion. These results suggest a novel cardioprotective role for CST, which appears mainly due to a direct reduction of post-ischemic myocardial damages and dysfunction, rather than to an involvement of adrenergic terminals and/or endothelium.  相似文献   

14.
Gao S  Oh YB  Park BM  Park WH  Kim SH 《Peptides》2012,36(2):199-205
Urotensin II (UII) is a vasoactive peptide which is bound to a G protein-coupled receptor. UII and its receptor are upregulated in ischemic and chronic hypoxic myocardium, but the effect of UII on ischemic reperfusion (I/R) injury is still controversial. The aim of the present study was to investigate whether UII protects heart function against I/R injury. Global ischemia was performed using isolated perfused Langendorff hearts of Sprague-Dawley rats. Hearts were perfused with Krebs-Henseleit buffer for 20min pre-ischemic period followed by a 20min global ischemia and 50min reperfusion. Pretreatment with UII (10nM) for 10min increased recovery percentage of the post-ischemic left ventricular developed pressure and ±dp/dt, and decreased post-ischemic left ventricular end-diastolic pressure as compared with I/R group. UII decreased infarct size and an increased lactate dehydrogenase level during reperfusion. Cardioprotective effects of UII were attenuated by pretreatment with UII receptor antagonist. The hydrogen peroxide activity was increased in UII-treated heart before ischemia. The Mn-SOD, catalase, heme oxygenase-1 and Bcl-2 levels were increased, and the Bax and caspase-9 levels were decreased in UII-treated hearts. These results suggest that UII has cardioprotective effects against I/R injury partly through activating antioxidant enzymes and reactive oxygen species.  相似文献   

15.
The release of cardioactive substances during hepatic ischemia/reperfusion injury generates toxic free radicals that inflict hepatic and remote cardiac damage. The aim of the study was to determine whether TPEN, a potent iron chelator, ameliorates the apoptotic hepatic and cardiac function injuries. Three groups of isolated rat livers were studied: (1) continuously perfused with Krebs-Henseleit solution; (2) subjected to 120 min of ischemia and 15 min of reperfusion; (3) as in group 2, with TPEN administered prior to ischemia. Isolated hearts were perfused for 65 min with the effluent of the reperfused livers. Results showed that TPEN administration reduced the release of norepinephrine, epinephrine, dopamine, prostaglandin E2 and angiotensin II, decreased intrahepatic caspase-3 activity, and decreased the mean hepatocyte apoptotic index (TUNEL assay) (p = 0.001). Perfusion with post-ischemic hepatic effluent caused a transient 15-min increase in left ventricular contraction and coronary flow (p < 0.05), followed by a decrease in cardiac function at one hour. TPEN reduced the transient elevation in left ventricular contraction p < 0.05), but did not prevent the subsequent decrease in cardiac function. In conclusion, TPEN attenuates post-ischemic apoptotic hepatic injury by modulating caspase-3-like activity and reduces the cardioactive substances released from the liver.Drs. Hochhauser and Ben-Ari contributed equally to this work  相似文献   

16.
《Free radical research》2013,47(3):145-163
We evaluated the ability of α-phenyl-tert-butyl nitrone (PBN) to trap free radicals and to protect the rat myocardium during ishcemia and reperfusion. Isolated bicarbonate buffer-perfused hearts (n = 8) were subjected to 20 min global ishcemia (37°C) followed by reperfusion with 0.4 to 4.0 mM PBN. Coronary effluent containing the PBN adduct was extracted in toluene. Electron spin resonance analysis of the toluene extract revealed a PBN-hydroxyl adduct. To verify this assignment, a Fenton system was used to generate an authentic PBN-hydroxyl adduct (n = 8), which yielded the same ESR spectra as the reperfusion-derived adduct. The structure of the adduct formed in the Fenton system was confirmed by gas chromatography-mass spectrometry. The ESR parameters of the PBN-hydroxyl adduct were exquisitely sensitive to solvent polarity during extraction of the adduct. Extraction of an authentic PBN-hydroxyl adduct into chloroform, chloroform:methanol, and toluene closely matched the ESR parameters obtained during reperfusion of ischemic myocardium in other animal models. To determine whether PBN could confer any protective effect during ischemia or reperfusion, hearts (n = 8/group) were subjected to 35 min global ischmia at 37°C with the St. Thomas' II cardioplegic solution followed by 30 min reperfusion. Percent recovery (mean ± SEM) of developed pressure, rate pressure product, and leakage of lactate dehydrogenase during reperfusion in control hearts were 58 ± 3%, 48 ± 4% and 3.2 ± 0.5 IU/15 min/g wet wt. PBN at a concentration of 0.4 mM or 4.0 mM when present either during ischemia alone or reperfusion alone did not exert any effect upon recovery of developed pressure, rate pressure product or post-ischemic enzyme leakage. We conclude that PBN fails to improve contractile recovery and reduce enzyme leakage during reperfusion of myocardium subjected to global ischemia.  相似文献   

