首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endochondral ossification is a highly regulated process that relies on properly orchestrated cell-cell interactions in the developing growth plate. This study is focused on understanding the role of a crucial regulator of cell-cell interactions, the membrane-anchored metalloproteinase ADAM17, in endochondral ossification. ADAM17 releases growth factors, cytokines, and other membrane proteins from cells and is essential for epidermal growth factor receptor (EGFR) signaling and for processing tumor necrosis factor alpha. Here, we report that mice lacking ADAM17 in chondrocytes (A17ΔCh) have a significantly expanded zone of hypertrophic chondrocytes in the growth plate and retarded growth of long bones. This abnormality is caused by an accumulation of the most terminally differentiated type of chondrocytes that produces a calcified matrix. Inactivation of ADAM17 in osteoclasts or endothelial cells does not affect the zone of hypertrophic chondrocytes, suggesting that the main role of ADAM17 in the growth plate is in chondrocytes. This notion is further supported by in vitro experiments showing enhanced hypertrophic differentiation of primary chondrocytes lacking Adam17. The enlarged zone of hypertrophic chondrocytes in A17ΔCh mice resembles that described in mice with mutant EGFR signaling or lack of its ligand transforming growth factor α (TGFα), suggesting that ADAM17 regulates terminal differentiation of chondrocytes during endochondral ossification by activating the TGFα/EGFR signaling axis.  相似文献   

2.

Purpose

Radiofrequency ablation (RFA) is a minimally invasive energy delivery technique increasingly used for focal therapy to eradicate localized disease. RFA-induced tumor-cell necrosis generates an immunogenic source of tumor antigens known to induce antitumor immune responses. However, RFA-induced antitumor immunity is insufficient to control metastatic progression. We sought to characterize (a) the role of RFA dose on immunogenic modulation of tumor and generation of immune responses and (b) the potential synergy between vaccine immunotherapy and RFA aimed at local tumor control and decreased systemic progression.

Experimental Design

Murine colon carcinoma cells expressing the tumor-associated (TAA) carcinoembryonic antigen (CEA) (MC38-CEA+) were studied to examine the effect of sublethal hyperthermia in vitro on the cells’ phenotype and sensitivity to CTL-mediated killing. The effect of RFA dose was investigated in vivo impacting (a) the phenotype and growth of MC38-CEA+ tumors and (b) the induction of tumor-specific immune responses. Finally, the molecular signature was evaluated as well as the potential synergy between RFA and poxviral vaccines expressing CEA and a TRIad of COstimulatory Molecules (CEA/TRICOM).

Results

In vitro, sublethal hyperthermia of MC38-CEA+ cells (a) increased cell-surface expression of CEA, Fas, and MHC class I molecules and (b) rendered tumor cells more susceptible to CTL-mediated lysis. In vivo, RFA induced (a) immunogenic modulation on the surface of tumor cells and (b) increased T-cell responses to CEA and additional TAAs. Combination therapy with RFA and vaccine in CEA-transgenic mice induced a synergistic increase in CD4+ T-cell immune responses to CEA and eradicated both primary CEA+ and distal CEA s.c. tumors. Sequential administration of low-dose and high-dose RFA with vaccine decreased tumor recurrence compared to RFA alone. These studies suggest a potential clinical benefit in combining RFA with vaccine in cancer patients, and augment support for this novel translational paradigm.  相似文献   

3.
Obesity and type 2 diabetes are associated with an increased risk for development of certain forms of cancer, including colon cancer. The publication of highly controversial epidemiological studies in 2009 raised the possibility that use of the insulin analog glargine increases this risk further. However, it is not clear how mitogenic effects of insulin and insulin analogs measured in vitro correlate with tumor growth-promoting effects in vivo. The aim of this study was to examine possible growth-promoting effects of native human insulin, insulin X10 and IGF-1, which are considered positive controls in vitro, in a short-term animal model of an obesity- and diabetes-relevant cancer. We characterized insulin and IGF-1 receptor expression and the response to treatment with insulin, X10 and IGF-1 in the murine colon cancer cell line (MC38 cells) in vitro and in vivo. Furthermore, we examined pharmacokinetics and pharmacodynamics and monitored growth of MC38 cell allografts in mice with diet-induced obesity treated with human insulin, X10 and IGF-1. Treatment with X10 and IGF-1 significantly increased growth of MC38 cell allografts in mice with diet-induced obesity and we can therefore conclude that supra-pharmacological doses of the insulin analog X10, which is super-mitogenic in vitro and increased the incidence of mammary tumors in female rats in a 12-month toxicity study, also increase growth of tumor allografts in a short-term animal model.  相似文献   

4.
5.
Tumor-associated macrophages are known to influence cancer progression by modulation of immune function, angiogenesis, and cell metastasis, however, little is known about the chemokine signaling networks that regulate this process. Utilizing CT26 colon cancer cells and RAW 264.7 macrophages as a model cellular system, we demonstrate that treatment of CT26 cells with RAW 264.7 conditioned medium induces cell migration, invasion and metastasis. Inflammatory gene microarray analysis indicated CT26-stimulated RAW 264.7 macrophages upregulate SDF-1α and VEGF, and that these cytokines contribute to CT26 migration in vitro. RAW 264.7 macrophages also showed a robust chemotactic response towards CT26-derived chemokines. In particular, microarray analysis and functional testing revealed CSF-1 as the major chemoattractant for RAW 264.7 macrophages. Interestingly, in the chick CAM model of cancer progression, RAW 264.7 macrophages localized specifically to the tumor periphery where they were found to increase CT26 tumor growth, microvascular density, vascular disruption, and lung metastasis, suggesting these cells home to actively invading areas of the tumor, but not the hypoxic core of the tumor mass. In support of these findings, hypoxic conditions down regulated CSF-1 production in several tumor cell lines and decreased RAW 264.7 macrophage migration in vitro. Together our findings suggest a model where normoxic tumor cells release CSF-1 to recruit macrophages to the tumor periphery where they secrete motility and angiogenic factors that facilitate tumor cell invasion and metastasis.  相似文献   

6.
Germ cell apoptosis regulation is pivotal in order to maintain proper daily sperm production. Several reports have shown that endocrine disruptors such as Bisphenol-A (BPA) and Nonylphenol (NP) induce germ cell apoptosis along with a decrease in sperm production. Given their ubiquitous distribution in plastic products used by humans it is important to clarify their mechanism of action. TACE/ADAM17 is a widely distributed extracellular metalloprotease and participates in the physiological apoptosis of germ cells during spermatogenesis. The aims of this work were: 1) to determine whether BPA and NP induce ADAM17 activation; and 2) to study whether ADAM17 and/or ADAM10 are involved in germ cell apoptosis induced by BPA and NP in the pubertal rat testis. A single dose of BPA or NP (50 mg/kg) induces germ cell apoptosis in 21-day-old male rats, which was prevented by a pharmacological inhibitor of ADAM17, but not by an inhibitor of ADAM10. In vitro, we showed that BPA and NP, at similar concentrations to those found in human samples, induce the shedding of exogenous and endogenous (TNF-α) ADAM17 substrates in primary rat Sertoli cell cultures and TM4 cell line. In addition, pharmacological inhibitors of metalloproteases and genetic silencing of ADAM17 prevent the shedding induced in vitro by BPA and NP. Finally, we showed that in vivo BPA and NP induced early activation (phosphorylation) of p38 MAPK and translocation of ADAM17 to the cell surface. Interestingly, the inhibition of p38 MAPK prevents germ cell apoptosis and translocation of ADAM17 to the cell surface. These results show for the first time that xenoestrogens can induce activation of ADAM17 at concentrations similar to those found in human samples, suggesting a mechanism by which they could imbalance para/juxtacrine cell-to-cell-communication and induce germ cell apoptosis.  相似文献   

7.
A disintegrin and metalloproteinase 17 (ADAM17) regulates key cellular processes including proliferation and migration through the shedding of a diverse array of substrates such as epidermal growth factor receptor (EGFR) ligands. ADAM17 is implicated in the pathogenesis of many diseases including rheumatoid arthritis and cancers such as head and neck squamous cell carcinoma (HNSCC). As a central mediator of cellular events, overexpressed EGFR is a validated molecular target in HNSCC. However, EGFR inhibition constantly leads to tumour resistance. One possible mechanism of resistance is the activation of alternative EGFR family receptors and downstream pathways via the release of their ligands. Here, we report that treating human HNSCC cells in vitro with a human anti-ADAM17 inhibitory antibody, D1(A12), suppresses proliferation and motility in the absence or presence of the EGFR tyrosine kinase inhibitor (TKI) gefitinib. Treatment with D1(A12) decreases both the endogenous and the bradykinin (BK)-stimulated shedding of HER ligands, accompanied by a reduction in the phosphorylation of HER receptors and downstream signalling pathways including STAT3, AKT and ERK. Knockdown of ADAM17, but not ADAM10, also suppresses HNSCC cell proliferation and migration. Furthermore, we show that heregulin (HRG) and heparin-binding epidermal growth factor like growth factor (HB-EGF) predominantly participate in proliferation and migration, respectively. Taken together, these results demonstrate that D1(A12)-mediated inhibition of cell proliferation, motility, phosphorylation of HER receptors and downstream signalling is achieved via reduced shedding of ADAM17 ligands. These findings underscore the importance of ADAM17 and suggest that D1(A12) might be an effective targeted agent for treating EGFR TKI-resistant HNSCC.  相似文献   