17.
18.
Free radicals produced during myocardial post-ischemic reperfusion are aggravating factors for functional disturbances and cellular injury. The aim of our work was to investigate the significance of the secondary free radical release during non ischemic perfusion and post-ischemic reperfusion and to evaluate the cardiovascular effects of the spin trap used. For that purpose, isolated perfused rat hearts underwent 0, 20, 30 or 60 min of a total ischemia, followed by 30 min of reperfusion. The spin trap: α-phenyl N-tert-butylnitrone (PBN) was used (3 mM). Functional parameters were recorded and samples of coronary effluents were collected and analyzed using Electron Paramagnetic Resonance (EPR) to identify and quantify the amount of spin adducts produced. During non ischemic perfusion, almost undetectable levels of free radical release were observed. Conversely, a large and long-lasting (30 min) release of spin adducts was detected from the onset of reperfusion. The free radical species were identified as alkyl and alkoxyl radicals with amounts reaching 40 times the pre-ischemic values. On the other hand, PBN showed a cardioprotective effect, allowing a significant reduction of rhythm disturbances and a better post-ischemic recovery for the hearts which were submitted to 20 min of ischemia. When the duration of ischemia increased, the protective effects of PBN disappeared and toxic effects became more important. Our results have therefore confirmed the antioxidant and protective properties of a spin trap agent such as PBN. Moreover, we demonstrated that the persistent post-ischemic dysfunction was associated with a sustained production and release of free radical species.  相似文献   

19.
为了解决高氧预适应(HyperoxicpreconditioningHOP)对大鼠心肌缺血再灌注时自由基的影响,本实验将实验组大鼠放入高压氧舱内,每日吸80-85%氧气(1atm)6h,连续7d。利用Langendorf装置做成心肌缺血再灌注模型,采用电子自旋共振技术测定自由基含量。实验动物随机分为二组,第一组为对照组:缺血10min,再灌注60min。第二组为HOP组:缺血10min,再灌注60min。实验观察冠脉回流液中自由基PBN加合物含量。结果表明:在再灌注过程中,1、5、10min3个时间点,HOP组PBN加合物含量较对照组明显减少。提示:HOP能减少缺血再灌注时自由基的产生。  相似文献   

20.
Caveolin-1 is a protein constituent of cell membranes. The caveolin-1 scaffolding region (residues 82-101) is a known inhibitor of protein kinase C. Inhibition of protein kinase C results in maintained nitric oxide (NO) release from the endothelium, which attenuates cardiac dysfunction after ischemia-reperfusion (I/R). Therefore, we hypothesized that the caveolin-1 scaffolding region of the molecule, termed caveolin-1 peptide, might attenuate postischemia polymorphonuclear neutrophil (PMN)-induced cardiac dysfunction. We examined the effects of caveolin-1 peptide in isolated ischemic (20 min) and reperfused (45 min) rat hearts reperfused with PMNs. Caveolin-1 peptide (165 or 330 microg) given intravenously 1 h before I/R significantly attenuated postischemic PMN-induced cardiac dysfunction, as exemplified by left ventricular developed pressure (LVDP) (P < 0.01) and the maximal rate of developed pressure (+dP/dt(max)) (P < 0.01), compared with I/R hearts obtained from rats given 0.9% NaCl. In addition, caveolin-1 peptide significantly reduced cardiac PMN infiltration from 195 +/- 5 PMNs/mm2 in untreated hearts to 103 +/- 5 and 60 +/- 5 PMNs/mm2 in hearts from 165 and 330 microg caveolin-1 peptide-treated rats, respectively (P < 0.01). PMN adherence to the rat coronary vasculature was also significantly reduced in rats given either 165 or 330 microg caveolin-1 peptide compared with rats given 0.9% NaCl (P < 0.01). Moreover, caveolin-1 peptide-treated rat aortas exhibited a 2.2-fold greater basal release of NO than vehicle-treated aortas (P < 0.01), and this was inhibited by NG-nitro-L-arginine methyl ester. These results provide evidence that caveolin-1 peptide significantly attenuated PMN-induced post-I/R cardiac contractile dysfunction in the isolated perfused rat heart, probably via enhanced release of endothelium-derived NO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号