8.
A key modulator of immune homeostasis, TGFβ has an important role in the differentiation of regulatory T cells (Tregs) and IL-17-secreting T cells (Th17). How TGFβ regulates these functionally opposing T cell subsets is not well understood. We determined that an ADAM family metalloprotease called ADAM12 is specifically and highly expressed in both Tregs and CCR6+ Th17 cells. ADAM12 is induced in vitro upon differentiation of naïve T cells to Th17 cells or IL-17-secreting Tregs. Remarkably, silencing ADAM12 expression in CCR6+ memory T cells enhances the production of Th17 cytokines, similar to suppressing TGFβ signaling. Further, ADAM12 knockdown in naïve human T cells polarized towards Th17/Treg cells, or ectopically expressing RORC, greatly enhances IL-17-secreting cell differentiation, more potently then inhibiting TGFβ signals. Together, our findings reveal a novel regulatory role for ADAM12 in Th17 cell differentiation or function and may have implications in regulating their aberrant responses during immune pathologies.  相似文献   

9.
10.
11.
12.
Background aimsClinical results from acute myocardial infarction (AMI) patients treated with MultiStem®, a large-scale expanded adherent multipotent progenitor cell population (MAPC), have demonstrated a strong safety and benefit profile for these cells. The mechanism of benefit with MAPC treatment is a result, in part, of its ability to induce neovascularization through trophic support. Production of clinical-grade stem cell products requires the development of lot-release criteria based on potency assays that directly reflect the fundamental mechanistic pathway underlying the therapeutic response to verify manufacturing process consistency and product potency.Methods and ResultsUsing an in vitro endothelial tube formation assay, a potency assay has been developed that reflects MAPC pro-angiogenic activity. Serum-free conditioned media collected from MAPC culture induced endothelial tube formation. A proteomic survey of angiogenic factors produced by the cells in vitro revealed candidate factors linked to angiogenic potency. Three cytokines, chemokine (C-X-C motif) ligand 5 (CXCL5), interleukin 8 (IL-8) and vascular endothelial growth factor (VEGF), were required for this angiogenic activity. Depletion of any of these factors from the media prevented tube formation, while adding back increasing amounts of these cytokines into the depleted serum-free conditioned media established the lower limits of each of the cytokines required to induce angiogenesis.ConclusionsA necessary threshold of angiogenic factor expression was established using an in vitro angiogenesis assay. By correlating the levels of the cytokines required to induce tube formation in vitro with levels of the factors found in the spent media from manufacturing production runs, detection of these factors was identified as a surrogate potency assay with defined pass/fail criteria.  相似文献   

13.
14.
δ-catenin, an adherens junctions protein, is not only involved in early development, cell-cell adhesion and cell motility in neuronal cells, but it also plays an important role in vascular endothelial cell motility and pathological angiogenesis. In this study, we report a new function of δ-catenin in lymphangiogenesis. Consistent with expression of δ-catenin in vascular endothelial cells, we detected expression of the gene in lymphatic endothelial cells (LECs). Ectopic expression of δ-catenin in LECs increased cell motility and lymphatic vascular network formation in vitro and lymphangiogenesis in vivo in a Matrigel plug assay. Conversely, knockdown of δ-catenin in LECs impaired lymphangiogenesis in vitro and in vivo. Biochemical analysis shows that δ-catenin regulates activation of Rho family small GTPases, key mediators in cell motility. δ-catenin activates Rac1 and Cdc42 but inhibits RhoA in LECs. Notably, blocking of Rac1 activation impaired δ-catenin mediated lymphangiogenesis in a Matrigel assay. Consistently, loss of δ-catenin in mice inhibited the growth of tumor metastases. Taken together, these findings identify a new function of δ-catenin in lymphangiogenesis and tumor growth/metastasis, likely through modulation of small Rho GTPase activation. Targeting δ-catenin may offer a new way to control tumor metastasis.  相似文献   

15.
16.
Background and aims: Transforming growth factor-beta (TGFβ) is known to potently inhibit cell growth. Loss of responsiveness to TGFβ inhibition on cell growth is a hallmark of many types of cancer, yet its mechanism is not fully understood. Membrane-anchored heparin-binding EGF-like growth factor (proHB-EGF) ectodomain is cleaved by a disintegrin and metalloproteinase (ADAM) members and is implicated in epidermal growth factor receptor (EGFR) transactivation. Recently, nuclear translocation of the C-terminal fragment (CTF) of pro-HB-EGF was found to induce cell growth. We investigated the association between TGFβ and HB-EGF signal transduction via ADAM activation.Materials and methods: The CCK-8 assay in two gastric cancer cell lines was used to determine the effect for cell growth by TGFβ. The effect of two ADAM inhibitors was also evaluated. Induction of EGFR phosphorylation by TGFβ was analyzed and the effect of the ADAM inhibitors was also examined. Nuclear translocation of HB-EGF-CTF by shedding through ADAM activated by TGFβ was also analyzed. EGFR transactivation, HB-EGF-CTF nuclear translocation, and cell growth were examined under the condition of ADAM17 knockdown.Result: TGFβ-induced EGFR phosphorylation of which ADAM inhibitors were able to inhibit. TGFβ induced shedding of proHB-EGF allowing HB-EGF-CTF to translocate to the nucleus. ADAM inhibitors blocked this nuclear translocation. TGFβ enhanced gastric cancer cell growth and ADAM inhibitors suppressed this effect. EGFR phosphorylation, HB-EGF-CTF nuclear translocation, and cell growth were suppressed in ADAM17 knockdown cells.Conclusion: HB-EGF-CTF nuclear translocation and EGFR transactivation from proHB-EGF shedding mediated by ADAM17 activated by TGFβ might be an important pathway of gastric cancer cell proliferation by TGFβ.  相似文献   

17.
A disintegrin and metalloprotease 17 (ADAM17) is a sheddase with important substrates including tumor necrosis factor-α (TNF-α) and its receptors, the p75 neurotrophin receptor (p75NTR), and members of the epidermal growth factor family. The rationale of this study was to inhibit ADAM17-induced shedding of soluble TNF-α in order to reduce detrimental inflammation after spinal cord injury (SCI). However, using the specific ADAM17 blocker BMS-561392 in neuronal and glial cell cultures, we show that proper functioning of ADAM17 is vital for oligodendrocyte and microglia survival in a p44 MAPK-dependent manner. In contrast, genetic ablation of ADAM17 specifically increases microglial death. Surprisingly, although blocking ADAM17 in vivo does not substantially change the ratio between membrane-bound and soluble TNF-α, it increases expression of the pro-apoptotic marker Bax and microglial apoptosis while impairing functional recovery after SCI. These data suggest that ADAM17 is a key survival factor for microglial cells after SCI.  相似文献   

18.
19.
This work aimed to investigate the role of the disintegrin domain of the human ADAM9 (ADAM9D) on the adhesion of breast tumor cells and platelets to collagen I, in a dynamic flow assay to simulate in vivo shear conditions. Recombinant ADAM9D was able to support tumor cell adhesion through binding to the β1 integrin subunit and also to inhibit the invasion through matrigel in vitro. In a dynamic flow assay ADAM9D inhibited about 75% and 65% of MDA-MB-231 tumor cells and platelet adhesion to collagen I, respectively. In addition, it was demonstrated that αVβ3 integrin is new interacting partner for ADAM9D. In conclusion, these results suggest a role for the disintegrin domain of ADAM9 in the metastatic process. Also, ADAM9D may be a tool for investigating the role of ADAMs in metastasis and cancer progression and for the design of selective inhibitors against the adhesion and extravasation of cancer cells.  相似文献   

20.
Anti-angiogenic treatment of glioblastoma with Vascular Endothelial Growth Factor (VEGF)- or VEGF Receptor 2 (VEGFR2) inhibitors normalizes tumor vessels, resulting in a profound radiologic response and improved quality of life. This approach however does not halt tumor progression by diffuse infiltration, as this phenotype is less angiogenesis dependent. Combined inhibition of angiogenesis and diffuse infiltrative growth would therefore be a more effective treatment approach in these tumors. The HGF/c-MET axis is important in both angiogenesis and cell migration in several tumor types including glioma. We therefore analyzed the effects of the c-MET- and VEGFR2 tyrosine kinase inhibitor cabozantinib (XL184, Exelixis) on c-MET positive orthotopic E98 glioblastoma xenografts, which routinely present with angiogenesis-dependent areas of tumor growth, as well as diffuse infiltrative growth. In in vitro cultures of E98 cells, cabozantinib effectively inhibited c-MET phosphorylation, concomitant with inhibitory effects on AKT and ERK1/2 phosphorylation, and cell proliferation and migration. VEGFR2 activation in endothelial cells was also effectively inhibited in vitro. Treatment of BALB/c nu/nu mice carrying orthotopic E98 xenografts resulted in a significant increase in overall survival. Cabozantinib effectively inhibited angiogenesis, resulting in increased hypoxia in angiogenesis-dependent tumor areas, and induced vessel normalization. Yet, tumors ultimately escaped cabozantinib therapy by diffuse infiltrative outgrowth via vessel co-option. Of importance, in contrast to the results from in vitro experiments, in vivo blockade of c-MET activation was incomplete, possibly due to multiple factors including restoration of the blood-brain barrier resulting from cabozantinib-induced VEGFR2 inhibition. In conclusion, cabozantinib is a promising therapy for c-MET positive glioma, but improving delivery of the drug to the tumor and/or the surrounding tissue may be needed for full activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号